
IEEE 802.15.4 Stack
User Guide

JN-UG-3024

Revision 2.0

11 February 2014

IEEE 802.15.4 Stack
User Guide

2 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Contents

About this Manual 11
Organisation 11

Conventions 12

Acronyms and Abbreviations 12

Related Documents 13

Support Resources 14

Trademarks 14

Part I: Concept and Operational Information

1. Introduction to IEEE 802.15.4 17
1.1 IEEE 802.15.4 Background and Context 17

1.1.1 Motivation for Standard 17

1.1.2 Application Areas 18

1.2 Radio Frequencies and Data Rates 19

1.3 Achieving Low Power Consumption 20

1.4 Network Topologies 21
1.4.1 Star Topology 22

1.4.2 Tree Topology 23

1.4.3 Mesh Topology 24

1.5 Device Types 25

1.6 Device Addressing 25

1.7 Network Set-up 26

1.8 Data Transfer 28
1.8.1 Data Frames and Acknowledgements 28

1.8.2 Data Transfer Types 29

1.9 Software Stack Architecture 30
1.9.1 Physical (PHY) Layer 31

1.9.2 Media Access Control (MAC) Sub-layer 31

1.10 Channel Management 32
1.10.1 Channel Assignment 32

1.10.2 Clear Channel Assessment (CCA) 34

1.10.3 Channel Rejection 34

1.11 Device Management 35
1.11.1 PAN Co-ordinator Selection 35

1.11.2 Device Association and Disassociation 35

1.11.3 Orphan Devices 36
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 3

Contents
1.12 Beacon and Non-beacon Enabled Operation 36
1.12.1 Beacon Enabled Mode 36

1.12.2 Non-beacon Enabled Mode 37

1.13 Routing 38
1.13.1 Routing in a Star Topology 38

1.13.2 Routing in a Tree Topology 38

1.13.3 Routing in a Mesh Topology 38

1.14 PAN Information Base (PIB) 39

1.15 MAC Interface Mechanism 39
1.15.1 Service Primitives 39

1.15.2 Blocking and Non-Blocking Operation 40

1.15.3 Callback Mechanism 41

1.15.4 Implementation of Service Primitives 42

1.16 Security 44
1.16.1 ACL Mode 44

1.16.2 Secured Mode 44

2. IEEE 802.15.4 Software 47
2.1 Software Overview 47

2.2 Application Programming Interfaces (APIs) 48
2.2.1 802.15.4 Stack API 48

2.2.2 JN51xx Integrated Peripherals API 48

2.2.3 Board API 48

2.2.4 Application Queue API (Optional) 48

2.3 Software Installation 49

2.4 Interrupts and Callbacks 50

3. Network and Node Operations 51
3.1 MAC Reset 51

3.1.1 Reset Messages 51
3.1.1.1 Reset Request 51
3.1.1.2 Reset Confirm 51

3.1.2 Reset Example 51

3.2 Channel Scan 52
3.2.1 Scan Types 52

3.2.1.1 Energy Detect Scan 52
3.2.1.2 Active Scan 52
3.2.1.3 Passive Scan 53
3.2.1.4 Orphan Scan 53

3.2.2 Scan Messages 53
3.2.2.1 Scan Request 53
3.2.2.2 Scan Confirm 54
3.2.2.3 Orphan Indication 54
3.2.2.4 Orphan Response 54
3.2.2.5 Comm Status Indication 54
4 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3.2.3 Scan Examples 55
3.2.3.1 Active Scan Example 55
3.2.3.2 Energy Detect Scan Example 56

3.3 Start 58
3.3.1 Start Messages 58

3.3.1.1 Start Request 58
3.3.1.2 Start Confirm 58

3.3.2 Start Example 58

3.4 Synchronisation 59
3.4.1 Initialising Synchronisation 59

3.4.2 Conflict Notification 60

3.4.3 Sync Messages 60
3.4.3.1 Sync Request 60
3.4.3.2 Sync Loss Indication 60

3.5 Beacons and Polling 60
3.5.1 Beacon Notify Indication 61

3.5.2 Poll Messages 61
3.5.2.1 Poll Request 61
3.5.2.2 Poll Confirm 61

3.5.3 Beacon Examples 61

3.5.4 Polling Example 62

3.6 Association 63
3.6.1 Associate Messages 63

3.6.1.1 Associate Request 63
3.6.1.2 Associate Confirm 64
3.6.1.3 Associate Indication 64
3.6.1.4 Associate Response 64
3.6.1.5 Comm Status Indication 64

3.6.2 Association Examples 64

3.7 Disassociate 68
3.7.1 Disassociate Request 69

3.7.2 Disassociate Confirm 69

3.7.3 Disassociate Indication 69

3.7.4 Disassociation Examples 69

3.8 Data Transmission and Reception 70
3.8.1 Transmission Power 70

3.8.2 Data Request 71

3.8.3 Data Confirm 71

3.8.4 Data Indication 71

3.8.5 Purge Request 71

3.8.6 Purge Confirm 72

3.8.7 Data Transfer Examples 72

3.8.8 Receive Enable 75

3.8.9 Receive Enable Request 75

3.8.10 Receive Enable Confirm 76

3.8.11 Receive Enable Examples 76
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 5

Contents
3.9 Guaranteed Time Slot (GTS) 77
3.9.1 GTS Request 77

3.9.2 GTS Confirm 77

3.9.3 GTS Indication 77

3.9.4 GTS Examples 78

3.10 PIB Access 80
3.10.1 MAC PIB Attributes 80

3.10.2 PHY PIB Attributes 81

3.11 Issuing Service Primitives 82
3.11.1 Sending Requests 82

3.11.2 Registering Deferred Confirm/Indication Callbacks 82

4. Application Development 85
4.1 Application Template 85

4.1.1 Pre-requisites 85

4.1.2 Unpacking the Application Note 86

4.1.3 Supplied Files 86

4.2 Code Descriptions 87
4.2.1 Contents of AN1xxx_154_Coord.c 87

4.2.2 Contents of AN1xxx_154_EndD.c 90

4.3 Adapting the Skeleton Code 92
4.3.1 How Do I Program a Pre-defined PAN ID? 92

4.3.2 How Do I Program Pre-defined Short Addresses? 92

4.3.3 How Do I Add End Devices to the Network? 93

4.3.4 How Do I Program the Channel Scans? 93

4.3.5 How Do I Define the Processing of Received Data Packets? 95

4.3.6 How Do I Program Data Transmission? 96

4.4 Building Your Code 96
4.4.1 Building Code Using Makefiles 96

4.4.2 Building Code Using Eclipse 97

Part II: Reference Information

5. API Functions 101
5.1 Network to MAC Layer Functions 101

vAppApiMlmeRequest 102

vAppApiMcpsRequest 103

vAppApiSetSecurityMode 104

vAppApiSetHighPowerMode (JN516x Only) 105

5.2 MAC to Network Layer Functions 106
u32AppApiInit 107

vAppApiSaveMacSettings 108

vAppApiRestoreMacSettings 109
6 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
5.3 MAC Layer PIB Access Functions 110
MAC_vPibSetMaxCsmaBackoffs 111

MAC_vPibSetMinBe 112

MAC_vPibSetPanId 113

MAC_vPibSetPromiscuousMode 114

MAC_vPibSetRxOnWhenIdle 115

MAC_vPibSetShortAddr 116

5.4 PHY Layer PIB Access Functions 117
eAppApiPlmeGet 118

eAppApiPlmeSet 119

5.5 Callback Functions 120
psMlmeDcfmIndGetBuf 121

vMlmeDcfmIndPost 122

psMcpsDcfmIndGetBuf 124

vMcpsDcfmIndPost 125

5.6 Status Returns 127

6. Structures 129
6.1 MLME Structures 129

6.1.1 MAC_MlmeReqRsp_s 129

6.1.2 MAC_MlmeReqRspParam_u 130

6.1.3 MAC_MlmeDcfmInd_s 131

6.1.4 MAC_MlmeDcfmIndParam_u 132

6.1.5 MAC_MlmeSyncCfm_s 134

6.1.6 MAC_MlmeSyncCfmParam_u 134

6.1.7 MAC_MlmeReqAssociate_s 136

6.1.8 MAC_MlmeReqDisassociate_s 137

6.1.9 MAC_MlmeReqGet_s 138

6.1.10 MAC_MlmeReqGts_s 138

6.1.11 MAC_MlmeReqReset_s 139

6.1.12 MAC_MlmeReqRxEnable_s 139

6.1.13 MAC_MlmeReqScan_s 139

6.1.14 MAC_MlmeReqSet_s 140

6.1.15 MAC_MlmeReqStart_s 141

6.1.16 MAC_MlmeReqSync_s 142

6.1.17 MAC_MlmeReqPoll_s 142

6.1.18 MAC_MlmeReqVsExtAddr_s 143

6.1.19 MAC_MlmeRspAssociate_s 143

6.1.20 MAC_MlmeRspOrphan_s 143

6.1.21 MAC_MlmeCfmScan_s 144

6.1.22 MAC_MlmeCfmGts_s 145

6.1.23 MAC_MlmeCfmAssociate_s 146

6.1.24 MAC_MlmeCfmDisassociate_s 147

6.1.25 MAC_MlmeCfmPoll_s 148

6.1.26 MAC_MlmeCfmRxEnable_s 149
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 7

Contents
6.1.27 MAC_MlmeCfmGet_s 149

6.1.28 MAC_MlmeCfmSet_s 150

6.1.29 MAC_MlmeCfmStart_s 150

6.1.30 MAC_MlmeCfmReset_s 151

6.1.31 MAC_MlmeCfmVsRdReg_s 151

6.1.32 MAC_MlmeIndAssociate_s 151

6.1.33 MAC_MlmeIndDisassociate_s 152

6.1.34 MAC_MlmeIndGts_s 153

6.1.35 MAC_MlmeIndBeacon_s 153

6.1.36 MAC_MlmeIndSyncLoss_s 154

6.1.37 MAC_MlmeIndCommStatus_s 155

6.1.38 MAC_MlmeIndOrphan_s 156

6.2 MCPS Structures 157
6.2.1 MAC_McpsReqRsp_s 157

6.2.2 MAC_McpsReqRspParam_u 157

6.2.3 MAC_McpsSyncCfm_s 158

6.2.4 MAC_McpsSyncCfmParam_u 158

6.2.5 MAC_McpsReqData_s 159

6.2.6 MAC_McpsReqPurge_s 159

6.2.7 MAC_McpsCfmData_s 159

6.2.8 MAC_McpsCfmPurge_s 160

6.2.9 MAC_McpsDcfmInd_s 161

6.2.10 MAC_McpsDcfmIndParam_u 161

6.2.11 MAC_McpsIndData_s 162

6.3 Other Structures 162
6.3.1 MAC_ScanList_u 162

6.3.2 MAC_PanDescr_s 163

6.3.3 MAC_Addr_s 164

6.3.4 MAC_Addr_u 165

6.3.5 MAC_ExtAddr_s 165

6.3.6 MAC_TxFrameData_s 165

6.3.7 MAC_RxFrameData_s 166

6.3.8 MAC_DcfmIndHdr_s 167

6.3.9 MAC_KeyDescriptor_s 168

6.3.10 MAC_KeyIdLookupDescriptor_s 169

6.3.11 MAC_KeyDeviceDescriptor_s 169

6.3.12 MAC_KeyUsageDescriptor_s 170

6.3.13 MAC_DeviceDescriptor_s 171

6.3.14 MAC_SecurityLevelDescriptor_s 172

7. Enumerations 175
7.1 MAC Enumerations 175

7.1.1 MAC PIB Attribute Enumerations 175

7.1.2 MAC Operation Status Enumerations 176
8 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
7.2 PHY Enumerations 177
7.2.1 PHY PIB Attribute Enumerations 177

7.2.2 PHY PIB Operation Status Enumerations 177

7.3 MLME Enumerations 178
7.3.1 MLME Request and Response Type Enumerations 178

7.3.2 MLME Deferred Confirm and Indication Type Enumerations 178

7.3.3 MLME Synchronous Confirm Status Enumerations 179

7.3.4 MLME Scan Type Enumerations 180

7.4 MCPS Enumerations 180
7.4.1 MCPS Request and Response Type Enumerations 180

7.4.2 MCPS Indication Type Enumerations 180

7.4.3 MCPS Synchronous Confirm Status Enumerations 181

8. PIB Attributes 183
8.1 MAC PIB Attributes 183

8.1.1 MAC PIB Write Access using API Functions 185

8.1.2 MAC PIB Examples 186

8.2 PHY PIB Attributes 186

8.3 MAC PIB Security Attributes (Optional) 188

Part III: Appendices

A. Application Queue API 193
A.1 Architecture 193
A.2 Purpose 194
A.3 Functions 194

u32AppQApiInit 195

psAppQApiReadMlmeInd 196

psAppQApiReadMcpsInd 197

psAppQApiReadHwInd 198

vAppQApiReturnMlmeIndBuffer 199

vAppQApiReturnMcpsIndBuffer 200

vAppQApiReturnHwIndBuffer 201

B. Notes on IEEE 802.15.4-2006 Security 203
B.1 Security Features 203
B.2 Security Procedures and Examples 205
B.3 Performance Considerations 208

B.3.1 Memory Usage 208

B.3.2 Frame Size 208

B.3.3 Conclusion 208
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 9

Contents
10 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
About this Manual

This manual provides a single point of reference for information on the
IEEE 802.15.4 wireless network protocol stack which can be implemented on the NXP
JN51xx family of wireless microcontrollers. The manual introduces the
IEEE 802.15.4 standard (2006) and details the NXP 802.15.4 Stack Application
Programming Interface (API) which can be used to design wireless network
applications for the JN51xx devices. NXP’s IEEE 802.15.4 application template is also
described, which provides a starting point for your own application development.

Organisation

This manual is divided into three parts:

 Part I: Concept and Operational Information comprises four chapters:

 Chapter 1 introduces the IEEE 802.15.4 wireless network protocol,
describing the main concepts and features

 Chapter 2 introduces the NXP software for implementing wireless
networks using the IEEE 802.15.4 protocol

 Chapter 3 describes the main operations that may be performed on
IEEE 802.15.4 network nodes, with references to the relevant NXP
software resources

 Chapter 4 provides guidelines for IEEE 802.15.4 application development
using the NXP application template

 Part II: Reference Information comprises four chapters:

 Chapter 5 details the functions of the NXP 802.15.4 Stack API, as well as
the user-defined callback functions that are required

 Chapter 6 details the structures of the NXP 802.15.4 Stack API

 Chapter 7 lists the enumerations of the NXP 802.15.4 Stack API

 Chapter 8 lists and details the PAN Information Base (PIB) attributes

 Part III: Appendices contains an appendix describing the optional Application
Queue API, which can be used to handle stack and hardware interrupts, and an
appendix providing notes on IEEE 802.15.4-2006 security.

Note 1: This manual incorporates information from the
former 802.15.4 Stack API Reference Manual
(JN-RM-2002), IEEE 802.15.4 Application Development
Reference Manual (JN-RM-2024) and Application
Queue API Reference Manual (JN-RM-2025).

Note 2: The IEEE 802.15.4 application template is
supplied in an Application Note (JN-AN-1174 for
JN516x, JN-AN-1046 for JN514x), available from NXP
(see “Support Resources” on page 14).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 11

About this Manual
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

ACL Access Control List

ADC Analogue-to-Digital Converter

AES Advanced Encryption Standard

API Application Programming Interface

ASK Amplitude Shift Keying

BPSK Binary Phase-Shift Keying

CAP Contention Access Period

CCA Clear Channel Assessment

CFP Contention Free Period

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CTS Clear-To-Send

DAC Digital-to-Analogue Converter

DIO Digital Input Output

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
12 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
FFD Full Function Device

FIFO First-In, First-Out (queue)

GTS Guaranteed Time-Slot

HVAC Heating, Ventilation and Air-Conditioning

LLC Logical Link Control

LPRF Low-Power Radio Frequency

MAC Media Access Control

MIC Message Integrity Code

O-QPSK Offset Quadrature Phase Shift Keying

PAN Personal Area Network

PHY Physical (layer)

PIB PAN Information Base

PWM Pulse Width Modulation

RF Radio Frequency

RFD Reduced Function Device

RTS Ready-To-Send

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

WPAN Wireless Personal Area Network

Related Documents

SS95552 IEEE 802.15.4 Standard (2006) [from www.ieee.com]

JN-AN-1180 802.15.4 Home Sensor Demonstration for JN516x

JN-AN-1174 IEEE 802.15.4 Application Template for JN516x

JN-AN-1046 IEEE 802.15.4 Application Template for JN514x

JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-UG-3066 JN514x Integrated Peripherals API User Guide

JN-RM-2003 LPRF Board API Reference Manual
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 13

About this Manual
Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

For JN514x resources, visit the NXP/Jennic web site: www.jennic.com/support

Trademarks

All trademarks are the property of their respective owners.
14 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Part I:
Concept and Operational

Information
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 15

16 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1. Introduction to IEEE 802.15.4

IEEE 802.15.4 is a wireless network protocol which has become an industry-standard
for implementing radio-based Personal Area Networks (PANs). This chapter
introduces the essential features of the standard.

1.1 IEEE 802.15.4 Background and Context

This section provides useful background information relating to the rationale behind
the IEEE 802.15.4 standard and the main application areas that it benefits.

1.1.1 Motivation for Standard

The 802.15.4 standard was introduced by the IEEE to fill a niche left by the existing
wireless network standards, which included:

 IEEE 802.15.1: Bluetooth, which is a relatively low-power, low-rate wireless
network technology, intended for point-to-point communications

 IEEE 802.15.3: High-rate WPAN (Wireless Personal Area Network)

High-rate WPAN was driven by applications requiring high data-rates and/or wide
spatial coverage, often involving complex solutions with non-trivial power
requirements. However, not all applications have such demanding needs - some
network applications involve the infrequent exchange of relatively small amounts of
data over restricted areas (for example, a home temperature monitoring and control
network). Such applications are diverse in nature and represent considerable market
potential. Bluetooth was not designed for multiple-node networks, and therefore the
IEEE devised a WPAN standard based on a new set of criteria:

 Very low complexity

 Ultra low power consumption

 Low data-rate

 Relatively short radio communication range

 Use of unlicensed radio bands

 Easy installation

 Low cost

The IEEE 802.15.4 standard was born.

A central feature of the standard is the requirement for extremely low power
consumption. The motivation for this strict power requirement is to enable the use of
battery-powered network devices that are completely free of cabling (no network or
power cables), allowing them to be installed easily and cheaply (no costly cable
installation needed), possibly in locations where cables would be difficult or impossible
to install. However, low power consumption necessitates short ranges.

The NXP implementation of IEEE 802.15.4 is currently based on the 2006 standard.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 17

Chapter 1
Introduction to IEEE 802.15.4

1.1.2 Application Areas

The applications of IEEE 802.15.4-based networks are wide ranging, covering both
industrial and domestic use. Essentially, for IEEE 802.15.4 to be used in a networking
solution, the required data-rate must be low (250 kbps) and the maximum range for
communicating devices must be short. In addition, a device with an autonomous
power supply (no power cables) must have an extremely low power consumption. If
these criteria are met, IEEE 802.15.4 may provide the ideal networking solution,
particularly when cost and installation are significant issues.

A number of fields of application of IEEE 802.15.4 are described below.

 Home Automation and Security: A wireless PAN provides a low-cost solution
for electronic control within the home; e.g. HVAC (heating, ventilation and air-
conditioning), lighting, curtains/blinds, doors, locks, home entertainment
systems. Another important application within the home is security - both
intruder and fire detection.

 Consumer products: Wireless PANs can be built into consumer electronics
products. The most obvious example is to provide a common remote control for
the various components of a home entertainment system (that may be
distributed throughout the home). Other examples are computer systems and
toys, in which a wireless radio link may be used to replace a point-to-point
cable link (such as between a mouse and a PC).

 Healthcare: This field employs sensors and diagnostic devices that can be
networked by means of a wireless PAN. Applications include monitoring during
healthcare programmes such as fitness training, in addition to medical
applications.

 Vehicle Monitoring: Vehicles usually contain many sensors and diagnostic
devices, and provide ideal applications for wireless PANs. A prime example is
the use of pressure sensors in tyres, which cannot be connected by cables.

 Agriculture: Wireless PANs can help farmers monitor land and environmental
conditions in order to optimise their crop yields. Such networks can operate at
very low data-rates and latencies, but require wide geographical coverage - the
latter issue is addressed by using network topologies that allow the relaying of
messages across the network.
18 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.2 Radio Frequencies and Data Rates

IEEE 802.15.4 was designed to operate in unlicensed radio frequency bands
(although regulations normally still apply concerning the RF output envelope and
possibly the duty cycle of a device operating in these bands). The unlicensed RF
bands are not the same in all territories of the world, but IEEE 802.15.4 employs three
possible bands, at least one of which should be available in a given territory. The three
bands are centred on the following frequencies: 868, 915 and 2400 MHz.

The 868-MHz and 915-MHz bands are available with different modulation schemes -
BPSK, O-QPSK and ASK (the standard scheme is BPSK). These schemes give rise
to different data-rates.

The characteristics and geographical applicability of these RF bands are shown in
Table 1 below.

The 868- and 915-MHz frequency bands offer certain advantages such as fewer
users, less interference, and less absorption and reflection, but the 2400-MHz band is
far more widely adopted for a number of reasons:

 Worldwide availability for unlicensed use

 Highest data-rate (250 kbps) and most channels

 Low power (transmit/receive are on for a short time due to high data-rate)

 RF band more commonly understood and accepted by the marketplace (also
used by Bluetooth and the IEEE 802.11 standard)

IEEE 802.15.4 includes energy detection functionality that can be used by higher
software layers to avoid interference between radio communications - that is, to select
the best frequency channel at initialisation and, where possible, to adapt to a changing
RF environment by selecting another channel if the current channel proves
problematic.

The range of a radio transmission is dependent on the operating environment; for
example, inside or outside. With a standard device (around 0 dBm output power), a
range of over 200 metres can typically be achieved in open air (NXP has measured in
excess of 450 metres). In a building, this can be reduced due to absorption, reflection,
diffraction and standing wave effects caused by walls and other solid objects, but
typically a range of 30 metres can be achieved. High-power modules (greater than 15
dBm output power) can achieve a range five times greater than a standard module. In

RF Band
Frequency Range
(MHz)

Channel Numbers
Modulation
Schemes

Data-rates
(kbps)

Geographical Area

868 MHz 868.3 0 (1 channel) BPSK
O-QPSK
ASK

20
100
250

Europe

915 MHz 902-928 1-10 (10 channels) BPSK
O-QPSK
ASK

40
250
250

America, Australia

2400 MHz 2405-2480 11-26 (16 channels) O-QPSK 250 Worldwide

Table 1: IEEE 802.15.4 RF Bands
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 19

Chapter 1
Introduction to IEEE 802.15.4

addition, the range between devices can be extended in an IEEE 802.15.4-based
network by employing a topology that uses intermediate nodes as stepping stones
when passing data to the destination.

1.3 Achieving Low Power Consumption

An important criterion of the IEEE 802.15.4 standard is the provision for producing
autonomous, low-powered devices. Such devices may be battery-powered or solar
powered, and require the ability to go to sleep or shut down. There are many wireless
applications that require this type of device, from light-switches, active tags and
security detectors to solar-powered monitoring.

From a user perspective, battery power has certain advantages:

 Easy and low-cost installation of devices: No need to connect to separate
power supply

 Flexible location of devices: Can be installed in difficult places where there is
no power supply, and can even be used as mobile devices

 Easily modified network: Devices can easily be added or removed, on a
temporary or permanent basis

A typical battery-powered network device presents significant technical challenges for
battery usage. Since these devices are generally small, they use low-capacity
batteries. Infrequent device maintenance is often another requirement, meaning long
periods between battery replacement and the need for long-life batteries. Battery use
must therefore be carefully managed to make optimum use of very limited power
resources over an extended period of time.

 Low duty cycle: Most of the power consumption of a wireless network device
corresponds to the times when the device is transmitting. The transmission
time as a proportion of the time interval between transmissions is called the
duty cycle. Battery use is optimised in IEEE 802.15.4 devices by using
extremely low duty cycles, so that the device is transmitting for a very small
fraction of the time. This is helped by making the transmission times short and
the time interval between transmissions long. In all cases, when not
transmitting, the device should revert to a low-power sleep mode to minimise
power consumption.

 Modulation: The modulation schemes used to transmit data (see Section 1.2)
minimise power consumption by using a peak-to-average power ratio of one.

A network device can also potentially use "energy harvesting" to absorb and store
energy from its surroundings - for example, the use of a solar cell panel on a device in
a well-lit environment.
20 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.4 Network Topologies

A variety of network topologies are possible with IEEE 802.15.4. A network must
consist of a minimum of two devices, of which one device must act as the network co-
ordinator, referred to as the PAN Co-ordinator.

The possible network topologies are:

 Star topology

 Tree topology

 Mesh topology

These are described below.

Note: In practice, not all devices in a network can be
battery-powered, particularly those that need to be
switched on all the time (and cannot sleep), such as Co-
ordinators. Such devices can often be installed in a
mains-powered appliance that is permanently
connected to the mains supply (even if not switched on);
for example, a ceiling lamp or an electric radiator. This
avoids the need to install a dedicated mains power
connection for the network device.

Note: The described topologies are not part of the IEEE
802.15.4 standard. In these topologies, message
propagation is handled by software above the IEEE
802.15.4 layers, such as ZigBee. The descriptions of
topologies (and associated routing) in this manual are
therefore included only to illustrate the potential forms of
an 802.15.4-based network.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 21

Chapter 1
Introduction to IEEE 802.15.4

1.4.1 Star Topology

The basic type of network topology is the Star topology.

A Star topology consists of a central PAN Co-ordinator surrounded by the other nodes
of the network, often referred to as End Devices. Each of these nodes can
communicate only with the PAN Co-ordinator. Therefore, to send a message from one
node to another, the message must be sent via the Co-ordinator, which relays the
message to the destination node. The application program in the Co-ordinator is
responsible for relaying messages.

The Star topology is illustrated in Figure 1 below.

A disadvantage of this topology is that there is no alternative route if the RF link fails
between the PAN Co-ordinator and the source or target node. In addition, the PAN Co-
ordinator can be a bottleneck and cause congestion.

Figure 1: Star Topology

End Device

PAN Co-ordinator

End Device

End Device

End Device

End Device

End Device
22 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.4.2 Tree Topology

The Tree network topology has a structure based on parent-child relationships. Each
node (except the PAN Co-ordinator) has a parent. The node (including the PAN Co-
ordinator) may also (but not necessarily) have one or more children. Each node can
communicate only with its parent and its children (if any). Any node which is a parent
acts as a local Co-ordinator for its children.

The network can be visualised as a tree-like structure with the PAN Co-ordinator at
the root (at the top). This is illustrated in Figure 2 below.

A special case of the Tree topology is the Cluster Tree topology, in which a given
parent-children group is regarded as a cluster, each with its own cluster ID. This is
illustrated in Figure 3 below.

Figure 2: Tree Topology

Note: In other wireless network protocols that use
802.15.4 to transport data (such as ZigBee and JenNet),
the local Co-ordinators are called Routers.

End Device

PAN Co-ordinator

Co-ordinator

End Device

End Device

End Device

End Device

End Device

End Device

End Device
End Device

Co-ordinator

Co-ordinator
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 23

Chapter 1
Introduction to IEEE 802.15.4

1.4.3 Mesh Topology

In the Mesh network topology, the devices can be identical (except one must have the
capability to act as the PAN Co-ordinator) and are deployed in an ad hoc arrangement
(with no particular network structure). Some (if not all) nodes can communicate
directly. Not all nodes may be within range of each other, but a message can be
passed from one node to another until it reaches its final destination.

The Mesh topology is illustrated in Figure 4 below.

Alternative routes may be available to some destinations, allowing message delivery
to be maintained in the case of an RF link failure.

Figure 3: Cluster Tree Topology

Figure 4: Mesh Topology

Cluster 0

Cluster 1

Cluster 2

Cluster 3

PAN
Co-ordinator
24 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.5 Device Types

The nodes of an IEEE 802.15.4 based network are of the following general types,
which depend on their roles in the network:

 PAN Co-ordinator: There must be one and only one PAN Co-ordinator. Its
roles include:

 Assigning a PAN ID to the network

 Finding a suitable radio frequency for network operation

 Assigning a short address to itself

 Handling requests from other devices to join the network

 Relaying messages from one node to another (but not in all topologies)

 (Local) Co-ordinator: A Tree network can have one or more local Co-
ordinators (as well as a PAN Co-ordinator). Each of these Co-ordinators serves
its own children and its roles include:

 Handling requests from other devices to join the network

 Relaying messages from one node to another

 End Device: This is a node which has an input/output function but no co-
ordinating functionality. The term "End Device" is not used in the IEEE 802.15.4
standard, but is commonly used in the field.

The above nodes are of two general device types, which depends on the hardware
and/or software contained in the device:

 Full Function Device (FFD): An FFD is a device that provides the full set of
IEEE 802.15.4 MAC services, allowing it to act as a Co-ordinator, if required.

 Reduced Function Device (RFD): An RFD is a device that provides a reduced
set of IEEE 802.15.4 MAC services, with restricted processing and memory
resources, so it cannot act as a Co-ordinator.

Therefore, a Co-ordinator must be an FFD, but other nodes can be FFDs or RFDs.

1.6 Device Addressing

Each device in an IEEE 802.15.4 network can have two types of address:

 IEEE (MAC) address: This is a 64-bit address, allocated by the IEEE, which
uniquely identifies the device - no two devices in the world can have the same
IEEE address. It is also sometimes called the extended address.

 Short address: This 16-bit address identifies the node in the network and is
local to that network (thus, two nodes on separate networks may have the
same short address). The short address may be allocated by a Co-ordinator
when a node joins a network.

The use of 16-bit short addresses rather than 64-bit IEEE addresses allows shorter
packets and therefore optimises use of network bandwidth. A short address may be
requested by the device when it joins the network. If a device does not have a short
address, it must be addressed using its IEEE address.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 25

Chapter 1
Introduction to IEEE 802.15.4

1.7 Network Set-up

This section outlines the tasks that an application must go through in order to get an
IEEE 802.15.4-based network up and running. The assumed topology is a Star
network. Note that the application described here is for a non-beacon enabled network
only (see Section 1.12).

The flowchart below provides an overview of the steps in setting up an IEEE 802.15.4-
based network.

Figure 5: Network Set-up Process

Initialise the IEEE 802.15.4 stack

Create a PAN Co-ordinator

Set the network's PAN ID

Set the PAN Co-ordinator's short address

Select the radio frequency channel

Start the network

Join other devices to network

Start transferring data
26 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
The steps indicated in the above flowchart are expanded on below.

Step 1 Initialising the Stack

First of all, the PHY and MAC layers of the IEEE 802.15.4 stack (see Section 1.9) must
be initialised on each device which will form part of the network.

Step 2 Creating a PAN Co-ordinator

Every network must have one and only one PAN Co-ordinator, and one of the first
tasks in setting up a network is to select and initialise this Co-ordinator. This involves
activity only on the device nominated as the PAN Co-ordinator.

Step 3 Selecting the PAN ID and Co-ordinator Short Address

The PAN Co-ordinator must assign a PAN ID to its network. The PAN ID may be pre-
determined.

The PAN Co-ordinator device already has a fixed 64-bit IEEE (MAC) address,
sometimes called the 'extended' address, but must also assign itself a local 16-bit
network address, usually called the 'short' address. Use of the short address makes
communications lighter and more efficient. This address is pre-determined - the PAN
Co-ordinator is usually assigned the short address 0x0000.

Step 4 Selecting a Radio Frequency

The PAN Co-ordinator must select the radio frequency channel in which the network
will operate, within the chosen frequency band. The PAN Co-ordinator can select the
channel by performing an Energy Detection Scan in which it scans the frequency
channels to find a quiet channel. The Co-ordinator can be programmed to only scan
specific channels. The Energy Detection Scan returns an energy level for each
channel scanned, which indicates the amount of activity on the channel. The
application running on the PAN Co-ordinator must then choose a channel using this
information.

Note: The process described here assumes that the
device that is to become the PAN Co-ordinator has been
pre-determined. The PAN Co-ordinator must be a Full
Function Device (FFD).

Note: The PAN Co-ordinator can choose a PAN ID
automatically by 'listening' for other networks and
selecting a PAN ID that does not conflict with the IDs of
any existing networks that it detects. It can perform this
scan for other PAN Co-ordinators over multiple radio
frequency channels. Alternatively, a radio frequency
channel can be chosen first and the PAN ID then
selected according to other PAN IDs detected in this
channel - in this case, Step 4 must be performed first.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 27

Chapter 1
Introduction to IEEE 802.15.4

Step 5 Starting the Network

The network is started by first completing the configuration of the device which will act
as the PAN Co-ordinator and then starting the device in Co-ordinator mode. The PAN
Co-ordinator is then open to requests from other devices to join the network.

Step 6 Joining Devices to the Network

Other devices can now request to join the network. A device wishing to join the
network must first be initialised and must then find the PAN Co-ordinator.

To find the PAN Co-ordinator, the device performs an Active Channel Scan in which
it sends out beacon requests across the relevant frequency channels. When the PAN
Co-ordinator detects the beacon request, it responds with a beacon to indicate its
presence to the device.

Once the device has detected the PAN Co-ordinator, it sends an association request
to the Co-ordinator, which acknowledges the request. The Co-ordinator then
determines whether it has the resources to support the new device and either accepts
or rejects the device.

If the PAN Co-ordinator accepts the device, it may assign a 16-bit short address to the
device.

1.8 Data Transfer

Once an IEEE 802.15.4 network has been formed with a PAN Co-ordinator and at
least one other device, data can be exchanged between its nodes.

1.8.1 Data Frames and Acknowledgements

Communications in an IEEE 802.15.4 network are based on a system of data and
MAC command frames, and optional acknowledgements. When a node sends a
message to another node, the receiving node can return an acknowledge message -
this simply confirms that it has received the original message and does not indicate
that any action has been taken as a result of the message. Acknowledgements are
provided by the MAC sub-layer (see Section 1.9.2).

Note: In the case of a beacon enabled network (in
which the PAN Co-ordinator sends out periodic
beacons), the device can perform a Passive Channel
Scan in which the device 'listens' for beacons from the
PAN Co-ordinator in the relevant frequency channels.
28 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.8.2 Data Transfer Types

The scenarios for transferring data between network nodes are outlined below. The
described transfers each deal with sending a data frame between two nodes that are
connected via a direct radio link - that is, in a single ‘hop’. A data transfer between
remote nodes without a direct radio link will require more than one hop.

'Co-ordinator to End Device' Transfer

Two methods of data transfer from a Co-ordinator to an End Device are available. In
a Star network, these nodes will be the PAN Co-ordinator and an End Device. In a
Tree or Mesh network, the nodes may be a PAN or local Co-ordinator and a child End
Device.

 Direct Transmission: A Co-ordinator sends a data frame directly to an End
Device. Once it has received the data, the End Device sends an
acknowledgement to the Co-ordinator. In this case, the End Device must
always be capable of receiving data and must therefore be permanently active.
This approach is employed in the skeleton code described in this document.

 Indirect Transmission (Polling): Alternatively, the Co-ordinator holds data
until the data is requested by the relevant End Device. In this case, in order to
obtain data from the Co-ordinator, an End Device must first poll the Co-
ordinator to determine whether any data is available. To do this, the device
sends a data request, which the Co-ordinator acknowledges. The Co-ordinator
then determines whether it has any data for the requesting device; if it does, it
sends a data packet, which the receiving device may acknowledge. This
method is useful when the End Device is a low-power device that must sleep
for much of the time in order to conserve power.

The above two data transfer methods are illustrated in Figure 5 below.

Figure 6: 'Co-ordinator to End Device' Data Transfers

Co-ordinatorDevice

Data Request

Acknowledgement

Data Frame

Acknowledgement

Co-ordinatorDevice

Data Frame

Acknowledgement

Direct Transmission Indirect Transmission
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 29

Chapter 1
Introduction to IEEE 802.15.4

'End Device to Co-ordinator' Transfer

An End Device always sends a data frame directly to the Co-ordinator. Once it has
received the data, the Co-ordinator may send an acknowledgement to the End Device.

‘Co-ordinator to Co-ordinator’ Transfer

In a Tree or Mesh network, a Co-ordinator always sends a data frame directly to
another Co-ordinator. Once it has received the data, the target Co-ordinator may send
an acknowledgement to the source Co-ordinator.

1.9 Software Stack Architecture

The IEEE 802.15.4 software architecture is organised on two levels, the PHY layer
and the MAC sub-layer (with the LLC sub-layer) - these are illustrated and described
below.

Note: A data frame can be broadcast to all nodes within
range and operating in the same network (i.e. using the
same PAN ID) by setting the destination (short) address
in the frame to 0xFFFF. Alternatively, a data frame can
be broadcast to all nodes within range and operating in
any network by setting the destination PAN ID in the
frame to 0xFFFF and the destination (short) address to
0xFFFF.

Figure 7: IEEE 802.15.4 Software Stack Architecture

Note: The user application resides above the IEEE
802.15.4 stack layers. However, one or more network
(NWK) layers may reside between the application layer
and the IEEE 802.15.4 layers. This is the case in
protocols such as ZigBee PRO and JenNet-IP.

IEEE 802.15.4 PHY Layer

Data Link Layer

LLC Sub-layer

IEEE 802.15.4 MAC Sub-layer
30 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.9.1 Physical (PHY) Layer

The Physical (PHY) layer is concerned with the interface to the physical transmission
medium (radio, in this case), exchanging data bits with this medium as well as with the
layer above (the MAC sub-layer).

More specifically, its responsibilities towards the physical radio medium include:

 Channel assessment

 Bit-level communications (bit modulation, bit de-modulation, packet
synchronisation)

The PHY layers also offers the following services to the MAC sub-layer (described in
Section 1.9.2):

 PHY Data Service: Provides a mechanism for passing data to and from the
MAC sub-layer.

 PHY Management Services: Provides mechanisms to control radio
communication settings and functionality from the MAC sub-layer.

Information used to manage the PHY layer is stored in a database referred to as the
PHY PIB (PAN Information Base).

1.9.2 Media Access Control (MAC) Sub-layer

The main responsibilities of the Media Access Control (MAC) sub-layer are as follows:

 Providing services for associating/disassociating devices with the network

 Providing access control to shared channels

 Beacon generation (if applicable)

 Guaranteed Timeslot (GTS) management (if applicable)

The MAC sub-layer also offers the following services to the next higher layer:

 MAC Data Service (MCPS): Provides a mechanism for passing data to and
from the next higher layer.

 MAC Management Services (MLME): Provides mechanisms to control
settings for communication, radio and networking functionality, from the next
higher layer.

Information used to manage the MAC layer is stored in a database referred to as the
MAC PIB (PAN Information Base).

Note: The MAC sub-layer together with the (higher)
Logical Link Control (LLC) sub-layer are collectively
referred to as the Data Link layer. The LLC is common
to all IEEE 802 standards but can be ignored in
developing IEEE 802.15.4-based applications.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 31

Chapter 1
Introduction to IEEE 802.15.4

1.10 Channel Management

IEEE 802.15.4 offers channel management facilities concerned with allocating
channels, ensuring channel availability for transmission and protecting channels from
nearby interfering transmissions.

1.10.1 Channel Assignment

As described in Section 1.2, an IEEE 802.15.4-based network can operate in three
possible radio frequency bands (depending on geographical area), which are centred
on 868 MHz, 915 MHz and 2400 MHz. These bands have 1, 10 and 16 channels
respectively. The 27 channels across the frequency bands are numbered 0 to 26 with
increasing frequency, as shown in Table 2 below (and continued over-page).

Frequency Band Channel Number Centre Frequency (MHz) Geographical Area

868 MHz 0 868.3 Europe

915 MHz 1 906 America, Australia

2 908

3 910

4 912

5 914

6 916

7 918

8 920

9 922

10 924

Table 2: Channel Numbering in Unlicensed Bands
32 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
IEEE 802.15.4 can scan the channels in a given frequency band, allowing the higher
layers to select the appropriate channel.

 When a network is set up, the channel of operation within the relevant
frequency band must be chosen. This is done by the PAN Co-ordinator. IEEE
802.15.4 provides an Energy Detection Scan which can be used to select a
suitable channel (normally the quietest channel).

 When a new device is introduced into a network, it must find the channel being
used by the network. The new device is supplied with the PAN ID of the
network and performs either of the following scans:

 Active Channel Scan in which the device sends beacon requests to be
detected by one or more Co-ordinators, which then send out a beacon in
response

 Passive Channel Scan (beacon enabled networks only) in which the
device listens for periodic beacons being transmitted by a Co-ordinator
(the PAN Co-ordinator or, if in a Tree network, another Co-ordinator)

 When a device has been orphaned from its network (lost communication with
its Co-ordinator), in order to rejoin the network it performs an Orphan Channel
Scan. This involves sending an orphan notification command over specific
channels in the hope that its Co-ordinator will detect the broadcast and respond
with a Co-ordinator Realignment command.

The MAC sub-layer performs these scans in response to requests from the next higher
layer.

2400 MHz 11 2405 Worldwide

12 2410

13 2415

14 2420

15 2425

16 2430

17 2435

18 2440

19 2445

20 2450

21 2455

22 2460

23 2465

24 2470

25 2475

26 2480

Table 2: Channel Numbering in Unlicensed Bands
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 33

Chapter 1
Introduction to IEEE 802.15.4

1.10.2 Clear Channel Assessment (CCA)

When transmitting a packet across a network without using Guaranteed Timeslots
(see Section 1.12), the unslotted CSMA/CA (Carrier Sense Multiple Access/Collision
Avoidance) mechanism is implemented to minimise the risk of a collision with another
packet being transmitted in the same channel at the same time by another node. The
transmitting node performs a Clear Channel Assessment (CCA) in which it first listens
to the channel to detect whether the channel is already busy. It does not transmit the
packet if it detects activity in the channel, but tries again later after a random back-off
period. A CCA is requested by the MAC sub-layer and is implemented by the PHY
layer.

1.10.3 Channel Rejection

In bands with more than one channel (915 MHz and 2400 MHz), in order to eliminate
interference from other networks operating on nearby channels, IEEE 802.15.4
imposes a channel rejection scheme for the adjacent channel(s) and the alternate
channel(s) (meaning two channels away). When receiving a signal:

 If another signal at the same level (0 dB difference) or weaker is detected in an
adjacent channel, the adjacent channel's signal must be rejected.

 If another signal at most 30 dB stronger is detected from an alternate channel,
the alternate channel's signal must be rejected.
34 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.11 Device Management

This section describes the ways in which an IEEE 802.15.4-based network deals with
devices joining and leaving the network.

1.11.1 PAN Co-ordinator Selection

All networks must have one and only one PAN Co-ordinator. This must be an FFD
(Full Function Device). The selection of the PAN Co-ordinator is the first step in setting
up an IEEE 802.15.4 based network. The PAN Co-ordinator can be selected in a
number of ways:

 In some networks, there may be only one device that is eligible to become the
PAN Co-ordinator; for example, networks with only one FFD or in which a
particular device has been designed to be the PAN Co-ordinator (for example;
the device that acts as the gateway to the outside world).

 In networks with more than one FFD, it may be the case that any of the FFDs
can act as the PAN Co-ordinator. In this case, the user may or may not wish to
pre-determine which device becomes the PAN Co-ordinator:

 The user may determine the FFD that is to become the PAN Co-ordinator
through some action, such as pressing a button.

 It may not matter which FFD becomes the PAN Co-ordinator and the
choice can be left to chance; for example, by having all the FFDs perform
an Active Channel Scan and by assigning the PAN Co-ordinator
responsibility to the first device that returns a negative result (no other PAN
Co-ordinator detected).

Once the PAN Co-ordinator has been established, a PAN ID must be assigned to the
network. It is possible to decide and fix the PAN ID in advance. However, care must
be taken, as the PAN ID must be different from that of any other network that can be
detected in the vicinity. Normally, the PAN ID is assigned by the PAN Co-ordinator,
taking into account the PAN IDs of any other PAN Co-ordinators that it can 'hear'.

1.11.2 Device Association and Disassociation

In order to join an IEEE 802.15.4-based network, a device must first find a (PAN or
local) Co-ordinator by conducting an Active or Passive Channel Scan (see Section
1.11.2). The device can then send an association request to the Co-ordinator, which
acknowledges the request and then determines whether it has sufficient resources to
add the device to its network. The Co-ordinator will then accept or reject the
association request.

The request to disassociate a device with a network can be made by either the Co-
ordinator or the device itself.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 35

Chapter 1
Introduction to IEEE 802.15.4

1.11.3 Orphan Devices

A device becomes an orphan if it loses communication with its Co-ordinator. This may
be due to reception problems in the communication channel, or because the Co-
ordinator has changed its communication channel, or because one device has moved
out of range of the other device.

An orphan device will attempt to rejoin the Co-ordinator by first performing an Orphan
Channel Scan (see Section 1.10.1) to find the Co-ordinator - this involves sending out
an orphan notification command across the relevant frequency channels. On receiving
this message, the Co-ordinator checks whether the device was previously a member
of its network - if this was the case, it responds with a co-ordinator realignment
command.

1.12 Beacon and Non-beacon Enabled Operation

All IEEE 802.15.4-based networks use beacons from a Co-ordinator when joining
devices to the network (see Section 1.10.1). In normal operation, an IEEE 802.15.4-
based network can operate with or without regular communication beacons. Beacon
enabled and non-beacon enabled operating modes are described below.

1.12.1 Beacon Enabled Mode

In this mode, the Co-ordinator sends out a periodic train of beacon signals containing
information that allows network nodes to synchronise their communications. A beacon
also contains information on the data pending for the different nodes of the network.

Normally, two successive beacons mark the beginning and end of a superframe. A
superframe contains 16 timeslots that can be used by nodes to communicate over the
network (there may also be a dead period at the end of the superframe). The total time
interval of these timeslots is called the Contention Access Period (CAP), during which
nodes can attempt to communicate using slotted CSMA/CA (see Section 1.10.2). This
is illustrated in Figure 8 below.

Figure 8: Superframe

B
e

a
co

n

B
e

a
co

n

Contention Access Period (CAP)

Time
36 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
A node can request to have particular timeslots (from the 16 available) assigned to it.
These are consecutive timeslots called Guaranteed Timeslots (GTSs) - in fact, one
GTS can be multiple timeslots. They are located after the CAP and the total time
interval of all GTSs (for all nodes) is called the Contention Free Period (CFP).
Communication in the CFP does not require use of CSMA/CA. Use of GTSs reduces
the CAP, and the superframe then consists of a CAP followed by a CFP (and possibly
a dead period). This is illustrated in Figure 9 below.

The use of GTSs is suitable for applications with certain bandwidth and low latency
requirements.

1.12.2 Non-beacon Enabled Mode

In non-beacon enabled mode, beacons are not transmitted on a regular basis by the
Co-ordinator (but can still be requested for the purpose of associating a device with
the Co-ordinator). Instead, communications are asynchronous - a device
communicates with the Co-ordinator only when it needs to, which may be relatively
infrequently. This allows power to be conserved.

To determine whether there is data pending for a node, the node must poll the Co-
ordinator (in a beacon enabled network, the availability of pending data is indicated in
the beacons).

Figure 9: Superframe with GTSs

Note 1: The CAP and CFP need not span the whole
time interval between successive beacons. It is possible
to have a dead period at the end of the superframe
(before the next beacon). This allows network devices to
revert to low-power mode for part of the time. In this
case, the superframe still contains 16 timeslots.

Note 2: In a beacon enabled network, the need to
transmit and receive regular beacons puts certain power
demands on the network devices.

B
ea

c
o

n

B
ea

c
o

n

Contention Access
Period (CAP)

Time

G
T

S
1

G
T

S
n

Contention Free
Period (CFP)

..........
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 37

Chapter 1
Introduction to IEEE 802.15.4

Non-beacon enabled mode is useful in situations where only light traffic is expected
between the network nodes and the Co-ordinator. In this case, the use of regular
beacons may not be needed and will waste valuable power.

1.13 Routing

The method employed for the routing of messages from source to destination nodes
is dependent on the network topology (for an introduction to the possible topologies,
refer to Section 1.4).

1.13.1 Routing in a Star Topology

In a Star topology, all messages are routed via the central PAN Co-ordinator. Routing
is implemented in the PAN Co-ordinator by the application program.

1.13.2 Routing in a Tree Topology

A Tree network has structure which helps in the routing of messages. Messages do
not always need to go through the PAN Co-ordinator. A message is first passed from
the sending node to its parent.

 If the destination node is also a child of this parent, the message is passed
directly to the destination.

 If the destination node is not a child of this parent, the message is passed up
the tree to the next parent. This parent then decides whether the message must
be passed down to one of its children or up to its own parent. Message
propagation continues in this way.

A message may need to be passed all the way up to the PAN Co-ordinator at the top
of the tree before it can be passed down the tree towards its destination.

The network may achieve this routing using routing tables stored in the Co-ordinator
nodes (PAN and others) or using special addressing schemes in which allocated
addresses are dependent on the position in the tree. However, the routing is
implemented by the software layers above the IEEE 802.15.4 stack (such as ZigBee
software layers).

1.13.3 Routing in a Mesh Topology

In a Mesh network, at least some network nodes can communicate with each other
directly, but there is no logical network structure to aid the routing of messages.
However, a number of routing methods are possible. One method is to broadcast the
message to all nodes in the network, but this is not a very efficient way of routing
messages. Other methods include the use of routing tables stored in the network
nodes - these tables may be updated through information exchanges between
communicating nodes. Again, the routing is implemented by the software layers above
the IEEE 802.15.4 stack (such as ZigBee software layers).
38 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
1.14 PAN Information Base (PIB)

A PAN Information Base (PIB) exists on each node in an IEEE 802.15.4-based
network. The PIB consists of a number of attributes used by the MAC and PHY
(Physical) layers. These attributes describe the PAN in which the node exists. They
are divided into MAC attributes and PHY attributes. The PIB contents and access to
them are detailed in Section 3.10.

1.15 MAC Interface Mechanism

This section considers the interfacing method between the IEEE 802.15.4 MAC layer
and the next highest stack layer, referred to as the ‘MAC User’.

1.15.1 Service Primitives

Communications are passed between the MAC User and MAC Layer (in both
directions) by means of ‘service primitives’. These are messages which are classified
as follows:

 Request

 Confirm

 Indication

 Response

The service primitives are fully described in the IEEE 802.15.4 standard. They pass
into and out of a layer via a Service Access Point (SAP).

The MAC interface operates as follows:

1. A Request transaction is initiated by the MAC User.

2. The Request may solicit a Confirm from the MAC Layer.

3. An Indication transaction is initiated by the MAC Layer.

4. The Indication may solicit a Response from the MAC User.

Note: In practice, the MAC User may be the application
or an intermediate stack layer belonging to a wireless
network protocol such as JenNet-IP or ZigBee PRO.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 39

Chapter 1
Introduction to IEEE 802.15.4

This mechanism is illustrated in Figure 10 below.

1.15.2 Blocking and Non-Blocking Operation

When implementing the interfacing mechanism described in Section 1.15.1, it is
important to consider whether a transaction should be blocking (synchronous) or
non-blocking (asynchronous).

Blocking Transaction

A blocking or synchronous transaction occurs when the initiator of the transaction
explicitly waits for information coming back from the target of the transaction:

 In the case of a Request, the MAC User waits for a Confirm before carrying on
processing.

 In the case of an Indication, the MAC Layer waits for a Response before
carrying on processing.

These cases are illustrated in Figure 11 below.

Figure 10: MAC Interface Mechanism

Figure 11: Blocking (Synchronous) Transactions

MAC Layer

MAC User

C
o

nfirm

In
d

ica
tion

R
espo

nse

R
eq

u
est

Request

Confirm

MAC User
thread of
execution

MAC Layer
thread of
execution

Indication

Response

MAC User
thread of
execution

MAC Layer
thread of
execution
40 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Non-Blocking Transaction

A non-blocking transaction occurs when the initiator of the transaction does not
explicitly wait for information to come back from the target of the transaction before
continuing its own execution:

 In the case of a Request, the MAC User sends the Request and then carries on
processing - the Confirm comes back some time later (i.e. asynchronously) and
is processed accordingly.

 In the case of an Indication, the MAC Layer sends the Indication and then
carries on processing - the Response comes back asynchronously and is
processed accordingly.

These cases are illustrated in Figure 12 below.

1.15.3 Callback Mechanism

A Request is issued by the MAC User by means of a call to one of the API functions
described in Chapter 5. The most straightforward way for the MAC Layer to reply (with
a Confirm and/or Indication) is via a callback function, introduced below (use of the
callback mechanism for dealing with service primitives is described in more detail in
Section 1.15.4).

A callback function is registered with the MAC Layer by the application and is available
for the MAC Layer to call. When required (for example, as the result of an event), a
call to the callback function is made from the MAC Layer's thread of execution. The
callback mechanism is illustrated in Figure 13 below.

Figure 12: Non-Blocking (Asynchronous) Transactions

Request

Confirm

MAC User
thread of
execution

MAC Layer
thread of
execution

Indication

Response

MAC User
thread of
execution

MAC Layer
thread of
execution
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 41

Chapter 1
Introduction to IEEE 802.15.4

1.15.4 Implementation of Service Primitives

This section describes the handling of service primitives, making use of the callback
mechanism introduced in Section 1.15.3. The cases of handling Request-Confirm
primitives and Indication-Response primitives are described separately.

Request-Confirm Processing

When a Request is issued by the MAC User (e.g. application), the corresponding
Confirm may be issued by the MAC Layer in either of the following ways:

 Synchronously, meaning that the Confirm is issued immediately to coincide
with the return of the function

 Asynchronously, meaning that the function returns immediately but the Confirm
is issued later (i.e. is deferred) - when it occurs, the Deferred Confirm can then
be handled by a callback function which is invoked in the MAC Layer thread but
executed in the MAC User thread.

These two cases are illustrated in Figure 14 below.

Figure 13: Callback Mechanism

Figure 14: Request-Confirm Processing

Callback

(return)

MAC User MAC Layer

Request

Synchronous
Confirm

MAC User MAC Layer

Synchronous

Request

Deferred
Confirm

MAC User MAC Layer

Asynchronous

(return)

(return)

Callback
invoked
42 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
It is desirable to have a synchronous Confirm to many Requests, such as PIB Get and
Set requests (which can be satisfied by a synchronous transaction). Also, if a Request
results in an error, this can be returned immediately.

Indication-Response Processing

There is no synchronous Response to an Indication and therefore an Indication must
be handled by a callback function. This is not really a problem as:

 Most Indications do not solicit a Response as they represent an event

 Control of processing is governed by the higher layers and thus the Response
may need to be formed in a different thread of execution

 The MAC layer is implemented as a finite state machine and is thus implicitly
able to handle asynchronous transactions

Indication-Response Handling is illustrated in Figure 15 below.

Figure 15: Indication-Response Processing

Note: The implementation of service primitives using
the NXP IEEE 802.15.4 software is described in detail in
Section 3.11.

Indication

Response

MAC User MAC Layer

(return)

(return)

Callback
invoked

Hardware Event

Control of execution
passes back to MAC UserMAC User processes

Indication and responds
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 43

Chapter 1
Introduction to IEEE 802.15.4

1.16 Security

A number of security services are included in the IEEE 802.15.4 standard. The
security features differ between the 2003 and 2006 versions of the standard, but the
NXP implementation of the standard supports the security features from both
versions. These security services are provided by the MAC sub-layer, which offers
three security modes:

 Unsecured mode

 ACL (Access Control List) mode

 Secured mode

In Unsecured mode, no security measures are implemented. ACL mode and Secured
mode are described below.

1.16.1 ACL Mode

ACL (Access Control List) mode is supported as a standalone feature only in the 2003
version of the IEEE 802.15.4 standard but is a part of Secured mode in both versions.
In this mode, a node is able to select the nodes with which it can communicate. This
is achieved using an Access Control List (ACL), which is maintained within the node
and contains the addresses of nodes with which communication is permitted. The
source node of an incoming message is compared against this list and the result is
passed to the higher layers, which decide whether to accept or reject the message.

1.16.2 Secured Mode

In Secured mode, a number of security suites are available, each incorporating a
different combination of security options. In each case, an AES (Advanced Encryption
Standard) algorithm is used. The security suites are listed and detailed in Table 3
(2003) and Table 4 (2006). The security options are taken from the following:

 Access Control: This service is as described in Section 1.16.1 for ACL mode,
except messages which come for unauthenticated sources are not passed up
to the higher layers. This feature is included in all security suites.

 Data Confidentiality or Encryption: Data is encrypted at the source and
decrypted at the destination using the same key; only devices with the correct
key can decrypt the encrypted data. Only beacon payloads, command
payloads and data payloads can be encrypted.

 Data Authenticity or Integrity: This service adds a Message Integrity Code
(MIC) to a message, which allows the detection of any tampering of the
message by devices without the correct encryption/decryption key.

Note: ACL mode does not implement encryption/
decryption of messages. Therefore, the alleged source
node of a message could be falsified.
44 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 Replay Protection or Sequential Freshness: A frame counter is added to a
message, which helps a device determine how recent a received message is;
the appended value is compared with a value stored in the device (which is the
frame counter value of the last message received). This value only indicates
the order of messages and does not contain time/date information. This
protects against replay attacks in which old messages are later re-sent to a
device. This feature is included in all security suites of the 2006 version of the
IEEE 802.15.4 standard.

The security suites from the IEEE 802.15.4-2003 standard are summarised in Table 3
below.

The security suites from the IEEE 802.15.4-2006 standard are summarised in Table 4
below (terminology from the 2003 version is adopted for consistency with Table 3).

The IEEE 802.15.4-2006 standard uses the AES-CCM* mode of operation. This is an
extension of the AES-CCM mode that is used in the IEEE 802.15.4-2003 standard,
and provides for both encryption and integrity of the frame.

For full details of security, refer to the appropriate IEEE 802.15.4 standard.

Security Suite
(2003)

MIC Length

Security Options

Access Control Encryption Integrity
Sequential
Freshness

AES-CTR 0 bits Yes Yes No Optional

AES-CCM-128 128 bits Yes Yes Yes Optional

AES-CCM-64 64 bits Yes Yes Yes Optional

AES-CCM-32 32 bits Yes Yes Yes Optional

AES-CBC-MAC-128 128 bits Yes No Yes No

AES-CBC-MAC-64 64 bits Yes No Yes No

AES-CBC-MAC-32 32 bits Yes No Yes No

Table 3: Security Suites for IEEE 802.15.4-2003

Security Suite
(2006)

MIC Length

Security Options

Access Control Encryption Integrity
Sequential
Freshness

MIC-32 32 bits Yes No Yes Yes

MIC-64 64 bits Yes No Yes Yes

MIC-128 128 bits Yes No Yes Yes

ENC 0 bits Yes Yes No Yes

ENC-MIC-32 32 bits Yes Yes Yes Yes

ENC-MIC-64 64 bits Yes Yes Yes Yes

ENC-MIC-128 128 bits Yes Yes Yes Yes

Table 4: Security Suites for IEEE 802.15.4-2006
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 45

Chapter 1
Introduction to IEEE 802.15.4

Note: Useful information about security (Secured mode)
in IEEE 802.15.4-2006 is provided in Appendix B. To
implement IEEE 802.15.4-2006 security features, you
should refer to the NXP Application Note 802.15.4
Home Sensor Demonstration for JN516x (JN-AN-1180).
46 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
2. IEEE 802.15.4 Software

This chapter introduces the IEEE 802.15.4 software supplied by NXP.

2.1 Software Overview

The basic architecture of the IEEE 802.15.4 software stack was introduced in Section
1.9. The NXP 802.15.4 software includes this stack together with an associated
Application Programming Interface (API) which allows the application to interact with
the IEEE 802.15.4 stack layers. Other APIs are also available from NXP to simply
application development for the JN51xx devices. Use of these APIs by the application
is illustrated in Figure 16 below.

The main features of this architecture are as follows:

 The application uses functions of the 802.15.4 Stack API to interact with the
IEEE 802.15.4 stack layers. This interaction is implemented in terms of MCPS/
MLME requests and confirmations, indications and responses. The IEEE
802.15.4 stack interacts with the underlying hardware to access hardware
registers.

 The application interacts with the on-chip hardware peripherals using functions
of the JN51xx Integrated Peripherals API. This API uses the peripheral
hardware drivers to access hardware registers.

 The application interacts with the (JN51xx evaluation kit) board hardware
peripherals using functions of the Board API. The Board API uses the JN51xx
Integrated Peripherals API to achieve the interaction with the board hardware.

Figure 16: IEEE 802.15.4 Software Architecture

Hardware

IEEE 802.15.4
Stack Layers

802.15.4
Stack API

Peripheral
Hardware Drivers

Integrated
Peripherals API

Board API

Interrupt
Handler

Application
Queue API

Application

Interrupts
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 47

Chapter 2
IEEE 802.15.4 Software

 The hardware generates interrupts which are routed to the appropriate
software block (IEEE 802.15.4 stack or peripheral hardware drivers) by an
interrupt handler.

 Optionally, the Application Queue API can be used to lighten the application's
involvement in dealing with interrupts.

The above APIs are described further in Section 2.2. Installation of the NXP software
is described in Section 2.3.

2.2 Application Programming Interfaces (APIs)

This section outlines the APIs used by an IEEE 802.15.4 application that were
introduced and illustrated in Section 2.1.

2.2.1 802.15.4 Stack API

The NXP 802.15.4 Stack API allows the application to interact with the IEEE 802.15.4
stack by facilitating control of the IEEE 802.15.4 MAC hardware on the JN51xx
microcontroller.

This API is fully described in this manual - the functions are detailed in Chapter 2.

2.2.2 JN51xx Integrated Peripherals API

The JN51xx Integrated Peripherals API allows the application to create, control and
respond to events in the peripheral blocks of the JN51xx microcontroller (e.g. UARTs,
timers and GPIOs).

This API is described in the JN516x Integrated Peripherals API User Guide
(JN-UG-3087) and JN514x Integrated Peripherals API User Guide (JN-UG-3066).

2.2.3 Board API

The LPRF (Low-Power Radio Frequency) Board API allows the application to control
the peripherals on boards from a JN51xx evaluation kit. These peripherals may
include LCD panels, LEDs and buttons, as well as temperature, humidity and light
sensors. The API allows the easy manipulation of hardware registers.

This API is described in the LPRF Board API Reference Manual (JN-RM-2003).

2.2.4 Application Queue API (Optional)

Use of the NXP Application Queue API is optional. This API handles all interrupts by
providing a queue-based interface, saving the application from dealing with interrupts
directly. When an interrupt is generated, an entry is placed in one of three queues
(corresponding to MLME, MCPS and hardware events). The application can then poll
the queues for events and deal with them when convenient.
48 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
The Application Queue API allows callbacks to be defined by the application, similar
to the normal 802.15.4 Stack API, but an application can be designed such that they
are not necessary.

This API is described in Appendix A.

2.3 Software Installation

The NXP IEEE 802.15.4 software and related APIs are provided in an NXP Software
Developer’s Kit (SDK), available to download free-of-charge (see “Support
Resources” on page 14 for the relevant web address). The SDK is provided in two
parts: SDK Libraries and SDK Toolchain.

 The SDK Libraries are provided in the JN-SW-4063 installer for JN516x and the
JN-SW-4040 for JN514x. These include the following software components:

 IEEE 802.15.4 stack software

 802.15.4 Stack API

 JN51xx Integrated Peripherals API

 Board API

 Application Queue API

 The SDK Toolchain installer, JN-SW-4041 for both JN516x and JN514x,
includes the following application development tools:

 Cygwin CLI

 Eclipse IDE

 JN51xx compiler

 JN51xx Flash programmer

You will need the JN51xx compiler and JN51xx Flash programmer, and either
the Cygwin CLI or the Eclipse IDE (Integrated Development Environment),
depending on your chosen development environment.

Note 1: You must install the SDK Toolchain before
installing the SDK Libraries. Full installation instructions
for the SDKs are provided in the SDK Installation and
User Guide (JN-UG-3064).

Note 2: To load a built application binary file into the
Flash memory of a JN51xx module, you should use the
JN51xx Flash Programmer v1.8.6 or later. If your SDK
Toolchain does not contain a suitable version of this
utility, you should use the standalone version, available
separately (JN-SW-4007).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 49

Chapter 2
IEEE 802.15.4 Software

2.4 Interrupts and Callbacks

Any call into the IEEE 802.15.4 stack through an API entry point is performed in the
application task context.

Many of the possible 802.15.4 requests cause the stack to initiate activities that will
continue after the call has returned, such as a request to transmit a frame. In such
cases, the stack will acquire processor time by responding to interrupts from the
hardware. To avoid the need for a multi-tasking operating system, the stack will then
work for as long as necessary in the interrupt context.

When information has to be sent to the application, either because of a previous
request or due to an indication from the stack or hardware, the appropriate callback
function is used. It must be remembered that the callback is still in the interrupt context
and that any activity performed by the application within the callback must be kept as
short as possible.

All interrupts are generated by hardware. An interrupt handler in software decides
whether to pass each interrupt to the 802.15.4 stack or to the peripheral hardware
drivers. These either process the interrupt themselves or pass it up to the application
via one of the registered callbacks.

Note: This section is not applicable if you are using the
Application Queue API to handle interrupts (see Section
2.2.4).
50 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3. Network and Node Operations

This chapter describes the main operations that are performed in an IEEE 802.15.4-
based network and refers to the NXP 802.15.4 Stack API resources that are used to
perform these operations.

3.1 MAC Reset

The MAC and PHY layers on a node can both be reset by the network layer (i.e. return
all variables to their default values and disable the transmitter of the PHY) to get them
into a known state before issuing further MAC requests. The PIB (see Section 3.10)
may be reset to its default values by the request or it may retain its current data.

3.1.1 Reset Messages

3.1.1.1 Reset Request

A Reset request is sent using the vAppApiMlmeRequest() function. The request
structure MAC_MlmeReqReset_s is detailed in Section 6.1.11.

3.1.1.2 Reset Confirm

A Reset confirm is generated synchronously and contains the result of the Reset
request. The confirm structure MAC_MlmeCfmReset_s is detailed in Section 6.1.30.

3.1.2 Reset Example

The following is an example of using the Reset request.

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Request Reset */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_RESET;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqReset_s);

sMlmeReqRsp.uParam.sReqReset.u8SetDefaultPib = TRUE; /* Reset PIB
*/

Note: For a guide to application development using the
NXP 802.15.4 Stack API and application template, refer
to Chapter 4.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 51

Chapter 3
Network and Node Operations

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_OK)

{

 /* Error during MLME-Reset */

}

3.2 Channel Scan

The Scan feature allows the potential channels for a PAN to be assessed.

Any scan request will cause other activities that use the transceiver to shut down for
the duration of the scan period. This means that beacon transmission is suspended
when a Co-ordinator begins scanning, and will resume at the end of the scan period.
The Application or Network (NWK) layer above the MAC is responsible for initiating a
scan at the appropriate time in order not to cause problems with other activities. The
Application/NWK layer is also responsible for ensuring that scans are requested over
channels supported by the PHY, and that only those scan types that the device
supports are requested.

All scans require the Application/NWK layer to supply a set of channels to be scanned
and a duration over which the measurement on a channel will be performed. The total
scan time will be the time spent measuring all the requested channels for the scan
duration, up to a limit of MAC_MAX_SCAN_CHANNELS (16) channels.

3.2.1 Scan Types

3.2.1.1 Energy Detect Scan

The Energy Detect Scan is only supported on FFDs, and not on RFDs. When this scan
is requested, the MAC will measure the energy on each of the channels requested or
until it has measured MAC_MAX_SCAN_CHANNELS channels. This type of scan is
used during PAN initialisation when the Co-ordinator is trying to find the clearest
channel on which to begin setting up a PAN.

3.2.1.2 Active Scan

In an Active Scan, the MAC tunes to each requested channel in turn and sends a
beacon request. All Co-ordinators on that channel should respond by sending a
beacon, even if not generating beacons in normal operation. For each unique beacon
received, the MAC stores the PAN details in a PAN descriptor which is returned in the
MLME-Scan.confirm primitive for the scan request. A total of
MAC_MAX_SCAN_PAN_DESCRS (8) entries may be carried in the Scan confirm
primitive. Scanning terminates either when all channels specified have each been
scanned for the duration requested or after MAC_MAX_SCAN_PAN_DESCRS
52 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
unique beacons have been found (irrespective of whether all the requested channels
have been scanned).

3.2.1.3 Passive Scan

In a Passive Scan, the MAC tunes to each requested channel in turn and listens for a
beacon transmission for a period specified in the MLME-Scan.request. For each
unique beacon received, the MAC stores the PAN details in a PAN descriptor which
is returned in the MLME-Scan.confirm primitive corresponding to the MLME-
Scan.request. A total of MAC_MAX_SCAN_PAN_DESCRS (8) entries may be
carried in the MLME-Scan.confirm message. Scanning terminates either when all
channels specified have each been scanned for the duration requested or after
MAC_MAX_SCAN_PAN_DESCRS unique beacons have been found (irrespective of
whether all the requested channels have been scanned).

3.2.1.4 Orphan Scan

An Orphan Scan can be performed by a device which has lost synchronisation with its
Co-ordinator. The device requests an Orphan Scan using the MLME-Scan.request
primitive with the scan type set to ‘orphan’. For each channel specified, the device
tunes to the channel and then sends an orphan notification message. It then waits on
the channel in receive mode until it receives a Co-ordinator re-alignment command or
until MAC_RESPONSE_WAIT_TIME superframe periods have passed.

 If a Co-ordinator re-alignment command is seen, the scan will be terminated
and the MLME-Scan.confirm status will be MAC_ENUM_SUCCESS. The
contents of the re-alignment command are used to update the PIB
(macCoordShortAddress, macPANId, macShortAddress).

 If all the requested channels are scanned and no Co-ordinator re-alignment
command is seen, the MLME-Scan.confirm status will be
MAC_ENUM_NO_BEACON.

3.2.2 Scan Messages

3.2.2.1 Scan Request

A scan is requested using the MLME-Scan.request primitive. The request is sent
using the vAppApiMlmeRequest() function. The request structure
MAC_MlmeReqScan_s is detailed in Section 6.1.13.

The request includes the scan type, the channels to be scanned and the scan duration
(per channel). The possible scan types are described in Section 3.2.1.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 53

Chapter 3
Network and Node Operations

3.2.2.2 Scan Confirm

The results from a MLME-Scan.request primitive are conveyed back
asynchronously in the MLME-Scan.confirm primitive using the callback routines
registered at system start-up in the call to u32AppApiInit(). They may also be sent
synchronously to the Application/NWK layer as part of the vAppApiMlmeRequest()
used to send the Scan request. The confirm structure MAC_MlmeCfmScan_s is detailed
in Section 6.1.21.

3.2.2.3 Orphan Indication

An Orphan indication is generated by the MAC of a Co-ordinator to its Application/
NWK layer to indicate that it has received an orphan notification message transmitted
by an orphan node. The indication message is sent to the Application/NWK layer using
the callback routines registered at system start-up in the call to u32AppApiInit(). The
indication structure MAC_MlmeIndOrphan_s is detailed in Section 6.1.38.

3.2.2.4 Orphan Response

An Orphan response is generated by the Application/NWK layer in response to
receiving an Orphan indication. The response is sent using the function
vAppApiMlmeRequest(). The response structure MAC_MlmeRspOrphan_s is detailed
in Section 6.1.20.

On receiving this response, if the orphan was previously associated with the Co-
ordinator, the MAC will send a Co-ordinator re-alignment command to the orphan. The
result of sending this command will be to generate an MLME-COMM-
STATUS.indication from the MAC to the Application/NWK layer. Refer to Section
3.2.2.5 for the usage of this primitive.

3.2.2.5 Comm Status Indication

A Comm Status indication is generated by the MAC to the Application/NWK layer of a
Co-ordinator to provide the result of a communication with another node triggered by
a previous primitive (MLME-Orphan.response and MLME-
Associate.response). The indication message is sent to the Application/NWK
layer using the callback routines registered at system start-up in the call to
u32AppApiInit(). The indication structure MAC_MlmeIndCommStatus_s is detailed in
Section 6.1.37.
54 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3.2.3 Scan Examples

3.2.3.1 Active Scan Example

The following is an example of performing an Active Scan (see the next example for
details of handling the deferred confirm that is generated by this request).

#define CHANNEL_BITMAP 0x7800

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Request active channel scan */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_SCAN;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqScan_s);

sMlmeReqRsp.uParam.sReqScan.u8ScanType =
MAC_MLME_SCAN_TYPE_ACTIVE;

sMlmeReqRsp.uParam.sReqScan.u32ScanChannels = CHANNEL_BITMAP;

sMlmeReqRsp.uParam.sReqScan.u8ScanDuration = 6;

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_DEFERRED)

{

 /* Unexpected result: scan request should result in a deferred

 confirmation (i.e. we will receive it later) */

}

The following is an example of handling a deferred active scan confirmation (assumes
data is passed as a pointer to a deferred confirm indicator data type (i.e.
MAC_MlmeDcfmInd_s *psMlmeInd.)

#define DEMO_PAN_ID 0x0e1c

#define DEMO_COORD_ADDR 0x0e00

MAC_PanDescr_s *psPanDesc;

int i;

if (psMlmeInd->u8Type == MAC_MLME_DCFM_SCAN)

{

 if ((psMlmeInd->uParam.sDcfmScan.u8Status == MAC_ENUM_SUCCESS)

 && (psMlmeInd->uParam.sDcfmScan.u8ScanType ==

 MAC_MLME_SCAN_TYPE_ACTIVE))
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 55

Chapter 3
Network and Node Operations

 {

 /* Determine which, if any, network contains demo coordinator.

 Algorithm for determining which network to connect to is

 beyond the scope of 802.15.4, and we use a simple approach

 of matching the required PAN ID and short address, both of

 which we already know */

 i = 0;

 while (i < psMlmeInd->uParam.sDcfmScan.u8ResultListSize)

 {

 psPanDesc = &psMlmeInd-
>uParam.sDcfmScan.uList.asPanDescr[i];

 if ((psPanDesc->sCoord.u16PanId == DEMO_PAN_ID)

 && (psPanDesc->sCoord.u8AddrMode == 2)

 && (psPanDesc->sCoord.uAddr.u16Short ==
DEMO_COORD_ADDR))

 {

 /* Matched so start to synchronise and associate */

 }

 }

 }

}

3.2.3.2 Energy Detect Scan Example

The following is an example of requesting an Energy Detect Scan.

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Request active channel scan */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_SCAN;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqScan_s);

sMlmeReqRsp.uParam.sReqScan.u8ScanType =

 MAC_MLME_SCAN_TYPE_ENERGY_DETECT;

sMlmeReqRsp.uParam.sReqScan.u32ScanChannels = ALL_CHANNELS_BITMAP;

sMlmeReqRsp.uParam.sReqScan.u8ScanDuration = 6;

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);
56 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
/* Check immediate response */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_DEFERRED)

{

 /* Unexpected result: scan request should result in a deferred

 confirmation (i.e. we will receive it later) */

}

The following is an example of handling the response (a deferred confirmation) to an
Energy Detect Scan. It assumes data is passed as a pointer to a deferred confirm
indicator data type (i.e. MAC_MlmeDcfmInd_s *psMlmeInd).

int i;

uint8 u8ClearestChan, u8MinEnergy;

uint8 *pu8EnergyDetectList;

if (psMlmeInd->u8Type == MAC_MLME_DCFM_SCAN)

{

 /* Check that this response is the result of a

 successful energy detect scan */

 if ((psMlmeInd->uParam.sDcfmScan.u8Status == MAC_ENUM_SUCCESS)

 && (psMlmeInd->uParam.sDcfmScan.u8ScanType ==

 MAC_MLME_SCAN_TYPE_ENERGY_DETECT))

 {

 u8MinEnergy = 0xff;

 u8ClearestChan = 11;

 pu8EnergyDetectList =

 psMlmeInd->uParam.sDcfmScan.uList.au8EnergyDetect;

 /* Find clearest channel (lowest energy level). Assumes

 that all 16 channels available to 2.4GHz band have

 been scanned. */

 for (i = 0; i < MAC_MAX_SCAN_CHANNELS; i++)

 {

 if (pu8EnergyDetectList[i] < u8MinEnergy)

 {

 u8MinEnergy = pu8EnergyDetectList[i];

 u8ClearestChan = i + 11;

 }

 }

 }

}

JN-UG-3024 v2.0 © NXP Laboratories UK 2014 57

Chapter 3
Network and Node Operations

3.3 Start

The Start feature is used by an FFD to begin acting as the Co-ordinator of a new PAN
or to begin transmitting beacons when associated with a PAN. A PAN should only be
started after an Active Scan has been performed in order to find which PAN IDs are
currently in use. A PAN is started using the MLME-START.request primitive.

3.3.1 Start Messages

3.3.1.1 Start Request

Beacon generation is requested using the MLME-Start.request primitive. The
request is sent using the vAppApiMlmeRequest() function. The request structure
MAC_MlmeReqStart_s is detailed in Section 6.1.15.

3.3.1.2 Start Confirm

A MLME-Start.confirm primitive is generated by the MAC to inform the Application/
NWK layer of the results of an MLME-Start.request. The confirm message is sent
to the Application/NWK layer using the callback routines registered at system start-up
in the call to u32AppApiInit(). It may also be sent synchronously to the Application/
NWK layer as part of the vAppApiMlmeRequest() call used to send the Start request.
The confirm structure MAC_MlmeCfmStart_s is detailed in Section 6.1.29.

3.3.2 Start Example

The following is an example of a typical Start request.

#define DEMO_PAN_ID 0x1234

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Start beacons */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_START;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqStart_s);

sMlmeReqRsp.uParam.sReqStart.u16PanId = DEMO_PAN_ID;

sMlmeReqRsp.uParam.sReqStart.u8Channel = 11;

/* Eight beacons per second */

sMlmeReqRsp.uParam.sReqStart.u8BeaconOrder = 3;

/* Only receive during first half of superframe: save energy */

sMlmeReqRsp.uParam.sReqStart.u8SuperframeOrder = 2;
58 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
sMlmeReqRsp.uParam.sReqStart.u8PanCoordinator = TRUE;

sMlmeReqRsp.uParam.sReqStart.u8BatteryLifeExt = FALSE;

sMlmeReqRsp.uParam.sReqStart.u8Realignment = FALSE;

sMlmeReqRsp.uParam.sReqStart.u8SecurityEnable = FALSE;

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_OK)

{

 /* Error during MLME-Start */

}

3.4 Synchronisation

The MAC supports the Synchronisation feature as defined in Sections 7.1.14 and
7.5.4 of the IEEE 802.15.4 Standard (2003).

The purpose of the synchronisation feature is to allow devices to synchronise to
beacon transmissions from their Co-ordinators in order to be able to receive pending
data held on the Co-ordinator. Where a PAN does not perform beacon transmission,
data synchronisation is performed by the device polling its Co-ordinator. A device can
only acquire synchronisation to a beacon in the PAN in which it is associated - on
receiving a beacon, it can either track the beacon (switching on its receiver at some
point before the beacon is due to be transmitted) or receive a single beacon and then
not attempt to receive any others.

3.4.1 Initialising Synchronisation

Synchronisation is initiated using the MLME_SYNC.request primitive, which starts a
search for a beacon (see Section 3.4.3.1). During the beacon search, the device
listens for a beacon for a time 2n +1 ‘base superframes’ (‘base superframe’ duration
is 960 symbols), where n is the beacon order contained in the PIB. The search is
repeated MAC_MAX_LOST_BEACONS (4) times and if a beacon is not found at the
end of this search then the Sync Loss indication is issued (see Section 3.4.3.2).

If a previously synchronised device, which is tracking a beacon, misses
MAC_MAX_LOST_BEACONS (4) consecutive beacons, synchronisation has been
lost and a Sync Loss indication is issued.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 59

Chapter 3
Network and Node Operations

3.4.2 Conflict Notification

Synchronisation is also lost if a PAN ID conflict is detected due to one of the following
situations:

 A Co-ordinator receives a beacon with the PAN Co-ordinator indicator set and
the same PAN ID that it is using

 A Co-ordinator receives a PAN ID conflict notification from a device

 A device receives a beacon with the PAN Co-ordinator indicator set and the
PAN ID that it expects but from a different Co-ordinator

In the last case, the device transmits a PAN ID conflict notification message to its PAN
Co-ordinator.

The Sync Loss indication will be issued (see Section 3.4.3.2).

3.4.3 Sync Messages

3.4.3.1 Sync Request

The MLME-SYNC.request primitive is used to instruct the MAC to attempt to acquire
a beacon. The request is sent to the MAC using the vAppApiMlmeRequest()
function. The request structure MAC_MlmeReqSync_s is detailed in Section 6.1.16.

3.4.3.2 Sync Loss Indication

The Sync Loss indication is used to inform the Application/NWK layer that there has
been a loss of synchronisation with the beacon, either by a previously synchronised
device tracking the beacon or because a beacon could not be found during a beacon
search initiated by an MLME-SYNC.request. The indication message is sent to the
Application/NWK layer using the callback routines registered at system start-up in the
call to u32AppApiInit(). The indication structure MAC_MlmeIndSyncLoss_s is detailed
in Section 6.1.36.

3.5 Beacons and Polling

If a valid beacon is received by a device (i.e. comes from the correct Co-ordinator
address and has the correct PAN ID), a Beacon Notify indication is generated by the
MAC to the Application/NWK layer (see Section 3.5.1). Depending on the setting of
MAC_PIB_ATTR_AUTO_REQUEST in the PIB, the MAC may start to extract pending
data from the Co-ordinator.

If a beacon is received that uses security and an error occurs when it is being
processed, the MAC generates an MLME-COMM-STATUS.indication to the
Application/NWK layer (see Section 3.2.2.5) with a status of
MAC_ENUM_FAILED_SECURITY_CHECK. The indication structure
MAC_MlmeIndCommStatus_s is detailed in Section 6.1.37.
60 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
For non-beaconing PANs, a device can extract pending data from its Co-ordinator by
issuing an MLME-POLL.request (see Section 3.5.2.1) and the presence of data will be
returned in the corresponding MLME-POLL.confirm (see Section 3.5.2.2), together
with the actual data in an MCPS-DATA.indication primitive (see Section 3.8.4).

3.5.1 Beacon Notify Indication

A Beacon Notify indication is generated by the MAC to inform the Application/NWK
layer that a beacon transmission has been received. The indication message is sent
to the Application/NWK layer using the callback routines registered at system start-up
in the call to u32AppApiInit(). The indication structure MAC_MlmeIndBeacon_s is
detailed in Section 6.1.35.

3.5.2 Poll Messages

3.5.2.1 Poll Request

The MLME-POLL.request primitive is used to instruct the MAC to attempt to retrieve
pending data for the device from a Co-ordinator in a non-beaconing PAN. The request
is sent to the MAC using the vAppApiMlmeRequest() function. The request structure
MAC_MlmeReqPoll_s is detailed in Section 6.1.17.

3.5.2.2 Poll Confirm

A Poll Confirm is generated by the MAC to inform the Application/NWK layer of the
state of a Poll request. The confirm message is sent to the Application/NWK layer
using the callback routines registered at system start-up in the call to
u32AppApiInit(). It may also be sent synchronously to the Application/NWK layer as
part of the vAppApiMlmeRequest() call used to send the Poll request. The confirm
structure MAC_MlmeCfmPoll_s is detailed in Section 6.1.25.

If the Poll confirm has status MAC_ENUM_SUCCESS to show that data is available,
the data will be indicated to the Application/NWK layer using a MCPS-
DATA.indication primitive (see Section 3.8.4).

3.5.3 Beacon Examples

The following is an example of a beacon synchronisation request.

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Create sync request on channel 11 */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_SYNC;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqSync_s);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 61

Chapter 3
Network and Node Operations

sMlmeReqRsp.uParam.sReqSync.u8Channel = 11;

sMlmeReqRsp.uParam.sReqSync.u8TrackBeacon = TRUE;

/* Post sync request. There is no deferred confirm for this, we just

 get a SYNC-LOSS later if it didn't work */
vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

The following is an example of handling a Beacon Notify event (stores the beacon
payload). The example assumes that data is passed as a pointer to a deferred confirm
indicator data type, i.e. MAC_MlmeDcfmInd_s *psMlmeInd.

uint8 au8Payload[MAC_MAX_BEACON_PAYLOAD_LEN];

int i;

if (psMlmeInd->u8Type == MAC_MLME_IND_BEACON_NOTIFY)

{

 for (i = 0; i < psMlmeInd->uParam.sIndBeacon.u8SDUlength; i++))

 {

 /* Store beacon payload */

 au8Payload[i] = psMlmeInd->uParam.sIndBeacon.u8SDU[i];

 }

}

3.5.4 Polling Example

The following is an example of using a Poll request to check if the Co-ordinator has
any data pending for the device. It is assumed that u16CoordShortAddr has been
previously initialised.

#define DEMO_PAN_ID 0x1234

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Create a poll request */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_POLL;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqPoll_s);

 sMlmeReqRsp.uParam.sReqPoll.u8SecurityEnable = FALSE;

 sMlmeReqRsp.uParam.sReqPoll.sCoord.u8AddrMode = 2; /* Short
address */

sMlmeReqRsp.uParam.sReqPoll.sCoord.u16PanId = DEMO_PAN_ID;

sMlmeReqRsp.uParam.sReqPoll.sCoord.uAddr.u16Short =
u16CoordShortAddr;

/* Post poll request, response will be a deferred MLME-Poll.confirm.
62 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 Will also receive a MCPS-Data.indication event if the coordinator
has

 sent data. */

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

3.6 Association

The Association feature allows a device to join a PAN.

Before a device can associate with a PAN, it must first find a PAN. It should perform
a MLME-Reset.request (see Section 3.1.1.1) before performing either an Active or
Passive Scan using MLME-Scan.request (see Section 3.2.2.1), which will generate
a list of the PANs that have been found. The Application/NWK layer can then choose
with which PAN it wishes to associate. At this point, an MLME-Associate.request
primitive (see Section 3.6.1.1) is issued by the Application/NWK layer, which results
in an Association Request command being sent from the device to the Co-ordinator.
This command is acknowledged by the Co-ordinator. After a period of time has
elapsed, the device MAC sends a Data Request command (see Section 3.8.2) to the
Co-ordinator to extract the result of the association. The Co-ordinator acknowledges
this command and this is followed by an Association Response command from the
Co-ordinator which carries the status of the association attempt. On receiving the
association response, the MAC generates an MLME-ASSOCIATE.confirm primitive
giving the result of the association request (see Section 3.6.1.2).

At the Co-ordinator, reception of the Association Request command results in the
MLME raising an MLME-ASSOCIATE.indication to the Application/NWK layer
(see Section 3.6.1.3), which must process the indication and generate an MLME-
ASSOCIATE.response primitive to the MAC (see Section 3.6.1.4). On receiving a
data request from the device, the above Associate Response command is sent to the
device performing the association. The device will acknowledge reception of this
command and the status of the MLME-ASSOCIATE.response will be reported to the
Co-ordinator by the MLME generating a MLME-COMM-STATUS.indication (see
Section 3.6.1.5).

3.6.1 Associate Messages

3.6.1.1 Associate Request

The MLME-ASSOCIATE.request primitive is used by the Application/NWK layer of
an unassociated device to instruct the MAC to attempt to request an association with
a Co-ordinator. The Associate Request is sent to the MAC using the function
MAC_vHandleMlmeReqRsp(). The request structure MAC_MlmeReqAssociate_s is
detailed in Section 6.1.7.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 63

Chapter 3
Network and Node Operations

3.6.1.2 Associate Confirm

An Associate Confirm is generated by the MAC to inform the Application/NWK layer
of the state of an Association Request. The confirm message is sent to the Application/
NWK layer using the callback routines registered at system start-up in the call to
MAC_vRegisterMlmeDcfmIndCallbacks(). It may also be sent synchronously to the
Application/NWK layer as part of the MAC_vHandleMcpsReqRsp() call to send the
Associate Request. The confirm structure MAC_MlmeCfmAssociate_s is detailed in
Section 6.1.23.

3.6.1.3 Associate Indication

An Associate Indication is generated by the MAC to inform the Application/NWK layer
that an Association Request command has been received. The indication message is
sent to the Application/NWK layer using the callback routines registered at system
start-up in the call to u32AppApiInit(). The indication structure
MAC_MlmeIndAssociate_s is detailed in Section 6.1.32.

3.6.1.4 Associate Response

An Associate Response is generated by the Application/NWK layer in response to
receiving an Associate Indication. The response is sent using the function
vAppApiMlmeRequest(). The response structure MAC_MlmeRspAssociate_s is
detailed in Section 6.1.19.

3.6.1.5 Comm Status Indication

A Comm Status Indication is issued by the MAC to the Application/NWK to report on
the status of the Associate Response primitive. The indication structure
MAC_MlmeIndCommStatus_s is detailed in Section 6.1.37.

3.6.2 Association Examples

The following is an example of a typical Associate request.

#define DEMO_PAN_ID 0x1234

#define DEMO_COORD_ADDR 0x0e00

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Create associate request. We know short address and PAN ID of

 coordinator as this is preset and we have checked that received

 beacon matched this */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_ASSOCIATE;
64 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqAssociate_s);

sMlmeReqRsp.uParam.sReqAssociate.u8LogicalChan = 11;

/* We want short address, other features off */

sMlmeReqRsp.uParam.sReqAssociate.u8Capability = 0x80;

sMlmeReqRsp.uParam.sReqAssociate.u8SecurityEnable = FALSE;

sMlmeReqRsp.uParam.sReqAssociate.sCoord.u8AddrMode = 2;

sMlmeReqRsp.uParam.sReqAssociate.sCoord.u16PanId = DEMO_PAN_ID;

sMlmeReqRsp.uParam.sReqAssociate.sCoord.uAddr.u16Short=
DEMO_COORD_ADDR;

/* Put in associate request and check immediate confirm. Should be

 deferred, in which case response is handled by event handler */

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_DEFERRED)

{

 /* Unexpected result, expecting a deferred confirm */

}

The following is an example of a device handling an Associate Confirm event (it stores
the short address assigned to it by the Co-ordinator in the variable u16ShortAddr). It
assumes that data is passed as a pointer to a deferred confirm indicator data type,
i.e. MAC_MlmeDcfmInd_s *psMlmeInd.

if (psMlmeInd->u8Type == MAC_MLME_DCFM_ASSOCIATE)

{

 if (psMlmeInd->uParam.sDcfmAssociate.u8Status ==
MAC_ENUM_SUCCESS)

 {

 /* Store short address */

 u16ShortAddr = psMlmeInd->

 uParam.sDcfmAssociate.u16AssocShortAddr;

 }

}

JN-UG-3024 v2.0 © NXP Laboratories UK 2014 65

Chapter 3
Network and Node Operations

The following is an example of a Co-ordinator handling an Associate Indication
message and the generation of the appropriate response. It assumes that data is
passed as a pointer to a deferred confirm indicator data type, i.e. MAC_MlmeDcfmInd_s
*psMlmeInd.

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

tsDemoData sDemoData;

uint16 u16ShortAddress;

uint32 u32AddrLo;

uint32 u32AddrHi;

uint8 u8Node;

uint8 u8AssocStatus;

if (psMlmeInd->u8Type == MAC_MLME_IND_ASSOCIATE)

{

 /* Default short address */

 u16ShortAddress = 0xffff;

 /* Check node extended address matches and device wants short

 address */

 u32AddrLo = psMlmeInd->

 uParam.sIndAssociate.sDeviceAddr.u32L);

 u32AddrHi = psMlmeInd->

 uParam.sIndAssociate.sDeviceAddr.u32H);

 if ((u32AddrHi == DEMO_EXT_ADDR_HI)

 && (u32AddrLo >= DEMO_ENDPOINT_EXT_ADDR_LO_BASE)

 && (u32AddrLo < (DEMO_ENDPOINT_EXT_ADDR_LO_BASE

 + DEMO_ENDPOINTS))

 && (psMlmeInd->uParam.sIndAssociate.u8Capability & 0x80))

 {

 /* Check if already associated (idiot proofing) */

 u8Node = 0;

 while (u8Node < sDemoData.sNode.u8AssociatedNodes)

 {

 if ((u32AddrHi ==

 sDemoData.sNode.asAssocNodes[u8Node].u32ExtAddrHi)

 && (u32AddrLo ==
66 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 sDemoData.sNode.asAssocNodes[u8Node].u32ExtAddrLo))

 {

 /*Already in system: give it same short address*/

 u16ShortAddress =

 sDemoData.sNode.asAssocNodes[u8Node].u16ShortAddr;

 }

 u8Node++;

 }

 /* Assume association succeeded */

 u8AssocStatus = 0;

 if (u16ShortAddress == 0xffff)

 {

 if (sDemoData.sNode.u8AssociatedNodes < DEMO_ENDPOINTS)

 {

 /*Allocate short address as next in list */

 u16ShortAddress = DEMO_ENDPOINT_ADDR_BASE

 + sDemoData.sNode.u8AssociatedNodes;

 /* Store details for future use */

 sDemoData.sNode.asAssocNodes

 [sDemoData.sNode.u8AssociatedNodes].u32ExtAddrHi

 = u32AddrHi;

 sDemoData.sNode.asAssocNodes

 [sDemoData.sNode.u8AssociatedNodes].u32ExtAddrLo

 = u32AddrLo;

 sDemoData.sNode.asAssocNodes

 [sDemoData.sNode.u8AssociatedNodes].u16ShortAddr

 = u16ShortAddress;

 sDemoData.sNode.u8AssociatedNodes++;

 }

 else

 {

 /* PAN access denied */

 u8AssocStatus = 2;

 }

 }

 }

 else

 {

 /* PAN access denied */
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 67

Chapter 3
Network and Node Operations

 u8AssocStatus = 2;

 }

 /* Create association response */

 sMlmeReqRsp.u8Type = MAC_MLME_RSP_ASSOCIATE;

 sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeRspAssociate_s);

 memcpy(sMlmeReqRsp.uParam.sRspAssociate.sDeviceAddr,

 psMlmeInd->uParam.sIndAssociate.sDeviceAddr,

 MAC_EXT_ADDR_LEN);

 sMlmeReqRsp.uParam.sRspAssociate.u16AssocShortAddr =

 u16ShortAddress;

 sMlmeReqRsp.uParam.sRspAssociate.u8Status = u8AssocStatus;

 sMlmeReqRsp.uParam.sRspAssociate.u8SecurityEnable = FALSE;

 /* Send association response */

 vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

 /* There is no confirmation for an association response,

 hence no need to check */

3.7 Disassociate

The Disassociate feature allows a device which was previously associated with a PAN
to terminate its membership of the PAN. To disassociate from a PAN, the device will
issue an MLME-DISASSOCIATE.request primitive. This can also be used by a PAN
Co-ordinator to cause an associated device to leave the PAN.

The Application/NWK layer issues a Disassociate Request. When this is issued by a
device, a Disassociate Notification command is sent to the PAN Co-ordinator. If the
request was issued by a Co-ordinator, the notification command is stored for later
transmission and the beacon contents are updated to show that there is a message
pending for the device to be disassociated.

When a Disassociate Notification message has been transmitted, an
acknowledgement is sent in return. On receiving the acknowledgement, the MAC
generates an MLME-DISASSOCIATE.confirm to the Application/NWK layer.

If the Disassociate Request was sent by a device, on receiving the Disassociate
Notification command the MAC on the Co-ordinator will generate an MLME-
DISASSOCIATE.indication to indicate to the Co-ordinator Application/Network
layer that a device is leaving the PAN.
68 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3.7.1 Disassociate Request

The MLME-DISASSOCIATE.request primitive is used by the Application/NWK layer
of an associated device to tell the MAC to disassociate from the Co-ordinator of a
PAN. It is also used by the Application/NWK layer of a Co-ordinator to remove an
associated device from the PAN. The request is sent to the MAC using the routine
vAppApiMlmeRequest(). The request structure MAC_MlmeReqDisassociate_s is
detailed in Section 6.1.8.

3.7.2 Disassociate Confirm

A Disassociate Confirm is generated by the MAC to inform the Application/NWK layer
of the state of a Disassociate Request. The confirm message is sent to the Application/
NWK layer using the callback routines registered at system start-up in the call to
u32AppApiInit(). It may also be sent synchronously to the Application/NWK layer as
part of the vAppApiMlmeRequest() used to send the Disassociate Request. The
Disassociate Confirm structure MAC_MlmeCfmDisassociate_s is detailed in Section
6.1.24.

3.7.3 Disassociate Indication

A Disassociate Indication is generated by the MAC to inform the Application/NWK
layer that a Disassociate Notification command has been received. The indication
message is sent to the Application/NWK layer using the callback routines registered
at system start-up in the call to u32AppApiInit(). The Disassociate Indication
structure MAC_MlmeIndDisassociate_s is detailed in Section 6.1.33.

3.7.4 Disassociation Examples

The following is an example of a request to disassociate a device from a PAN

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Post disassociate request for device to leave PAN */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_DISASSOCIATE;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqDisassociate_s);

sMlmeReqRsp.uParam.sReqDisassociate.sAddr.u8AddrMode = 2;
 /* Short */

sMlmeReqRsp.uParam.sReqDisassociate.sAddr.uAddr.u16Short =

u16CoordShortAddr;

sMlmeReqRsp.uParam.sReqDisassociate.u8Reason = 2;
 /* Device leave PAN */

sMlmeReqRsp.uParam.sReqDisassociate.u8SecurityEnable = FALSE;
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 69

Chapter 3
Network and Node Operations

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_DEFERRED)

{

 /* Unexpected result, expecting a deferred confirm */

3.8 Data Transmission and Reception

The MAC provides a data service for the transmission and reception of data. Data is
transmitted using the MCPS-DATA.request; the status of the transmission is
reported by the MCPS-DATA.confirm. Reception of data is indicated to the
Application/NWK layer by the MAC raising a MCPS-DATA.indication.

3.8.1 Transmission Power

The radio transmission power of a JN51xx device can be varied - for example, a
JN516x standard-power module has a transmission power range of -32 to +2.5 dBm.
To set the transmission power, you can use the function eAppApiPlmeSet() to set the
relevant PHY PIB attribute (specified by PHY_PIB_ATTR_TX_POWER). The required
function call is:

eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, x);

where x is a 6-bit two’s complement power level, yielding a range of -32 to 31.

In practice, for the JN516x and JN514x devices, this value is mapped to one of four
power levels, as indicated in Table 5 below.

The parameter x can be set as the desired power level (in dBm) cast to a uint32 - for
example, to achieve a -9 dBm power setting on a standard-power module, the
required function call would be:

eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, (unint32)(-9));

Lower 6 Bits of
Parameter x

As Two’s
Complement
Values

Mapped Power Level (dBm)

Standard-Power Modules High-Power Modules

JN5148 JN5168 JN5148 JN5168 M05 JN5168 M06

32 to 39 -32 to -25 -32 -32 -16.5 -26 -11

40 to 51 -24 to -13 -20 -20 -5 -15 1

52 to 63 -12 to -1 -9 -9 +6.5 -3 13

0 to 31 0 to 31 +2.5 +2.5 +18 9.5 22

Table 5: Power Level Mappings
70 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3.8.2 Data Request

The MCPS-DATA.request primitive is used by the Application/NWK layer to transmit
a frame of data to a destination device. The request is sent to the MAC using the
vAppApiMcpsRequest() routine. The request structure MAC_McpsReqData_s is
detailed in Section 6.2.5.

3.8.3 Data Confirm

An MCPS-DATA.confirm primitive is generated by the MAC to inform the
Application/NWK layer of the state of an MCPS-DATA.request. The confirm
message is sent to the Application/NWK layer using the callback routines registered
at system start-up in the call to u32AppApiInit(). It may also be sent synchronously
to the Application/NWK layer as part of the vAppApiMcpsRequest() call used to send
the Data Request. The Data Confirm structure MAC_McpsCfmData_s is detailed in
Section 6.2.7.

3.8.4 Data Indication

An MCPS-DATA.indication is generated by the MAC to inform the Application/
NWK layer of the reception of a data packet. The indication message is sent to the
Application/NWK layer using the callback routines registered at system start-up in the
call to vAppApiMcpsRequest(). The Data Indication structure MAC_McpsIndData_s
is detailed in Section 6.2.11.

3.8.5 Purge Request

The MCPS-PURGE.request primitive is used by the Application/NWK layer to
remove a data frame from a transaction queue where it is held prior to transmission.
The request is sent to the MAC using the vAppApiMcpsRequest() function. The
request structure MAC_McpsReqPurge_s is detailed in Section 6.2.6.

Note: When using a JN516x high-power module, before
calling eAppApiPlmeSet() it is necessary to call
vAppApiSetHighPowerMode() in order to specify the
module type and to enable high-power mode. For
further details, refer to the desciption on page 105.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 71

Chapter 3
Network and Node Operations

3.8.6 Purge Confirm

An MCPS-PURGE.confirm primitive is generated by the MAC to inform the
Application/NWK layer of the result of an MCPS-PURGE.request primitive. The
confirm message is sent to the Application/NWK layer using the callback routines
registered at system start-up in the call to u32AppApiInit(). It may also be sent
synchronously to the Application/NWK layer as part of the vAppApiMcpsRequest()
function used to send the Purge Request. The Purge Confirm structure
MAC_McpsCfmPurge_s is detailed in Section 6.2.8.

3.8.7 Data Transfer Examples

The following is an example of a device transmitting data to a Co-ordinator using a
Data Request. The variable u8CurrentTxHandle is set at a higher layer and is just
used as a data frame tag. The variable u16ShortAddr contains the short address of
the device that is transmitting the data.

#define DEMO_PAN_ID 0x0e1c

#define DEMO_COORD_ADDR 0x0e00

/* Structures used to hold data for MLME request and response */

MAC_McpsReqRsp_s sMcpsReqRsp;

MAC_McpsSyncCfm_s sMcpsSyncCfm;

uint8 *pu8Payload;

/* Create frame transmission request */

sMcpsReqRsp.u8Type = MAC_MCPS_REQ_DATA;

sMcpsReqRsp.u8ParamLength = sizeof(MAC_McpsReqData_s);

/* Set handle so we can match confirmation to request */

sMcpsReqRsp.uParam.sReqData.u8Handle = u8CurrentTxHandle;

/* Use short address for source */

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sSrc.u8AddrMode = 2;

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sSrc.u16PanId =
DEMO_PAN_ID;

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sSrc.uAddr.u16Short =

u16ShortAddr;

/* Use short address for destination */

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sDst.u8AddrMode = 2;

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sDst.u16PanId =
DEMO_PAN_ID;

sMcpsReqRsp.uParam.sReqData.sFrame.sAddr.sDst.uAddr.u16Short =
72 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
DEMO_COORD_ADDR;

/* Frame requires ack but not security, indirect transmit or GTS */

sMcpsReqRsp.uParam.sReqData.sFrame.u8TxOptions =
MAC_TX_OPTION_ACK;

/* Set payload, only use first 8 bytes */

sMcpsReqRsp.uParam.sReqData.sFrame.u8SduLength = 8;

pu8Payload = sMcpsReqRsp.uParam.sReqData.sFrame.au8Sdu;

pu8Payload[0] = 0x00;

pu8Payload[1] = 0x01;

pu8Payload[2] = 0x02;

pu8Payload[3] = 0x03;

pu8Payload[4] = 0x04;

pu8Payload[5] = 0x05;

pu8Payload[6] = 0x06;

pu8Payload[6] = 0x07;

/* Request transmit */

vAppApiMcpsRequest(&sMcpsReqRsp, &sMcpsSyncCfm);

A Data Confirm can be sent to the application via callbacks.

PRIVATE void vProcessIncomingMcps(MAC_McpsDcfmInd_s *psMcpsInd)

{

 /* Process MCPS indication by checking if it is a confirmation of

 our outgoing frame */

 if ((psMcpsInd->u8Type == MAC_MCPS_DCFM_DATA)

 && (sDemoData.sSystem.eState == E_STATE_TX_DATA))

 {

 if (psMcpsInd->uParam.sDcfmData.u8Handle ==

 sDemoData.sTransceiver.u8CurrentTxHandle)

 {

 /* Increment handle for next time. Increment failures */

 sDemoData.sTransceiver.u8CurrentTxHandle++;

 /* Start to read sensors. This takes a while but rather

 * than wait for an interrupt we just poll and, once

 * finished, move back to the running state to wait for

 * the next beacon. Not a power saving solution! */

 sDemoData.sSystem.eState = E_STATE_READ_SENSORS;

 vProcessRead();

 sDemoData.sSystem.eState = E_STATE_RUNNING;
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 73

Chapter 3
Network and Node Operations

 }

 }

}

The following is an example of handling the Data Indication event that is generated by
the MAC layer of a Co-ordinator when data is received. The variable u16DeviceAddr
contains the short address of the device from which we want to receive data. This
example assumes that data is passed as a pointer to a deferred confirm indicator data
type, i.e. MAC_McpsDcfmInd_s *psMcpsInd.

MAC_RxFrameData_s *psFrame;

MAC_Addr_s *psAddr;

uint16 u16NodeAddr;

au8DeviceData[8];

if (psMcpsInd->u8Type == MAC_MCPS_IND_DATA)

{

 psFrame = &psMcpsInd->uParam.sIndData.sFrame;

 psAddr = &psFrame->sAddrPair.sSrc;

 /* Using short addressing mode */

 if (psAddr->u8AddrMode == 2)

 {

 /* Get address of device that is sending the data */

 u16NodeAddr = psAddr->uAddr.u16Short;

 /* If this is the device we want */

 if (u16NodeAddr == u16DeviceAddr)

 {

 /* Store the received data, only interested in 8 bytes */

 for(i = 0; i < 8; i++)

 {

 au8DeviceData[i] = psFrame->au8Sdu[i];

 }

 }

 }

}

74 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
The following is an example of a request to purge a data frame from the transaction
queue. The variable u8PurgeItemHandle defines which item is to be purged and is set
by a higher layer.

/* Structures used to hold data for MLME request and response */

MAC_McpsReqRsp_s sMcpsReqRsp;

MAC_McpsSyncCfm_s sMcpsSyncCfm;

/* Send request to remove a data frame from transaction queue */

sMcpsReqRsp.u8Type = MAC_MCPS_REQ_PURGE;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_McpsReqPurge_s);

sMlmeReqRsp.uParam.sReqPurge.u8Handle = u8PurgeItemHandle;

/* Request transmit */

vAppApiMcpsRequest(&sMcpsReqRsp, &sMcpsSyncCfm);

The following is an example of handling a Purge Confirm event. This example
assumes data is passed as a pointer to a deferred confirm indicator data type,
i.e. MAC_McpsDcfmInd_s *psMcpsInd.

if (psMcpsInd->u8Type == MAC_MCPS_DCFM_PURGE)

{

 if (psMcpsInd->uParam.sCfmPurge.u8Status != MAC_ENUM_SUCCESS)

 {

 /* Purge request failed */

 }

}

3.8.8 Receive Enable

The Receive Enable feature allows a device to control when its receiver will be
enabled or disabled, and for how long. On beacon-enabled PANs, the timings are
relative to superframe boundaries; on non-beacon-enabled PANs, the receiver is
enabled immediately.

3.8.9 Receive Enable Request

The MLME-RX-ENABLE.request primitive is used by the Application/NWK layer to
request that the receiver is enabled at a particular time and for a particular duration.
The request is sent to the MAC using the vAppApiMlmeRequest() routine. The
request structure MAC_MlmeReqRxEnable_s is detailed in Section 6.1.12.

A new Receive Enable Request must be generated for each attempt to enable the
receiver.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 75

Chapter 3
Network and Node Operations

3.8.10 Receive Enable Confirm

An MLME-RX-ENABLE.confirm primitive is generated by the MAC to inform the
Application/NWK layer of the result of an MLME-RX-ENABLE.request primitive. The
confirm message is sent to the Application/NWK layer using the callback routines
registered at system start-up in the call to u32AppApiInit(). It may also be sent
synchronously to the Application/NWK layer as part of the vAppApiMlmeRequest()
function used to send the Receive Enable Request. The Receive Enable Confirm
structure MAC_MlmeCfmRxEnable_s is detailed in Section 6.1.26.

3.8.11 Receive Enable Examples

The following is an example of an Receiver Enable Request.

#define RX_ON_TIME0x00

#define RX_ON_DURATION0x200000

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

/* Post receiver enable request */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_RX_ENABLE;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqRxEnable_s);

sMlmeReqRsp.uParam.sReqRxEnable.u8DeferPermit = TRUE;

sMlmeReqRsp.uParam.sReqRxEnable.u32RxOnTime = RX_ON_TIME;

sMlmeReqRsp.uParam.sReqRxEnable.u32RxOnDuration = RX_ON_DURATION);

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle response */

if (sMlmeSyncCfm.u8Status != MAC_ENUM_SUCCESS)

{

 /* Receiver not enabled */

}
76 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
3.9 Guaranteed Time Slot (GTS)

Guaranteed Time Slots (GTSs) allow portions of a superframe to be assigned to a
device for its exclusive use, to allow communications between the device and the PAN
Co-ordinator. Up to 7 GTSs can be allocated, provided that there is enough room in
the superframe; a slot may be a multiple superframe slots in length. The PAN Co-
ordinator is responsible for allocating and deallocating GTSs. Requests for allocation
of GTSs are made by devices. GTSs may be deallocated by the PAN Co-ordinator or
by the device which owns the slots. A GTS has a defined direction (transmit or receive
relative to the device) and a device may request a transmit GTS and a receive GTS.
A device must be tracking beacons in order to be allowed to use GTSs.

The result of an allocation or deallocation of a GTS is transmitted in the beacon; in the
case of the allocation, information such as the start slot, slot length and the device
short address are transmitted as part of the GTS descriptor. The contents of the
beacon are examined to allow the GTS Confirm primitive to report the status of the
allocation or deallocation attempt.

3.9.1 GTS Request

The MLME-GTS.request primitive is used by the Application/NWK layer to request
that the receiver is enabled at a particular time and for a particular duration. The
request is sent to the MAC using the vAppApiMlmeRequest() function. The request
structure MAC_MlmeReqGts_s is detailed in Section 6.1.10.

3.9.2 GTS Confirm

An MLME-GTS.confirm primitive is generated by the MAC to inform the Application/
NWK layer of the result of an MLME-GTS.request primitive. The confirm message is
sent to the Application/NWK layer using the callback routines registered at system
start-up in the call to u32AppApiInit(). It may also be sent synchronously to the
Application/NWK layer as part of the vAppApiMlmeRequest() function used to send
the GTS Request. The GTS Confirm structure MAC_MlmeCfmGts_s is detailed in
Section 6.1.22.

3.9.3 GTS Indication

A GTS Indication is generated by the MAC to inform the Application/NWK layer that a
GTS Request command to allocate or deallocate a GTS has been received, or on a
PAN Co-ordinator where the GTS deallocation is generated by the Co-ordinator itself.
The indication message is sent to the Application/NWK layer using the callback
routines registered at system start-up in the call to u32AppApiInit(). The GTS
Indication structure MAC_MlmeIndGts_s is detailed in Section 6.1.34.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 77

Chapter 3
Network and Node Operations

3.9.4 GTS Examples

The following is an example of a device making a GTS request to the PAN Co-
ordinator:

/* Structures used to hold data for MLME request and response */

MAC_MlmeReqRsp_s sMlmeReqRsp;

MAC_MlmeSyncCfm_s sMlmeSyncCfm;

uint8 u8Characteristics = 0;

/* Make GTS request for 4 slots, in tx direction */

sMlmeReqRsp.u8Type = MAC_MLME_REQ_GTS;

sMlmeReqRsp.u8ParamLength = sizeof(MAC_MlmeReqGts_s);

sMlmeReqRsp.uParam.MAC_MlmeReqGts_s.u8SecurityEnable = TRUE;

/* characterstics defined in mac_sap.h */

u8Characteristics |= 4 << MAC_GTS_LENGTH_BIT;

u8Characteristics |= MAC_GTS_DIRECTION_TX << MAC_GTS_DIRECTION_BIT;

u8Characteristics |= MAC_GTS_TYPE_ALLOC << MAC_GTS_TYPE_BIT;

sMlmeReqRsp.uParam.MAC_MlmeReqGts_s.u8Characteristics =

 u8Characteristics;

/* Put in associate request and check immediate confirm. Should

 be deferred, in which case response is handled by event handler */

vAppApiMlmeRequest(&sMlmeReqRsp, &sMlmeSyncCfm);

/* Handle synchronous confirm */

if (sMlmeSyncCfm.u8Status != MAC_MLME_CFM_DEFERRED)

{

 /* Unexpected result - handle error*/

}

The following is an example of handling a deferred GTS confirm (generated by the
MAC layer in response to the above request). Assumes data is passed as a pointer to
a deferred confirm indicator data type i.e. MAC_MlmeDcfmInd_s *psMlmeInd.

if (psMlmeInd->u8Type == MAC_MLME_DCFM_GTS)

{

 if (psMlmeInd->uParam.MAC_MlmeCfmGts_s.u8Status ==
MAC_ENUM_SUCCESS)

 {

 /* GTS allocated successfully, store characteristics */

 u8Characteristics = psMlmeInd->

 uParam.MAC_MlmeCfmGts_s.u8Characteristics;
78 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 u8GtsLength = (u8Characteristics & MAC_GTS_LENGTH_MASK);

 u8GtsDirection = (u8Characteristics & MAC_GTS_DIRECTION_MASK)
>>

 MAC_GTS_DIRECTION_BIT;

 u8GtsType = (u8Characteristics & MAC_GTS_TYPE_MASK) >>

 MAC_GTS_TYPE_BIT;

 }

}

The following example shows a Co-ordinator handling a GTS Indication event
(generated by the MAC layer following the reception of a GTS Request command from
a device). This example assumes that data is passed as a pointer to a deferred
confirm indicator data type, i.e. MAC_MlmeDcfmInd_s *psMlmeInd.

if (psMlmeInd->u8Type == MAC_MLME_IND_GTS)

{

 /* determine whether allocation or de-allocation has occurred */

 u8Characteristics = psMlmeInd->

 uParam.MAC_MlmeIndGts_s.u8Characteristics;

 u8GtsType = (u8Characteristics & MAC_GTS_TYPE_MASK) >>

 MAC_GTS_TYPE_BIT;

 if (u8GtsType == MAC_GTS_TYPE_DEALLOC)

 {

 /* handle de-allocation of GTS */

 }

 else

 {

 /* handle allocation of GTS */

 }

}

JN-UG-3024 v2.0 © NXP Laboratories UK 2014 79

Chapter 3
Network and Node Operations

3.10 PIB Access

The PAN Information Base (PIB) consists of a number of parameters or attributes
used by the MAC and PHY layers. They describe the Personal Area Network in which
the node exists. The detailed use of these parameters is described in the IEEE
802.15.4 Standard and will not be dealt with further here. The MAC and PHY PIB
attributes are listed and described in Chapter 8. The mechanisms that a network layer
can use to read (set) and write (get) these attributes are described below:

 Section 3.10.1 describes access to the MAC PIB attributes

 Section 3.10.2 describes access to the PHY PIB attributes

3.10.1 MAC PIB Attributes

The MAC PIB attributes are contained in the structure MAC_Pib_s, defined in the
header file mac_pib.h. These attributes are listed and described in Section 8.1. The
mechanism for reading (Get) and writing (Set) these attributes depends on the
particular attribute. Write accesses to attributes that affect hardware registers must be
performed using API functions while all other attribute accesses can be performed
directly in the structure.

Setting MAC Attributes via API Functions

Functions are provided in the 802.15.4 Stack API to set MAC PIB attributes that are
related to settings in hardware registers. These attributes and their associated ‘Set’
functions are listed in Section 8.1 and the functions are fully detailed in Section 5.3.

Directly Accessing MAC Attributes

All other MAC PIB attributes (other than those that affect hardware registers) can be
written directly and all MAC PIB attributes can be read directly.

In order to access the MAC PIB attributes directly, a handle to the PIB is required. The
application can obtain a handle to the PIB with the following code:

/* At start of file */

 #include "AppApi.h"

 #include "mac_pib.h"

 PRIVATE void *pvMac;

 PRIVATE MAC_Pib_s *psPib;

 /* Within application initialization function */

 pvMac = pvAppApiGetMacHandle();

 psPib = MAC_psPibGetHandle(pvMac);
80 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Once the handle is obtained, MAC PIB attributes can be read directly - for example:

bMyAssociationPermit = psPib->bAssociationPermit;

Most of the MAC PIB attributes (other than those that affect hardware registers) can
also be written using the PIB handle - for example:

psPib->bAssociationPermit = bMyAssociationPermit;

 The following is an example of writing the beacon order attribute in the PIB:

psPib->u8BeaconOrder = 5;

The following is an example of reading the Co-ordinator short address from the PIB:

uint16 u16CoordShortAddr;

u16CoordShortAddr = psPib->u16CoordShortAddr;

The following is an example of writing to one of the variables within an access control
list entry:

psPib->asAclEntryDescriptorSet[1].u8AclSecuritySuite = 0x01;

3.10.2 PHY PIB Attributes

The PHY PIB attributes are represented in the 802.15.4 Stack API by enumerations,
which are detailed in Section 8.2. Enumerations are also provided for the possible
attribute values and are also detailed in Section 8.2. The attributes can be accessed
using these enumerations via two API functions, fully described in Section 5.4:

 eAppApiPlmeGet() can be used to read (get) a PHY PIB attribute

 eAppApiPlmeSet() can be used to write (set) a PHY PIB attribute
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 81

Chapter 3
Network and Node Operations

3.11 Issuing Service Primitives

The methods for coding the use of service primitives, as introduced in Section 1.15,
are outlined in the sub-sections below.

3.11.1 Sending Requests

This section describes how an application sends a Request to the MAC Layer.

Requests can be sent via two possible MAC interfaces:

 MLME (MAC Sublayer Management Entity)

 MCPS (MAC Common Part Sub-layer)

Both of the above provide an interface to the IEEE 802.15.4 PHY layer. MCPS
provides access to the MAC data service.

A ‘Send’ function is available in the API for each of these two MAC interfaces:

 vAppApiMlmeRequest() is used to submit a Request to the MLME interface

 vAppApiMcpsRequest() is used to submit a Request to the MCPS interface

These functions are fully described in Section 5.1.

In using these functions, it is necessary to fill in a structure representing the Request
to the MAC Layer. Following the function call, the application may receive either a
synchronous Confirm, for which space must be allocated, or expect a deferred
(asynchronous) Confirm at some later time (the application may elect to perform other
tasks while waiting for a deferred Confirm or, if there is nothing to do, go to sleep in
order to save power).

Deferred Confirms and Indications are handled by callback functions which are
registered by the application as described in Section 3.11.2.

3.11.2 Registering Deferred Confirm/Indication Callbacks

Callback functions must be provided by the application that allow Deferred Confirms
and Indications to be passed from the MAC Layer to the MAC User (e.g. application).

These user-defined callback functions must be registered by the application when the
API is initialised using the function u32AppApiInit() - callback functions must be
provided for each of the MLME and MCPS interfaces:

 The parameters prMlmeGetBuffer and prMcpsGetBuffer must point to callback
functions that allocate a buffer in which the MAC Layer can store an MLME/
MCPS Deferred Confirm or Indication before it is passed to the MAC User.

 The parameters prMlmeCallback and prMcpsCallback must point to callback
functions that send the buffer containing an MLME/MCPS Deferred Confirm or
Indication to the MAC User.

For more information on these parameters and callback functions, refer to the
description of u32AppApiInit() in Section 5.2.
82 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
This two-phase callback system gives control of buffer allocation to the application.
This allows the application to easily implement a basic queuing system for Deferred
Confirms and Indications, which are always handled asynchronously.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 83

Chapter 3
Network and Node Operations

84 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
4. Application Development

This chapter provides guidance on IEEE 802.15.4 application coding by referring to
the NXP IEEE 802.15.4 application template.

4.1 Application Template

The NXP IEEE 802.15.4 application template provides a basis for your own
application development for an IEEE 802.15.4-based wireless network (non-beacon
enabled). You can modify the supplied code to adapt it to your own application needs.

The template is available as an Application Note, which can be downloaded free-of-
charge from NXP (see “Support Resources” on page 14 for the relevant web address):

 IEEE 802.15.4 Application Template for JN516x (JN-AN-1174)

 IEEE 802.15.4 Application Template for JN514x (JN-AN-1046)

4.1.1 Pre-requisites

It is assumed that you have installed the relevant SDK on your PC - the required SDK
installers depend on your chip type, as follows:

 JN516x: JN-SW-4063 and JN-SW-4041

 JN514x: JN-SW-4040 and JN-SW-4041

For more information on the above SDKs, refer to Section 2.3.

The skeleton application in the Application Note assumes the following:

 You have one device which will act as the PAN Co-ordinator

 You have at least one other device which will act as an End Device

 You will use pre-determined values for the PAN ID and the short addresses (for
the PAN Co-ordinator and for the End Device(s))

 The network topology will be a Star network

 The network will be non-beacon enabled (meaning that the PAN Co-ordinator
will not transmit regular beacons)

 Short addressing will be used

 Data transfers will be direct transmissions with acknowledgements

 There will be no security implemented

Note: When developing IEEE 802.15.4 applications for
JN516x devices, it may also be useful to refer to the
example code in the Application Note 802.15.4 Home
Sensor Demonstration for JN516x (JN-AN-1180).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 85

Chapter 4
Application Development

4.1.2 Unpacking the Application Note

Unzip the Application Note (JN-AN-1174 or JN-AN-1046) into the Application
directory of the SDK installation:

<JN51xx_SDK_ROOT>\Application

where <JN51xx_SDK_ROOT> is the path into which the SDK was installed (by
default, this is C:\Jennic). The Application directory is automatically created when
you install the SDK.

Ensure that the created folder (e.g. JN-AN-1046-802-15-4-App-Template) is directly
under Application. You should rename the Application Note folder with the name of
your project.

4.1.3 Supplied Files

The application's file structure includes the following folders (depending on the
Application Note):

 AN1174_154_Coord or AN1046_154_Coord - contains source files and
makefiles for the PAN Co-ordinator

 AN1174_154_EndD or AN1046_154_EndD - contains source files and
makefiles for an End Device

 Common - contains the config.h header file used for both devices, which
defines certain values used in the source code (e.g. PAN ID, short addresses,
channels to scan)

 EclipseDebugConfig (JN-AN-1046 only) - contains Eclipse hardware and
software Launch files (relevant only when developing for JN514x in Eclipse)

The AN1046_154_Coord and AN1046_154_EndD folders each contain Source and
Build sub-folders, the contents of which are described below.

Source Folders

The contents of the Source folders are as follows:

 AN1174_154_Coord/Source or AN1046_154_Coord/Source

Contains the file AN1174_154_Coord.c or AN1046_154_Coord.c which
contains the source code for the PAN Co-ordinator

 AN1174_154_EndD/Source or AN1046_154_EndD/Source

Contains the file AN1174_154_EndD.c or AN1046_154_EndD.c which
contains the source code for an End Device

To adapt the skeleton code to your own needs, you may need to modify the above
source files.
86 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Build Folders

The contents of the Build folders are similar for the two Application Notes, comprising
the makefile (Makefile) for compilation of the source code for the JN51xx
microcontroller.

The Build folder is also the place where a compilation outputs the resulting binary file.

4.2 Code Descriptions

This section describes the supplied source code at function level. The sub-sections
below describe the code for the PAN Co-ordinator and the code for the End Device.

The config.h header file is referenced in both source files, as are the following header
files: jendefs.h, AppHardwareApi.h, AppQueueApi.h, mac_sap.h and mac_pib.h.

4.2.1 Contents of AN1xxx_154_Coord.c

The entry point from the boot loader into the Co-ordinator application is the function
AppColdStart() - this is the equivalent of the main() function in other C programs.
This function performs the following tasks (also illustrated in Figure 17):

1. AppColdStart() calls the function vInitSystem(), which itself performs the
following tasks:

 Initialises the IEEE 802.15.4 stack on the device

 Sets the PAN ID and short address of the PAN Co-ordinator - in this
application, these are pre-determined and are defined in the file config.h

 Switches on the radio receiver

 Enables the device to accept association requests from other devices

2. AppColdStart() calls the function vStartEnergyScan() which starts an
Energy Detection Scan to assess the level of activity in the possible radio
frequency channels - the channels to be scanned are defined in the file
config.h along with the scan duration. Initiation of the scan is handled as an
MLME request to the IEEE 802.15.4 MAC sub-layer.

3. AppColdStart() waits for an MLME response using the function
vProcessEventQueues() - this function checks each of the three event
queues and processes items found. The function uses the function
vProcessIncomingMlme() to handle the MLME response. This function calls
vHandleEnergyScanResponse() which processes the results of the Energy
Detection Scan - the function searches the results to find the quietest channel
and sets this as the adopted channel for the network. The last function then
calls vStartCoordinator() which sets the required parameters and then

Note: In the following descriptions, AN1xxx refers to
AN1174 or AN1046, depending on whether the
Application Note JN-AN-1174 or JN-AN-1046 is used.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 87

Chapter 4
Application Development

submits an MLME request to start the network (note that no response is
expected for this request).

4. AppColdStart() loops the function vProcessEventQueues() to wait for an
association request from another device, which arrives as an MLME request
(note that the beacon request from the device is handled by the IEEE
802.15.4 stack and is not seen by the application). When the association
request arrives, the function vHandleNodeAssociation() is called to process
the request. This function creates and submits an association response via
MLME.

5. AppColdStart() loops the function vProcessEventQueues() to wait for
messages from the associated device arriving via the MCPS and hardware
queues.

 When data arrives in the MCPS queue, vProcessEventQueues() first
uses the function vProcessIncomingMcps() to accept the incoming data
frame. Note that vProcessIncomingMcps() uses
vHandleMcpsDataInd(), which calls vProcessReceivedDataPacket() in
which you must define the processing to be done on the data.

 When an event arrives in the hardware queue, vProcessEventQueues()
calls the function vProcessIncomingHwEvent() to accept the incoming
event. You must define the processing to be performed in this function.

The above Co-ordinator set-up process is illustrated in Figure 17 below.

Note: As it stands, the code is only designed to receive
data. To transmit data from the PAN Co-ordinator, you
must modify the code - a transmission function is
provided (see Section 4.3.6).
88 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Figure 17: PAN Co-ordinator Set-up Process

AppColdStart()

vInitSystem()

vStartEnergyScan()

vProcessEventQueues()

vProcessIncomingMlme()

vHandleEnergyScanResponse()

vStartCoordinator()

vHandleNodeAssociation()

vProcessIncomingMcps()

vProcessIncomingHwEvent()

Deals with results of
energy scan and starts
Co-ordinator

Deals with association
request

Deals with incoming
data packet

vHandleMcpsDataInd()

vProcessReceivedDataPacket()
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 89

Chapter 4
Application Development

4.2.2 Contents of AN1xxx_154_EndD.c

The entry point from the boot loader into the End Device application is the function
AppColdStart() - this is the equivalent of the main() function in other C programs. In
AN1xxx_154_EndD.c, this function is defined differently from that in
AN1xxx_154_Coord.c. For the End Device, it performs the following tasks (also
illustrated in Figure 18):

1. AppColdStart() calls the function vInitSystem(), which initialises the IEEE
802.15.4 stack on the device.

2. AppColdStart() calls the function vStartActiveScan() which starts an Active
Channel Scan in which the device sends beacon requests to be detected by
the PAN Co-ordinator, which then sends out a beacon in response - the
channels to be scanned are defined in the file config.h along with the scan
duration. Initiation of the scan is handled as an MLME request to the IEEE
802.15.4 MAC sub-layer.

3. AppColdStart() waits for an MLME response using the function
vProcessEventQueues() which checks each of the three event queues and
processes the items it finds. The function uses the vProcessIncomingMlme()
function to handle the MLME response. This function calls the function
vHandleActiveScanResponse() which processes the results of the Active
Channel Scan:

 If a PAN Co-ordinator is found, the function stores the Co-ordinator details
(PAN ID, short address, logical channel) and calls vStartAssociate() to
submit an association request to the Co-ordinator - this is handled as an
MLME request.

 If a PAN Co-ordinator is not found (possibly because the Co-ordinator has
not yet been initialised), the function recalls vStartActiveScan() in order to
restart the scan (in which case this process continues as described from
Step 2).

4. AppColdStart() loops the function vProcessEventQueues() to wait for an
association response from the Co-ordinator. When the response is received,
vProcessIncomingMlme() is called, which (provided that the device is in the
associating state) calls the function vHandleAssociateResponse() to
process the response. The last functions checks the association response:

 If the PAN Co-ordinator has accepted the association, the function puts the
device into the 'associated' state.

 If the PAN Co-ordinator has rejected the association, the function recalls
vStartActiveScan() to start a search for another PAN Co-ordinator (in
which case this process continues as described from Step 2).

5. AppColdStart() loops the function vProcessEventQueues() to wait for
messages from the PAN Co-ordinator arriving via the MCPS and hardware
queues.

 When data arrives in the MCPS queue, vProcessEventQueues() first
uses the function vProcessIncomingMcps() to accept the incoming data
frame. Note that vProcessIncomingMcps() uses
vHandleMcpsDataInd(), which calls vProcessReceivedDataPacket() in
which you must define the processing to be done on the data.
90 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 When an event arrives in the hardware queue, vProcessEventQueues()
calls the function vProcessIncomingHwEvent() to accept the incoming
event. You must define the processing to be performed in this function.

The above End Device set-up process is illustrated in Figure 18 below.

Note: As it stands, the code is only designed to receive
data. To transmit data from the device, you must modify
the code - a transmission function is provided (see
Section 4.3.6).

Figure 18: End Device Set-up Process

AppColdStart()

vInitSystem()

vStartActiveScan()

vProcessEventQueues()

vProcessIncomingMlme()

vHandleActiveScanResponse()

vStartAssociate()

vHandleAssociateResponse()

vProcessIncomingMcps()

vProcessIncomingHwEvent()

Deals with results of
channel scan and
starts association
process

Deals with association
response

Deals with incoming
data packet

vHandleMcpsDataInd()

vProcessReceivedDataPacket()

This diagram shows the program flow
assuming that all requests result in
successful responses
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 91

Chapter 4
Application Development

4.3 Adapting the Skeleton Code

This section provides guidelines on how to modify the supplied skeleton code to
achieve different requirements. The modifications covered are:

 How do I program a pre-defined PAN ID? - see Section 4.3.1

 How do I program pre-defined short addresses? - see Section 4.3.2

 How do I add End Devices to the network? - see Section 4.3.3

 How do I program the channel scans? - see Section 4.3.4

 How do I define the processing of received data packets? - see Section 4.3.5

 How do I program data transmission? - see Section 4.3.6

4.3.1 How Do I Program a Pre-defined PAN ID?

The PAN ID is pre-defined in the file config.h. In the skeleton code, it is set to
0xCAFE.

To use a different PAN ID, open config.h and change the hex number in the following
line:

#define PAN_ID 0xCAFE

4.3.2 How Do I Program Pre-defined Short Addresses?

The 16-bit short addresses of the PAN Co-ordinator and End Device are pre-defined
in the file config.h. In the skeleton code, the short addresses are set to 0x0000 for the
Co-ordinator and 0x0001 for the first End Device. The latter is a start address for the
End Devices - if you have multiple End Devices, their short addresses will be
automatically numbered from this value upwards in increments of 0x0001.

To use different short addresses, open config.h and change the hex numbers in the
following lines:

#define COORDINATOR_ADR 0x0000

#define END_DEVICE_START_ADR 0x0001

Caution: The chosen PAN ID must not conflict with the
PAN IDs of any other IEEE 802.15.4-based networks in
the vicinity.

Note: It is usual to set 0x0000 as the short address of
the PAN Co-ordinator.
92 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
4.3.3 How Do I Add End Devices to the Network?

The skeleton code is designed for a network consisting of at least two devices - a PAN
Co-ordinator and an End Device. By default, the maximum number of End Devices
defined in the code is 10 - this means that you can use up to ten End Devices without
any modifications. However, you can use more End Devices by modifying the code as
described below.

Modifications to config.h

The file config.h contains a line defining the maximum number of End Devices
supported by the application - in the supplied code, it is set to 10, as shown below:

#define MAX_END_DEVICES 10

To increase or decrease the maximum number of End Devices, open config.h and
change this number.

Modifications to AN1xxx_154_EndD.c

The source file AN1xxx_154_EndD.c provides the code to be loaded into an End
Device. If you have more than one End Device and they are of different types (e.g. one
a temperature sensor, the other a humidity sensor), they are likely to need different
source code. Therefore, when adding End Devices, you may need to devise specific
code for the new devices.

Modifications to AN1xxx_154_Coord.c

To add End Devices to your network, you do not need to modify the file
AN1xxx_154_Coord.c.

4.3.4 How Do I Program the Channel Scans?

The skeleton code involves two frequency channel scans:

 An Energy Detection Scan invoked by the PAN Co-ordinator during network
set-up to find the most suitable channel for network operation.

 An Active Channel Scan invoked by the End Device during device association
to find the operating channel of the PAN Co-ordinator.

It is not normally necessary to check all possible frequency channels. The 27 channels
(numbered 0 to 26) of the IEEE 802.15.4 standard are distributed among the three
frequency bands (868, 915 and 2400 MHz). Since a network is usually intended to
work in only one of these bands, there is little point in scanning channels in the other
two bands (NXP products operate in the 2400-MHz band; channels 11 to 26). In

Note: When using multiple End Devices, their short
addresses are automatically assigned starting with the
address END_DEVICE_START_ADR defined in the
config.h file (see Section 4.3.2).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 93

Chapter 4
Application Development

addition, you may be aware that another network in the locality already operates in one
of the channels, so this channel should be excluded from the scan. Therefore, you can
pre-define the channels that will be checked in these scans. You can also define the
amount of time spent checking each channel in each of the scans. These definitions
are made in the header file config.h, as described below.

Defining the Channels to be Scanned

The file config.h includes the following line:

#define SCAN_CHANNELS 0x07FFF800UL

SCAN_CHANNELS defines exactly which channels will be scanned. Each bit of the
value (0x07FFF800 in this case) corresponds to a channel, where the least significant
bit (LSB) corresponds to channel 0; see Figure 19.

 A bit value of 1 means 'scan'

 A bit value of 0 means 'do not scan'

To change the channels to be scanned, modify this hex value.

Figure 19: Channel Allocations in SCAN_CHANNELS

Note: SCAN_CHANNELS applies to both the Energy
Detection Scan and the Active Channel Scan.

Caution: Since the JN51xx wireless microcontroller
only operates in the 2400-MHz band, there is no point in
configuring scans in channels of the lower bands.

LSBMSB

C
h

 0

C
h

1

C
h

 1
0

C
h

 1
1

C
h

 2
6

Bit 0Bit 31

868-MHz Band

915-MHz Band2400-MHz BandNot Used
94 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Defining the Channel Scan Durations

The file config.h includes the following two lines:

#define ACTIVE_SCAN_DURATION 3

#define ENERGY_SCAN_DURATION 3

Each of these parameters defines the time taken to check each channel in a scan:

 ACTIVE_SCAN_DURATION for an Active Channel Scan

 ENERGY_SCAN_DURATION for an Energy Detection Scan

These parameters take a positive integer value that determines the scan duration per
channel, in milliseconds, according to the following formulae:

For an Active Channel Scan:

Channel scan duration (ms) = 15.36 x (2ACTIVE_SCAN_DURATION + 1)

For an Energy Detection Scan:

Channel scan duration (ms) = 15.36 x (2ENERGY_SCAN_DURATION + 1)

Thus, in each case, a value of 3 gives a channel scan duration of 138.24 ms.

To change the channel scan durations, modify the above code values.

4.3.5 How Do I Define the Processing of Received Data Packets?

The IEEE 802.15.4 stack puts an incoming data packet into the MCPS queue on the
destination device. The skeleton code for both the PAN Co-ordinator and End Device
will retrieve the data packet from the queue but will not process the data in any way -
you must define how you want to process the data. However, an empty function
already exists in the code to accommodate your data processing code -
vProcessReceivedDataPacket(). You must define the required processing for this
function in the files AN1xxx_154_Coord.c and AN1xxx_154_EndD.c.

Note: The value of each of ACTIVE_SCAN_DURATION
and ENERGY_SCAN_DURATION must be an integer in
the range 0 to 14 (inclusive). Thus, the channel scan
durations can be in the range 30.72 ms to 251.6736 s.

Note: The empty vProcessReceivedDataPacket()
function appears in both AN1xxx_154_Coord.c and
AN1xxx_154_EndD.c. However, the PAN Co-ordinator
is likely to process received data packets in a different
way from an End Device. Therefore, you are likely to
define vProcessReceivedDataPacket() differently in
the two source files.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 95

Chapter 4
Application Development

4.3.6 How Do I Program Data Transmission?

In each of the source files AN1xxx_154_Coord.c and AN1xxx_154_EndD.c, a
function for transmitting data is already defined - vTransmitDataPacket(). You simply
need to add code to call this function as appropriate for your application.

4.4 Building Your Code

Once you have modified the source files AN1xxx_154_Coord.c and
AN1xxx_154_EndD.c (as well as the header file config.h) according to your needs,
you must build the executables on a PC or workstation before downloading them to
the relevant network devices.

The applications can be built using the Eclipse IDE or makefiles. Build the applications
as described in the appropriate section below, depending on whether you intend to
use Eclipse or makefiles.

4.4.1 Building Code Using Makefiles

This section describes how to build your application code using the makefile supplied
in the Build folder for each application (see Section 4.1.3).

To build each application and load it into a JN51xx board, follow the instructions below:

1. Ensure that the project directory is located in

<JN51xx_SDK_ROOT>\Application

where <JN51xx_SDK_ROOT> is the path into which the SDK was installed.

2. In a command window, navigate to the Build directory for the application to be
built and at the command prompt, enter:

make clean all

Note that you can alternatively enter the above command from the top level of
the project directory, which will build the binaries for both the applications.

The binary file will be created in the Build directory for the application, the
resulting filename reflecting the name of the source file and the chip type
(e.g. JN5168) for which the application has been built.

3. Load the resulting binary file from the Build directory into the boards. To do
this, use the JN51xx Flash Programmer, described in the JN51xx Flash
Programmer User Guide (JN-UG-3007).

Note: To load a built application binary file into the Flash
memory of a JN51xx board, you should use the JN51xx
Flash Programmer v1.8.6 or later. If your SDK Toolchain
does not contain a suitable version of this utility, you
should use the standalone version, available separately
(JN-SW-4007).
96 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
4.4.2 Building Code Using Eclipse

To build the application and load it into JN51xx boards, follow the instructions below:

1. Ensure that the project directory is located in

<JN51xx_SDK_ROOT>\Application

where <JN51xx_SDK_ROOT> is the path into which the SDK was installed.

2. Start the Eclipse platform and import the relevant project files (.project and
.cproject) as follows:

a) In Eclipse, follow the menu path File>Import to display the Import
dialogue box.

b) In the dialogue box, expand General, select Existing Projects into
Workspace and click Next.

c) Enable Select root directory, browse to the Application directory and
click OK.

d) In the Projects box, select the project to be imported and click Finish.

3. Build an application. To do this, ensure that the project is highlighted in the left
panel of Eclipse and use the drop-down list associated with the hammer icon
in the Eclipse toolbar to select the relevant build configuration - once selected,
the application will automatically build. Repeat this to build the other
application.

The binary files will be created in the relevant Build directory.

4. Load the resulting binary files into the boards. Do this using the JN51xx Flash
Programmer, which can be launched from within Eclipse or used directly (and
is described in the JN51xx Flash Programmer User Guide (JN-UG-3007)).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 97

Chapter 4
Application Development

98 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Part II:
Reference Information
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 99

100 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
5. API Functions

This chapter details the C functions of the Application Programming Interface (API)
provided in the NXP IEEE 802.15.4 software. The functions are described in the
following categories:

 Network to MAC Layer functions - see Section 5.1

 MAC to Network Layer functions - see Section 5.2

 MAC Layer PIB Access functions - see Section 5.3

 PHY Layer PIB Access functions - see Section 5.4

The user-defined MLME/MCPS callback functions that must be registered by the
Application or NWK layer are detailed in Section 5.5.

The return codes used by some of the API functions are listed and described in
Section 5.6.

5.1 Network to MAC Layer Functions

The NWK to MLME and NWK to MCPS interfaces are implemented as functions called
from the NWK layer to routines provided by the MAC. The general procedure to use
these functions is to fill in a structure representing a request to the MAC and either
receive a synchronous confirm, for which space must be allocated, or to expect a
deferred (asynchronous) confirm at some time later. The application may elect to
perform other tasks while waiting for a deferred confirm or, if there is nothing for it to
do, go to sleep to save power.

This section describes the functions used to send the above requests. Functions to
select the type of security required and to enable high-power mode (for JN516x high-
power modules) are also described.

The functions are listed below, along with their page references:

Function Page

vAppApiMlmeRequest 102

vAppApiMcpsRequest 103

vAppApiSetSecurityMode 104

vAppApiSetHighPowerMode (JN516x Only) 105
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 101

Chapter 5
API Functions

vAppApiMlmeRequest

Description

This function is used to pass an MLME request from the NWK layer or Application to
the MAC. The request is specified in a MAC_MlmeReqRsp_s structure (detailed in
Section 6.1.1). A pointer to a MAC_MlmeSyncCfm_s structure (see Section 6.1.5)
must also be provided in which a synchronous confirm will be received. If the confirm
is deferred, this will be indicated in the status returned in this structure.

Parameters

*psMlmeReqRsp Pointer to a structure holding the request to the MLME
interface (see Section 6.1.1)

*psMlmeSyncCfm Pointer to a structure used to hold the result of a synchronous
confirm to a request over the MLME interface (see Section
6.1.5)

Returns

None

void vAppApiMlmeRequest(
MAC_MlmeReqRsp_s *psMlmeReqRsp,
MAC_MlmeSyncCfm_s *psMlmeSyncCfm);
102 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vAppApiMcpsRequest

Description

This function is used to pass an MCPS request from the NWK layer or Application to
the MAC. The request is specified in a MAC_McpsReqRsp_s structure (detailed in
Section 6.2.1). A pointer to a MAC_McpsSyncCfm_s structure (see Section 6.2.3)
must also be provided in which a synchronous confirm will be received. If the confirm
is deferred, this will be indicated in the status returned in this structure.

Parameters

*psMcpsReqRsp Pointer to a structure holding the request to the MCPS
interface (see Section 6.2.1)

*psMcpsSyncCfm Pointer to a structure used to hold the result of a synchronous
confirm to a request over the MCPS interface (see Section
6.2.3)

Returns

None

void vAppApiMcpsRequest(
MAC_McpsReqRsp_s *psMcpsReqRsp,
MAC_McpsSyncCfm_s *psMcpsSyncCfm);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 103

Chapter 5
API Functions

vAppApiSetSecurityMode

Description

This function is used to select the type of IEEE 802.15.4 MAC-level security to be
used - IEEE 802.15.4-2003 or IEEE 802.15.4-2006 security.

If no security is to be implemented, there is no need to call this function.

IEEE 802.15.4 security is introduced in Section 1.16. Useful information on IEEE
802.15.4-2006 security is provided in Appendix To implement 802.15.4-2006
security, you should refer to the Application Note 802.15.4 Home Sensor
Demonstration for JN516x (JN-AN-1180).

Parameters

eSecurityMode Required security type, one of:

MAC_SECURITY_2003_SOFTWARE (2003 version)
MAC_SECURITY_2006 (2006 version)

Returns

None

void vAppApiSetSecurityMode(
MAC_SecutityMode_e eSecurityMode);
104 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vAppApiSetHighPowerMode (JN516x Only)

Description

This function is used on a JN516x high-power module to specify the module type and
to enable high-power mode.

High-power modules are available in the following types:

 M05: This type of module is optimised for use in Europe and Asia. Its power output is
within the limit of +10 dBm EIRP dictated by the European Telecommunications
Standards Institute (ETSI).

 M06: This type of module is intended for use in North America only.

Selecting high-power mode through this function enables the Rx and Tx DIO pins for
a high-power module, and also sets the appropriate CCA (Clear Channel
Assessment) threshold level for the specified module type. The Rx/Tx DIO pins
control the power amplifiers of the RF Rx/Tx paths through a high-power module but
can also be used to monitor the receive/transmit behaviour of the JN516x device.

Enabling high-power mode for a standard-power module will not lead to a power
increase but will set the CCA threshold to the correct level for this module type and
will allow the Rx/Tx DIOs to toggle, which is useful for debug purposes.

If required, this function should be called before setting the transmission power using
eAppApiPlmeSet() - refer to Section 3.8.1 for more information.

Parameters

u8ModuleID Module type, one of:

APP_API_HPM_MODULE_M05 (ETSI high-power module)
APP_API_HPM_MODULE_M06 (North American high-power module)
APP_API_HPM_MODULE_STD (standard-power module)

bMode High-power mode select (always set to TRUE for high-power module):

TRUE - enable high-power mode
FALSE - disable high-power mode

Returns

None

void vAppApiSetHighPowerMode(uint8 u8ModuleID,
bool_t bMode);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 105

Chapter 5
API Functions

5.2 MAC to Network Layer Functions

Communication from the MAC up to the application or network layer is through
callback routines implemented by the upper layer and registered with the MAC at
system initialisation. In this way, the upper layer can implement the method of dealing
with indications and confirmations that suits it best.

This section describes a function used to register the above callback routines, and
functions used to save and restore MAC settings.

The functions are listed below, along with their page references:

Function Page

u32AppApiInit 107

vAppApiSaveMacSettings 108

vAppApiRestoreMacSettings 109
106 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
u32AppApiInit

Description

This function registers four user-defined callback functions provided by the
Application/NWK layer, which are used by the MAC and the Integrated Peripherals
API to communicate with the Application/NWK layer. Two of the functions are used
in MLME communications and two are used in MCPS communications.

The callback functions are as follows:

 psMlmeDcfmIndGetBuf(): Called by the MAC to provide a buffer in which to place the
result of a deferred MLME callback or indication to send to the Application/NWK layer

 vMlmeDcfmIndPost(): Called by the MAC to post (send) the buffer provided by the
registered psMlmeDcfmIndGetBuf() function to the Application/NWK layer

 psMcpsDcfmIndGetBuf(): Called by the MAC to provide a buffer in which to place the
result of a deferred MCPS callback or indication to send to the Application/NWK layer

 vMcpsDcfmIndPost(): Called by the MAC to post (send) the buffer provided by the
registered psMcpsDcfmIndGetBuf() function to the Application/NWK layer

The above functions are fully detailed in Section 5.5.

Parameters

prMlmeGetBuffer Pointer to psMlmeDcfmIndGetBuf() callback function

prMlmeCallback Pointer to vMlmeDcfmIndPost() callback function

pvMlmeParam Untyped pointer which is passed when calling the registered
MLME callback functions

prMcpsGetBuffe Pointer to psMcpsDcfmIndGetBuf() callback function

prMcpsCallback Pointer to vMcpsDcfmIndPost() callback function

pvMcpsParam Untyped pointer which is passed when calling the registered
MCPS callback functions

Returns

0 if initialisation failed, otherwise a 32-bit version number (most significant 16 bits are
main revision, least significant 16 bits are minor revision)

 uint32 u32AppApiInit(
PR_GET_BUFFER prMlmeGetBuffer,
PR_POST_CALLBACK prMlmeCallback,
void *pvMlmeParam,
PR_GET_BUFFER prMcpsGetBuffer,
PR_POST_CALLBACK prMcpsCallback,
void *pvMcpsParam);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 107

Chapter 5
API Functions

vAppApiSaveMacSettings

Description

This function is used to instruct the MAC to save settings in RAM before entering
sleep mode with memory held.

Parameters

None

Returns

None

void vAppApiSaveMacSettings(void);
108 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vAppApiRestoreMacSettings

Description

This function is used when the device wakes from sleep to restore the MAC to the
state that it was in before the device entered sleep mode.

Currently, this feature is only suitable for use in networks that do not use regular
beacons, as it does not include a facility to resynchronise.

Parameters

None

Returns

None

void vAppApiRestoreMacSettings(void);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 109

Chapter 5
API Functions

5.3 MAC Layer PIB Access Functions

Certain MAC PIB attributes can only be written to using the functions described in this
section. These are attributes that affect hardware register settings and they must not
be written to directly (see Section 3.10.1). The attributes are as follows (names are as
used in the IEEE 802.15.4 Standard):

 macMaxCSMABackoffs

 macMinBE

 macPANId

 macPromiscuousMode

 macRxOnWhenIdle

 macShortAddress

Each of the above attributes has its own ‘Set’ function for writing its value.

The functions are listed below, along with their page references:

Function Page

MAC_vPibSetMaxCsmaBackoffs 111

MAC_vPibSetMinBe 112

MAC_vPibSetPanId 113

MAC_vPibSetPromiscuousMode 114

MAC_vPibSetRxOnWhenIdle 115

MAC_vPibSetShortAddr 116
110 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
MAC_vPibSetMaxCsmaBackoffs

Description

This function can be used to set the value of the MAC PIB attribute
macMaxCSMABackoffs, which determines the maximum permitted number of
CSMA back-offs.

Parameters

*pvMac Pointer to MAC handle

u8MaxCsmaBackoffs Maximum number of CSMA back-offs to set

Returns

None

void MAC_vPibSetMaxCsmaBackoffs(
void *pvMac,
uint8 u8MaxCsmaBackoffs);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 111

Chapter 5
API Functions

MAC_vPibSetMinBe

Description

This function can be used to set the value of the MAC PIB attribute macMinBE, which
determines the minimum permitted value of the CSMA Back-off Exponent (BE).

It is recommended that a macMinBE value of zero is not used for JN514x devices.

Parameters

*pvMac Pointer to MAC handle

u8MinBe Minimum BE value to set

Returns

None

void MAC_vPibSetMinBe(void *pvMac, uint8 u8MinBe);
112 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
MAC_vPibSetPanId

Description

This function can be used to set the value of the MAC PIB attribute macPANId, which
holds the 16-bit PAN ID of the network to which the local node belongs.

Parameters

*pvMac Pointer to MAC handle

u16PanId PAN ID to set

Returns

None

void MAC_vPibSetPanId(void *pvMac, uint16 u16PanId);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 113

Chapter 5
API Functions

MAC_vPibSetPromiscuousMode

Description

This function can be used to set the value of the MAC PIB attribute
macPromiscuousMode, which enables/disables ‘promiscuous mode’.

Parameters

*pvMac Pointer to MAC handle

bNewState Mode to set:
TRUE - promiscuous mode
FALSE - non-promiscuous mode

bInReset Indicates whether the function is called following a reset:
TRUE - called after reset
FALSE - otherwise (default)

Returns

None

void MAC_vPibSetPromiscuousMode(void *pvMac,
bool_t bNewState,
bool_t bInReset);
114 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
MAC_vPibSetRxOnWhenIdle

Description

This function can be used to set the value of the MAC PIB attribute
macRxOnWhenIdle, which enables/disables the mode ‘receiver on when idle’.

Parameters

*pvMac Pointer to MAC handle

bNewState Mode to set:
TRUE - receiver on when idle
FALSE - receiver off when idle

bInReset Indicates whether the function is called following a reset:
TRUE - called after reset
FALSE - otherwise (default)

Returns

None

void MAC_vPibSetRxOnWhenIdle(void *pvMac,
bool_t bNewState,
bool_t bInReset);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 115

Chapter 5
API Functions

MAC_vPibSetShortAddr

Description

This function can be used to set the value of the MAC PIB attribute
macShortAddress, which holds the 16-bit short address of the local node.

Parameters

*pvMac Pointer to MAC handle

u16ShortAddr Short address to set

Returns

None

void MAC_vPibSetShortAddr(void *pvMac,
uint16 u16ShortAddr);
116 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
5.4 PHY Layer PIB Access Functions

The PHY PIB attributes can be accessed using the functions described in this section.
The attributes are as follows (names are as used in the IEEE 802.15.4 Standard):

 phyCurrentChannel

 phyChannelsSupported

 phyTransmitPower

 phyCCAMode

Each of the above attributes is referenced by an enumeration and its value is set using
an enumeration (see Section 8.2).

The functions are listed below, along with their page references:

Function Page

eAppApiPlmeGet 118

eAppApiPlmeSet 119
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 117

Chapter 5
API Functions

eAppApiPlmeGet

Description

This function can be used to retrieve the current value of one of the PHY PIB
attributes. If the routine returns PHY_ENUM_SUCCESS, the value of the specified
PIB PHY attribute retrieved has been copied into the location pointed to by
pu32PhyPibValue.

The following example illustrates how to read the current channel:

uint32 u32sChannel;

if (eAppApiPlmeGet (PHY_PIB_ATTR_CURRENT_CHANNEL,&u32sChannel)

 == PHY_ENUM_SUCCESS)

{

 printf("Channel is %d\n", u32Channel);

}

Parameters

ePhyPibAttribute Enumeration defining which PHY PIB attribute to access (see
Section 8.2), one of:

PHY_PIB_ATTR_CURRENT_CHANNEL
PHY_PIB_ATTR_CHANNELS_SUPPORTED
PHY_PIB_ATTR_TX_POWER
PHY_PIB_ATTR_CCA_MODE

*pu32PhyPibValue Pointer to a location used to hold the result of the Get
operation

Returns

Enumerated value that indicates success or failure of the operation (see Section 5.6)

PHY_Enum_e eAppApiPlmeGet (
PHY_PibAttr_e ePhyPibAttribute,
uint32 *pu32PhyPibValue);
118 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
eAppApiPlmeSet

Description

This function can be used to change the value of one of the PHY PIB attributes. If the
routine returns PHY_ENUM_SUCCESS, the value of the specified PHY PIB attribute
has been changed to u32PhyPibValue.

The following example illustrates how to set the current channel:

if (eAppApiPlmeSet(PHY_PIB_ATTR_CURRENT_CHANNEL, u8Channel) !=

PHY_ENUM_SUCCESS)

{

// Handle error;

}

This example illustrates how to set the transmit power to 0 dBm:

if (eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, 0) != PHY_ENUM_SUCCESS)

{

// Handle error;

}

Parameters

ePhyPibAttribute Enumeration defining which PHY PIB attribute to access (see
Section 8.2), one of:

PHY_PIB_ATTR_CURRENT_CHANNEL
PHY_PIB_ATTR_CHANNELS_SUPPORTED
PHY_PIB_ATTR_TX_POWER
PHY_PIB_ATTR_CCA_MODE

u32PhyPibValue The value the PHY PIB attribute will be set to

Returns

Enumerated value that indicates success or failure of the operation (see Section 5.6)

PHY_Enum_e eAppApiPlmeSet(
PHY_PibAttr ePhyPibAttribute,
uint32 u32PhyPibValue);

Note: Using this function to set the JN51xx transmission
power level is described in more detail in Section 3.8.1.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 119

Chapter 5
API Functions

5.5 Callback Functions

The initialisation function u32AppApiInit(), described in Section 5.2, registers four
user-defined callback functions which are used by the MAC and the Integrated Peripherals
API to communicate with the Application or NWK layer. This section details these callback
functions.

The functions are listed below, along with their page references:

Function Page

psMlmeDcfmIndGetBuf 121

vMlmeDcfmIndPost 122

psMcpsDcfmIndGetBuf 124

vMcpsDcfmIndPost 125
120 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
psMlmeDcfmIndGetBuf

Description

This callback function implements MLME buffer management and returns a pointer
to a buffer in the form of a MAC_DcfmIndHdr_s structure. This buffer can be used
by the MAC to send the results of deferred (asynchronous) confirms as the result of
a previous MLME request. The function will also be called by the MAC to provide
space to send information to the Application/NWK layer in the form of MLME
indications triggered by hardware events.

At its simplest, the buffer could be used to return the address of a variable of the type
MAC_DcfmIndHdr_s known by the Application/NWK layer - for example:

PRIVATE MAC_DcfmIndHdr_s sAppBuffer;

PRIVATE MAC_DcfmIndHdr_s

*psMlmeDcfmIndGetBuf(void *pvParam)

{

/* Return a handle to a MLME buffer */ return &sAppBuffer;

}

However, this implementation would be very limited in the number of responses or
indications that could be handled at any time. Other suitable implementations within
the Application/NWK layer might be a queue, where the next free space is returned,
or a pool of buffers which are allocated and freed by the network layer.

In all cases, it is the responsibility of the Application/NWK layer to manage the freeing
of buffers carrying deferred confirms and indications. If the network layer cannot
provide a buffer, it should return NULL and the confirm/indication will be lost.

The pvParam parameter is a pointer which can be used to specify further information
to be carried between the MAC and Application/NWK layer (in either direction) when
performing an MLME Get or Post, and contains the pvMlmeParam parameter of
u32AppApiInit(). This data can be used for any purpose by the Application/NWK
layer and has no meaning to the MAC.

Parameters

pvParam Pointer to information to be passed (in either direction)

Returns

Pointer to MAC_DcfmIndHdr_s buffer (see Section 6.3.8)

MAC_DcfmIndHdr_s *psMlmeDcfmIndGetBuf(
void *pvParam);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 121

Chapter 5
API Functions

vMlmeDcfmIndPost

Description

This callback function is used to send the buffer provided by the callback function
psMlmeDcfmIndGetBuf() to the Application/NWK layer after the results of the
MLME confirm or indication have been filled in.

The function expects to always successfully send the buffer, which is not
unreasonable since the Application/NWK layer is responsible for allocating the buffer
in the first place. If the implementation is done in such a way that this might not be
the case, the Send routine will have no way of signalling that it could not send the
buffer up to the Application/NWK layer. It is the responsibility of the Application/NWK
layer to provide sufficient buffers to be allocated to avoid losing confirms or
indications.

The pvParam parameter is a pointer which can be used to specify further information
to be carried between the MAC and Application/NWK layer (in either direction) when
performing an MLME Get or Post, and contains the pvMlmeParam parameter of
u32AppApiInit(). This data can be used for any purpose by the Application/NWK
layer and has no meaning to the MAC.

The psDcfmIndHdr parameter is a pointer to the buffer allocated in the
psMlmeDcfmIndGetBuf() call, carrying the information from the confirm/indication
from the MAC to the Application/NWK layer.

As an example of what a Post routine might do, consider the following:

PRIVATE void

vMlmeDcfmIndPost(void *pvParam,

MAC_DcfmIndHdr_s *psDcfmIndHdr)

{

/* Place incoming buffer on network layer input queue */

vAddToQueue(psDcfmIndHdr);

/* Signal the network layer that there is at least one

* buffer to process. If using a RTOS, this could be

* a signal to the network layer to begin running to

* process the buffer. In a simple application a

* variable might be polled as here

*/

boNotEmpty = TRUE;

}

In the example, the interface between the MAC and Application/NWK layer is a
queue with enough entries to contain all the buffer pointers from a buffer pool
managed by the Application/NWK layer for the MLME confirm/indications. The Post
routine places the buffer pointer on the queue and then signals to the Application/

void vMlmeDcfmIndPost(
void *pvParam,
MAC_DcfmIndHdr_s *psDcfmIndHdr);
122 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
NWK layer that there is something there to process. This is all happening in the MAC
thread of execution, which for a simple system will be in the interrupt context. At
some stage, the MAC thread will stop running and the Application/NWK layer thread
will continue; in this case, it regularly polls the input queue and processes any entries
it finds, before returning the buffer back to the buffer pool.

Parameters

pvParam Pointer to information to be passed (in either direction)

psDcfmIndHdr Pointer to the MAC_DcfmIndHdr_s buffer

Returns

None
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 123

Chapter 5
API Functions

psMcpsDcfmIndGetBuf

Description

This callback function implements MCPS buffer management and returns a pointer
to a buffer in the form of a MAC_DcfmIndHdr_s structure. This buffer can be used
by the MAC to send the results of deferred (asynchronous) confirms as the result of
a previous MCPS request. The function will also be called by the MAC to provide
space to send information to the Application/NWK layer in the form of MCPS
indications triggered by hardware events.

At its simplest, the buffer could be used to return the address of a variable of the type
MAC_DcfmIndHdr_s known by the Application/NWK layer - for example:

PRIVATE MAC_DcfmIndHdr_s sAppBuffer;

PRIVATE MAC_DcfmIndHdr_s

*psMcpsDcfmIndGetBuf(void *pvParam)

{

/* Return a handle to a MCPS buffer */ return &sAppBuffer;

}

However, this implementation would be very limited in the number of responses or
indications that could be handled at any time. Other suitable implementations within
the Application/NWK layer might be a queue, where the next free space is returned,
or a pool of buffers which are allocated and freed by the network layer.

In all cases, it is the responsibility of the Application/NWK layer to manage the freeing
of buffers carrying deferred confirms and indications. If the network layer cannot
provide a buffer, it should return NULL and the confirm/indication will be lost.

The pvParam parameter is a pointer which can be used to specify further information
to be carried between the MAC and Application/NWK layer (in either direction) when
performing an MCPS Get or Post, and contains the pvMcpsParam parameter of
u32AppApiInit(). This data can be used for any purpose by the Application/NWK
layer and has no meaning to the MAC.

Parameters

pvParam Pointer to information to be passed (in either direction)

Returns

Pointer to MAC_DcfmIndHdr_s buffer (see Section 6.3.8)

MAC_DcfmIndHdr_s *psMcpsDcfmIndGetBuf(
void *pvParam);
124 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vMcpsDcfmIndPost

Description

This callback function is used to send the buffer provided by the callback function
psMcpsDcfmIndGetBuf() to the Application/NWK layer after the results of the
MCPS confirm or indication have been filled in.

The function expects to always successfully send the buffer, which is not
unreasonable since the Application/NWK layer is responsible for allocating the buffer
in the first place. If the implementation is done in such a way that this might not be
the case, the Send routine will have no way of signalling that it could not send the
buffer up to the Application/NWK layer. It is the responsibility of the Application/NWK
layer to provide sufficient buffers to be allocated to avoid losing confirms or
indications.

The pvParam parameter is a pointer which can be used to specify further information
to be carried between the MAC and Application/NWK layer (in either direction) when
performing an MCPS Get or Post, and contains the pvMcpsParam parameter of
u32AppApiInit(). This data can be used for any purpose by the Application/NWK
layer and has no meaning to the MAC.

The psDcfmIndHdr parameter is a pointer to the buffer allocated in the
psMcpsDcfmIndGetBuf() call, carrying the information from the confirm/indication
from the MAC to the Application/NWK layer.

As an example of what a Post routine might do, consider the following:

PRIVATE void

vMcpsDcfmIndPost(void *pvParam,

MAC_DcfmIndHdr_s *psDcfmIndHdr)

{

/* Place incoming buffer on network layer input queue */

vAddToQueue(psDcfmIndHdr);

/* Signal the network layer that there is at least one

* buffer to process. If using a RTOS, this could be

* a signal to the network layer to begin running to

* process the buffer. In a simple application a

* variable might be polled as here

*/

boNotEmpty = TRUE;

}

In the example, the interface between the MAC and Application/NWK layer is a
queue with enough entries to contain all the buffer pointers from a buffer pool
managed by the Application/NWK layer for the MCPS confirm/indications. The Post
routine places the buffer pointer on the queue and then signals to the Application/

void vMcpsDcfmIndPost(
void *pvParam,
MAC_DcfmIndHdr_s *psDcfmIndHdr);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 125

Chapter 5
API Functions

NWK layer that there is something there to process. This is all happening in the MAC
thread of execution, which for a simple system will be in the interrupt context. At
some stage, the MAC thread will stop running and the Application/NWK layer thread
will continue; in this case, it regularly polls the input queue and processes any entries
it finds, before returning the buffer back to the buffer pool.

Parameters

pvParam Pointer to information to be passed (in either direction)

psDcfmIndHdr Pointer to the MAC_DcfmIndHdr_s buffer

Returns

None
126 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
5.6 Status Returns

Some of the API functions return status values (either explicitly or within structures) to
indicate the success or failure of the operation. These status values are defined as
enumerations in MAC_enum_e (see Section 7.1.2). The enumeration names and
values are shown in Table 6 below.

These status values are defined in the IEEE 802.15.4 Standard. Refer to the standard
for the official definitions.

Name Value Description

MAC_ENUM_SUCCESS 0x00 Success

MAC_ENUM_BEACON_LOSS 0xE0 Beacon loss after synchronisation request

MAC_ENUM_CHANNEL_ACCESS_FAILURE 0xE1 CSMA/CA channel access failure

MAC_ENUM_DENIED 0xE2 GTS request denied

MAC_ENUM_DISABLE_TRX_FAILURE 0xE3 Could not disable transmit or receive

MAC_ENUM_FAILED_SECURITY_CHECK 0xE4 Incoming frame failed security check

MAC_ENUM_FRAME_TOO_LONG 0xE5 Frame too long after security processing to be sent

MAC_ENUM_INVALID_GTS 0xE6 GTS transmission failed

MAC_ENUM_INVALID_HANDLE 0xE7 Purge request failed to find entry in queue

MAC_ENUM_INVALID_PARAMETER 0xE8 Out-of-range parameter in primitive

MAC_ENUM_NO_ACK 0xE9 No acknowledgement received when expected

MAC_ENUM_NO_BEACON 0xEA Scan failed to find any beacons

MAC_ENUM_NO_DATA 0xEB No response data after a data request

MAC_ENUM_NO_SHORT_ADDRESS 0xEC No allocated short address for operation

MAC_ENUM_OUT_OF_CAP 0xED Receiver enable request could not be executed as CAP
finished

MAC_ENUM_PAN_ID_CONFLICT 0xEE PAN ID conflict has been detected

MAC_ENUM_REALIGNMENT 0xEF Coordinator realignment has been received

MAC_ENUM_TRANSACTION_EXPIRED 0xF0 Pending transaction has expired and data discarded

MAC_ENUM_TRANSACTION_OVERFLOW 0xF1 No capacity to store transaction

MAC_ENUM_TX_ACTIVE 0xF2 Receiver enable request could not be executed, as in
transmit state

MAC_ENUM_UNAVAILABLE_KEY 0xF3 Appropriate key is not available in ACL

MAC_ENUM_UNSUPPORTED_ATTRIBUTE 0xF4 PIB Set/Get on unsupported attribute

Table 6: Status Enumerations
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 127

Chapter 5
API Functions

128 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6. Structures

This chapter describes the structures provided in the header files. The structures are
presented in the following categories:

 MLME structures - see Section 6.1

 MCPS structures - see Section 6.2

 Other structures - see Section 6.3

6.1 MLME Structures

6.1.1 MAC_MlmeReqRsp_s

This structure contains an MLME request or response.

typedef struct

{

 uint8 u8Type;

 uint8 u8ParamLength;

 uint16 u16Pad;

 MAC_MlmeReqRspParam_u uParam;

} MAC_MlmeReqRsp_s;

where:

 u8Type is the request/response type, represented by an enumeration from
MAC_MlmeReqRspType_e (see Section 7.3.1).

 u8ParamLength is the parameter length, in bits, in the union below.

 u16Pad is the number of bits of padding required to make up 32 bits.

 uParam is the union of all possible MLME requests/responses (see Section
6.1.2).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 129

Chapter 6
Structures

6.1.2 MAC_MlmeReqRspParam_u

This structure is the union of all possible MLME requests and responses, and is an
element of the MAC_MlmeReqRsp_s structure (see Section 6.1.1).

union

{

 /* MLME Requests */

 MAC_MlmeReqAssociate_s sReqAssociate;

 MAC_MlmeReqDisassociate_s sReqDisassociate;

 MAC_MlmeReqGet_s sReqGet;

 MAC_MlmeReqGts_s sReqGts;

 MAC_MlmeReqReset_s sReqReset;

 MAC_MlmeReqRxEnable_s sReqRxEnable;

 MAC_MlmeReqScan_s sReqScan;

 MAC_MlmeReqSet_s sReqSet;

 MAC_MlmeReqStart_s sReqStart;

 MAC_MlmeReqSync_s sReqSync;

 MAC_MlmeReqPoll_s sReqPoll;

 /* MLME Responses */

 MAC_MlmeRspAssociate_s sRspAssociate;

 MAC_MlmeRspOrphan_s sRspOrphan;

 /* Vendor Specific Requests */

 MAC_MlmeReqVsExtAddr_s sReqVsExtAddr;

} MAC_MlmeReqRspParam_u;

where:

 sReqAssociate is a structure that contains an Associate request. For more
information on this structure, see Section 6.1.7.

 sReqDisassociate is a structure that contains a Disassociate request. For
more information on this structure, see Section 6.1.8.

 sReqGet is a structure that contains a Get request. For more information on
this structure, see Section 6.1.9.

 sReqGts is a structure that contains a GTS request. For more information on
this structure, see Section 6.1.10.

 sReqReset is a structure that contains a Reset request. For more information
on this structure, see Section 6.1.11.

 sReqRxEnable is a structure that contains a Rx Enable request. For more
information on this structure, see Section 6.1.12.

 sReqScan is a structure that contains a Scan request. For more information on
this structure, see Section 6.1.13.
130 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 sReqSet is a structure that contains a Set request. For more information on
this structure, see Section 6.1.14.

 sReqStart is a structure that contains a Start request. For more information
on this structure, see Section 6.1.15.

 sReqSync is a structure that contains a Sync request. For more information on
this structure, see Section 6.1.16.

 sReqPoll is a structure that contains a Poll request. For more information on
this structure, see Section 6.1.17.

 sRspAssociate is a structure that contains an Associate response. For more
information on this structure, see Section 6.1.19.

 sRspOrphan is a structure that contains an Orphan response. For more
information on this structure, see Section 6.1.20.

 sReqVsExtAddr is a structure that contains a Vendor-specific Extended
Address request. For more information on this structure, see Section 6.1.18.

6.1.3 MAC_MlmeDcfmInd_s

This structure contains an MLME deferred confirm or indication and is passed to the
registered deferred confirm/indication callback specified in u32AppApiInit().

typedef struct

{

 uint8 u8Type;

 uint8 u8ParamLength;

 uint16 u16Pad;

 MAC_MlmeDcfmIndParam_u uParam;

} MAC_MlmeDcfmInd_s;

where:

 u8Type is the deferred confirm/indication type, represented by an enumeration
from MAC_MlmeDcfmIndType_e (see Section 7.3.3).

 u8ParamLength is the parameter length in the union below.

 u16Pad is padding to force alignment.

 uParam is the union of all possible MLME deferred confirms/indications (see
Section 6.1.4).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 131

Chapter 6
Structures

6.1.4 MAC_MlmeDcfmIndParam_u

This structure is the union of all possible deferred MLME confirms and indications, and
is an element of the MAC_MlmeDcfmInd_s structure (see Section 6.1.21).

typedef union

{

 MAC_MlmeCfmScan_s sDcfmScan;

 MAC_MlmeCfmGts_s sDcfmGts;

 MAC_MlmeCfmAssociate_s sDcfmAssociate;

 MAC_MlmeCfmDisassociate_s sDcfmDisassociate;

 MAC_MlmeCfmPoll_s sDcfmPoll;

 MAC_MlmeCfmRxEnable_s sDcfmRxEnable;

 MAC_MlmeIndAssociate_s sIndAssociate;

 MAC_MlmeIndDisassociate_s sIndDisassociate;

 MAC_MlmeIndGts_s sIndGts;

 MAC_MlmeIndBeacon_s sIndBeacon;

 MAC_MlmeIndSyncLoss_s sIndSyncLoss;

 MAC_MlmeIndCommStatus_s sIndCommStatus;

 MAC_MlmeIndOrphan_s sIndOrphan;

} MAC_MlmeDcfmIndParam_u;

where:

 sDcfmScan is a structure that contains a Scan confirm message, giving the
results from an MLME scan request. For more information on this structure, see
Section 6.1.21.

 sDcfmGts is a structure that contains a GTS confirm message, generated by
the MAC to inform the Application/NWK layer of the result of an MLME-
GTS.request primitive. For more information on this structure, see Section
6.1.22.

 sDcfmAssociate is a structure that contains an Associate confirm message,
which is generated by the MAC to inform the Application/NWK layer of the state
of an Association request. For more information on this structure, see Section
6.1.23.

 sDcfmDisassociate is a structure that contains a Disassociate confirm
message, which is generated by the MAC to inform the Application/NWK layer
of the state of a Disassociate request. For more information on this structure,
see Section 6.1.24.

 sDcfmPoll is a structure that contains a Poll confirm message, which is
generated by the MAC to inform the Application/NWK layer of the state of a Poll
request. For more information on this structure, see Section 6.1.25.

 sDcfmRxEnable is a structure that contains the results of a Rx Enable confirm
message, which is generated by the MAC to inform the Application/NWK layer
of the result of an MLME-RX-ENABLE.request primitive. For more information
on this structure, see Section 6.1.26.

 sIndAssociate is a structure that contains an Associate indication message,
which is generated by the MAC to inform the Application/NWK layer that an
132 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Association request command has been received. For more information on this
structure, see Section 6.1.32.

 sIndDisassociate is a structure that contains a Disassociate indication
message, which is generated by the MAC to inform the Application/NWK layer
that a Disassociate request command has been received. For more information
on this structure, see Section 6.1.33.

 sIndGts is a structure that contains the results of a GTS indication message,
which is generated by the MAC to inform the Application/NWK layer that a GTS
request command to allocate or deallocate a GTS has been received, or on a
PAN Co-ordinator where the GTS deallocation is generated by the Co-ordinator
itself. For more information on this structure, see Section 6.1.34.

 sIndBeacon is a structure that contains a Beacon Notify indication message,
which is generated by the MAC to inform the Application/NWK layer that a
beacon transmission has been received. For more information on this structure,
see Section 6.1.35.

 sIndSyncLoss is a structure that contains a Sync Loss indication message,
which is used to inform the Application/NWK layer that there has been a loss of
synchronisation with the beacon. For more information on this structure, see
Section 6.1.36.

 sIndCommStatus is a structure that contains a Comm Status indication
message, which is generated by the MAC to inform the Application/NWK layer
of a Co-ordinator the result of a communication with another node triggered by
a previous primitive (MLME-Orphan.response and MLME-
Associate.response). For more information on this structure, see Section
6.1.37.

 sIndOrphan is a structure that contains an Orphan indication request, which is
generated by the MAC of a Co-ordinator to its Application/NWK layer to
indicate that it has received an orphan notification message transmitted by an
orphan node. For more information on this structure, see Section 6.1.38.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 133

Chapter 6
Structures

6.1.5 MAC_MlmeSyncCfm_s

This structure contains an MLME synchronous confirm.

typedef struct

{

 uint8 u8Status;

 uint8 u8ParamLength;

 uint16 u16Pad;

 MAC_MlmeSyncCfmParam_u uParam;

} MAC_MlmeSyncCfm_s;

where:

 u8Status is the status of the request which corresponds to the synchronous
confirm (for enumerations, see Section 7.3.3).

 u8ParamLength is the parameter length in the union below.

 u16Pad is padding to force alignment.

 uParam is the union of all possible MLME synchronous confirms (see Section
6.1.6).

6.1.6 MAC_MlmeSyncCfmParam_u

This structure is the union of all possible MLME synchronous confirms and is an
element of the MAC_MlmeSyncCfm_s structure (see Section 6.1.5).

typedef union

{

 MAC_MlmeCfmAssociate_s sCfmAssociate;

 MAC_MlmeCfmDisassociate_s sCfmDisassociate;

 MAC_MlmeCfmGet_s sCfmGet;

 MAC_MlmeCfmGts_s sCfmGts;

 MAC_MlmeCfmScan_s sCfmScan;

 MAC_MlmeCfmSet_s sCfmSet;

 MAC_MlmeCfmStart_s sCfmStart;

 MAC_MlmeCfmPoll_s sCfmPoll;

 MAC_MlmeCfmReset_s sCfmReset;

 MAC_MlmeCfmRxEnable_s sCfmRxEnable;

#ifdef MLME_VS_REG_RW

 MAC_MlmeCfmVsRdReg_s sCfmVsRdReg;

#endif /* MLME_VS_REG_RW */

#ifdef TOF_ENABLED

 MAC_MlmeCfmTofPoll_s sCfmTofPoll;

 MAC_MlmeCfmTofPrime_s sCfmTofPrime;

 MAC_MlmeCfmTofDataPoll_s sCfmTofDataPoll;

 MAC_MlmeCfmTofData_s sCfmTofData;
134 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
#endif

} MAC_MlmeSyncCfmParam_u;

where:

 sCfmAssociate is a structure that contains an Associate confirm message,
which is generated by the MAC to inform the Application/NWK layer of the state
of an Association request. For more information on this structure, see Section
4.9.2.

 sCfmDisassociate is a structure that contains a Disassociate confirm
message, which is generated by the MAC to inform the Application/NWK layer
of the state of a Disassociate request. For more information on this structure,
see Section 4.10.2.

 sCfmGet is a structure that contains a Get confirm message, generated by the
MAC to inform the Application/NWK layer of the result of a Get request. For
more information on this structure, see Section .

 sCfmGts is a structure that contains a GTS confirm message, generated by the
MAC to inform the Application/NWK layer of the result of an MLME-
GTS.request primitive. For more information on this structure, see Section
4.11.13.

 sCfmScan is a structure that contains a Scan confirm message, giving the
results from an MLME scan request. For more information on this structure, see
Section 4.5.6.

 sCfmSet is a structure that contains a Set confirm message, generated by the
MAC to inform the Application/NWK layer of the result of a Set request. For
more information on this structure, see Section 6.1.28.

 sCfmStart is a structure that contains a Start confirm message, generated by
the MAC to inform the Application/NWK layer of the result of a Start request.
For more information on this structure, see Section 6.1.29.

 sCfmPoll is a structure that contains a Poll confirm message, which is
generated by the MAC to inform the Application/NWK layer of the state of a Poll
request. For more information on this structure, see Section 4.8.2.

 sCfmReset is a structure that contains a Reset confirm message, generated by
the MAC to inform the Application/NWK layer of the result of a Reset request.
For more information on this structure, see Section 6.1.30.

 sCfmRxEnable is a structure that contains the results of a Rx Enable confirm
message, which is generated by the MAC to inform the Application/NWK layer
of the result of an MLME-RX-ENABLE.request primitive. For more information
on this structure, see Section 4.11.9.

 sCfmVsRdReg is a structure that contains a Vendor-Specific Read Register
confirm message which results from a command to read a specific register. For
more information on this structure, see Section 6.1.31.

 sCfmTofPoll is a structure that contains a Poll confirm for ‘Time of Flight’
(which is not documented here).

 sCfmTofPrime is a structure that contains a Prime confirm for ‘Time of Flight’
(which is not documented here).

 sCfmTofDataPoll is a structure that contains a Data Poll confirm for ‘Time of
Flight’ (which is not documented here).

 sCfmTofData is a structure that contains a Data confirm for ‘Time of Flight’
(which is not documented here).
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 135

Chapter 6
Structures

6.1.7 MAC_MlmeReqAssociate_s

This structure contains an Associate request.

 typedef struct
{

 MAC_Addr_s sCoord;

 uint8 u8LogicalChan;

 uint8 u8Capability;

 uint8 u8SecurityEnable;

} MAC_MlmeReqAssociate_s;

where:

 sCoord contains the address of the PAN Co-ordinator to associate with. The
structure is described in Section 6.3.3, and holds the PAN ID and either the 16-
bit short address or the 64-bit extended address of the Co-ordinator.

 u8LogicalChan contains the channel number (11 to 26 for the 2.45 GHz PHY)
occupied by the PAN to be associated with

 u8Capability is a byte encoded with the following information:

 Alternative PAN Co-ordinator - set to 1 if the device is capable of becoming
a PAN Co-ordinator

 Device Type - set to 1 if the device is an FFD, or 0 if an RFD

 Power Source - set to 1 if the device is mains powered, 0 otherwise

 Receiver on when idle - set to 1 if the device leaves its receiver on during
idle periods and does not save power

 Security capability - set to 1 if the device can send and receive frames
using security

 Allocate address - set to 1 if the device requires the Co-ordinator to
provide a short address during the association procedure. If set to 0, the
short address 0xFFFE is allocated in the association response and the
device will always communicate using the 64-bit extended address

 u8SecurityEnable is set to TRUE if security is to be used in this transaction
(and FALSE otherwise).

Bits 0 1 2 3 4-5 6 7

Alternative
PAN
Co-ordinator

Device
Type

Power
Source

Receiver
on when
idle

Reserved Security
capability

Allocate
address
136 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.8 MAC_MlmeReqDisassociate_s

This structure contains a Disassociate request.

typedef struct

{

 MAC_Addr_s sAddr;

 uint8 u8Reason;

 uint8 u8SecurityEnable;

} MAC_MlmeReqDisassociate_s;

where:

 sAddr contains the address of the recipient of the disassociation request -
device or Co-ordinator address (format described in Section 6.3.3)

 u8Reason indicates the reason for the Disassociation request - one of:

 u8SecurityEnable is set to TRUE if security is to be used in this transaction
(and FALSE otherwise).

Disassociation reason Description

0 Reserved

1 Coordinator wishes device to leave the PAN

2 Device wishes to leave the PAN

0x03 - 0x7F Reserved

0x80 - 0xFF Reserved for MAC primitive enumeration values
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 137

Chapter 6
Structures

6.1.9 MAC_MlmeReqGet_s

This structure contains a Get request to obtain the value of a MAC PIB attribute.

typedef struct

{

 uint8 u8PibAttribute;

 uint8 u8PibAttributeIndex;

} MAC_MlmeReqGet_s;

where:

 u8PibAttribute is the identifier of the MAC PIB attribute to access,
specified using one of the enumerations listed in Section 7.1.1.

 u8PibAttributeIndex is the index of the ACL entry to set (not a part of
IEEE 802.15.4)

6.1.10 MAC_MlmeReqGts_s

This structure contains a GTS request.

typedef struct

{

 uint8 u8Characteristics;

 uint8 u8SecurityEnable;

} MAC_MlmeReqGts_s;

where:

 u8Characteristics contains the characteristics of the GTS being requested,
encoded in a byte as shown below:

* GTS direction is defined relative to the device.

 u8SecurityEnable specifies whether security is to be used during the request
(TRUE if security to be used, FALSE otherwise).

Bitss 0-3 Bit 4 Bit 5 Bits 6-7

GTS length
(in superframe slots)

GTS direction *
(0 = Transmit,
1 = Receive)

Characteristics type
(1 = GTS allocation,
0 = GTS deallocation)

Reserved
138 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.11 MAC_MlmeReqReset_s

This structure contains a Reset request.

typedef struct

{

 uint8 u8SetDefaultPib;

} MAC_MlmeReqReset_s;

where u8SetDefaultPib controls whether the PIB contents are to be reset to their
default values (TRUE to reset PIB contents, FALSE otherwise)

6.1.12 MAC_MlmeReqRxEnable_s

This structure contains a Rx Enable request.

struct tagMAC_MlmeReqRxEnable_s

{

 uint32 u32RxOnTime;

 uint32 u32RxOnDuration;

 uint8 u8DeferPermit;

} MAC_MlmeReqRxEnable_s;

where:

 u32RxOnTime is a 32-bit quantity specifying the number of symbols after the
start of the superframe before the receiver should be enabled

 u32RxOnDuration is a 32-bit quantity specifying the number of symbols for
which the receiver should remain enabled. If equal to 0, the receiver is
disabled.

 u8DeferPermit determines whether the ‘enable period’ will be allowed to start
in the next full superframe period if the requested ‘on time’ has already passed
in the current superframe (TRUE if allowed, FALSE if disallowed).

6.1.13 MAC_MlmeReqScan_s

This structure contains a Scan request.

typedef struct

{

 uint32 u32ScanChannels;

 uint8 u8ScanType;

 uint8 u8ScanDuration;

} MAC_MlmeReqScan_s;

where:
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 139

Chapter 6
Structures

 u32ScanChannels is a bitmap of the channels that can be scanned - each
channel is presented by a bit, which is set to 1 if the channel is to be scanned.
Only channels 11-26 are available with the 2.45 GHz PHY, corresponding to
bits 11-26. Bits 0-10 and 27-31 are reserved.

 u8ScanType indicates the type of scan to be requested, specified using one of
the following enumerations:

 MAC_MLME_SCAN_TYPE_ENERGY_DETECT

 MAC_MLME_SCAN_TYPE_ACTIVE

 MAC_MLME_SCAN_TYPE_PASSIVE

 MAC_MLME_SCAN_TYPE_ORPHAN

 U8ScanDuration is a value in the range 0-14 which determines the time to
scan a channel, measured in superframe periods (1 superframe period = 960
symbols). The number of superframe periods in the scan duration is calculated
as: 2 x u8ScanDuration + 1.

6.1.14 MAC_MlmeReqSet_s

This structure contains a Set request to set the value of a MAC PIB attribute.

typedef struct

{

 uint8 u8PibAttribute;

 uint8 u8PibAttributeIndex;

 uint16 u16Pad;

 MAC_Pib_u uPibAttributeValue;

} MAC_MlmeReqSet_s;

where:

 u8PibAttribute is the identifier of the MAC PIB attribute to access,
specified using one of the enumerations listed in Section 7.1.1.

 u8PibAttributeIndex is the index of the ACL entry to set (not part of IEEE
802.15.4)

 u16Pad is the padding for alignment

 uPibAttributeValue is the value to be set
140 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.15 MAC_MlmeReqStart_s

This structure contains a Start request to start transmitting beacons.

typedef struct

{

 uint16 u16PanId;

 uint8 u8Channel;

 uint8 u8BeaconOrder;

 uint8 u8SuperframeOrder;

 uint8 u8PanCoordinator;

 uint8 u8BatteryLifeExt;

 uint8 u8Realignment;

 uint8 u8SecurityEnable;

} MAC_MlmeReqStart_s;

where:

 u16PanId contains the 16-bit PAN identifier as selected by the Application/
NWK layer.

 u8Channel specifies the logical channel number (11 to 26 for 2.45 GHz PHY)
on which the beacon will be transmitted.

 u8BeaconOrder defines how often a beacon will be transmitted. It can take the
values 0-15, where 0-14 are used to define the beacon interval, which is
calculated as 2**BO multiplied by the base superframe duration (number of
symbols in superframe slot x number of slots in superframe = 960 symbols). If
the value is 15, beacons are not transmitted and the ‘Superframe Order’
parameter is ignored.

 u8SuperframeOrder defines how long the active period of the superframe is
including the beacon period. Its value can be from 0 to BeaconOrder, as
specified above, or 15. The active period time is specified as 2**SO times the
base superframe duration. If the value is 15, the superframe will not be active
after the beacon.

 u8PanCoordinator is set to TRUE if the FFD is to become the PAN Co-
ordinator for a new PAN. Otherwise, if set to FALSE, the FFD will transmit
beacons on the existing PAN with which it is associated.

 u8BatteryLifeExt can be set to TRUE to allow battery life extension to be
used by turning off the receiver of the FFD for a part of the contention period
after the beacon is transmitted. If set to FALSE, the receiver remains enabled
for the whole of the contention access period after the beacon.

 u8Realignment can be set to TRUE to cause a Co-ordinator realignment
command to be broadcast prior to changing the superframe settings in order to
alert the nodes in the PAN of the change. Set to FALSE otherwise.

 u8SecurityEnable is set to TRUE if security is used on beacon frames, or
FALSE otherwise.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 141

Chapter 6
Structures

6.1.16 MAC_MlmeReqSync_s

This structure contains a Sync request to instruct the MAC to attempt to acquire a
beacon.

typedef struct

{

 uint8 u8Channel;

 uint8 u8TrackBeacon;

} MAC_MlmeReqSync_s;

where:

 u8Channel specifies the logical channel that the MAC will use to try to find
beacon transmissions. For the 2.45 GHz PHY, this field can take values in the
range 11 to 26.

 u8TrackBeacon is set to TRUE if the device is to continue tracking beacon
transmissions following reception of the first beacon. Set to FALSE otherwise.

6.1.17 MAC_MlmeReqPoll_s

This structure contains a Poll request to instruct the MAC to attempt to retrieve
pending data for the device from a Co-ordinator in a non-beaconing PAN.

struct tagMAC_MlmeReqPoll_s

{

 MAC_Addr_s sCoord;

 uint8 u8SecurityEnable;

} MAC_MlmeReqPoll_s;

where:

 sCoord contains the address of the Co-ordinator to poll for data. The data
structure (described in Section 6.3.3) holds the PAN ID and either the 16-bit
short address or 64-bit extended address of the Co-ordinator.

 u8SecurityEnable can be set to TRUE to enable security processing to be
applied to the data request frame which is sent to the Co-ordinator. In this case,
the Co-ordinator address is used to look up the security information from the
ACL in the PIB. Set to FALSE otherwise.
142 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.18 MAC_MlmeReqVsExtAddr_s

This structure contains a Vendor-specific Extended Address request.

typedef struct

{

 MAC_ExtAddr_s sExtAddr;

} MAC_MlmeReqVsExtAddr_s;

where sExtAddr is the 64-bit vendor-specific extended address to set (see Section
6.3.5).

6.1.19 MAC_MlmeRspAssociate_s

This structure contains an Associate response.

struct tagMAC_MlmeRspAssociate_s

{

 MAC_ExtAddr_s sDeviceAddr;

 uint16 u16AssocShortAddr;

 uint8 u8Status;

 uint8 u8SecurityEnable;

} MAC_MlmeRspAssociate_s;

where:

 sDeviceAddr contains the associating device's 64-bit extended address

 u16AssocShortAddr contains the 16-bit short address allocated to the
associating device by the PAN Co-ordinator. If the association was
unsuccessful, the short address will be set to 0xFFFF

6.1.20 MAC_MlmeRspOrphan_s

This structure contains an Orphan response.

typedef struct

{

 MAC_ExtAddr_s sOrphanAddr;

 uint8 u16OrphanShortAddr;

 uint8 u8Associated;

 uint8 u8SecurityEnable;

} MAC_MlmeRspOrphan_s;

where:

 sOrphanAddr contains the full 64-bit extended address of the orphan node, as
carried in the Orphan Indication.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 143

Chapter 6
Structures

 u16OrphanShortAddr holds the 16-bit short address that the orphan node
previously used within the PAN (if it was previously associated with the Co-
ordinator) and should continue to use. If the node was not previously
associated with the Co-ordinator, the value 0xFFFF is returned. If the node is
not to use a short address, the value 0xFFFE is returned.

 u8Associated is set to 1 if the node was was previously associated with this
Co-ordinator.

 u8SecurityEnable is set to 1 if the orphan node is to use security processing
on its communication with the Co-ordinator, or 0 otherwise.

6.1.21 MAC_MlmeCfmScan_s

This structure contains a Scan confirm (containing the results from an MLME Scan
request).

typedef

{

 uint8 u8Status;

 uint8 u8ScanType;

 uint8 u8ResultListSize;

 uint8 u8Pad;

 uint32 u32UnscannedChannels];

 MAC_ScanList_u uList;

} MAC_MlmeCfmScan_s;

where:

 u8Status returns the result of a scan request. This may take the value
MAC_ENUM_SUCCESS if the scan found one or more PANs in the case of an
Energy Detect, Passive or Active scan, or MAC_ENUM_NO_BEACON if no
beacons were seen during an orphan scan.

 u8ScanType contains the same value as the corresponding field in the MLME-
Scan.request primitive to show the type of scan performed.

 u32UnscannedChannels contains a bitmap of the channels specified in the
request which were not scanned during the scanning process. The mapping of
channel to bit is as for the corresponding request, and an unscanned channel is
denoted by the relevant bit being set to 1.

 u8ResultListSize is the size in bytes of the result list from the scan. If the
u8ScanType value is MAC_MLME_SCAN_TYPE_ORPHAN then the value of
this field will be 0.

 uList is a union containing either the results of an energy detect scan or the
results of detecting beacons during an active or passive scan. For more
information on this union, see Section 6.3.1.
144 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.22 MAC_MlmeCfmGts_s

This structure contains a GTS confirm message.

typedef struct

{

 uint8 u8Status;

 uint8 u8Characteristics;

} MAC_MlmeCfmGts_s;

where:

 u8Status contains the result of the GTS request as a value from the
MAC_enum_e enumerations - the relevant enumerations are detailed in the
table below.

 u8Characteristics carries the characteristics of the GTS that has been
allocated as encoded in Section 6.1.10. If a GTS has been deallocated then the
characteristics type field is set to 0.

Status Reason

MAC_ENUM_NO_SHORT_ADDRESS Generated if the requesting device has a short
address of 0xFFFE or 0xFFFF

MAC_ENUM_UNAVAILABLE_KEY Couldn't find a security key in the ACL for the
transmission (only if security in use)

MAC_ENUM_FAILED_SECURITY_CHECK Failure during security processing of the
frame (only if security in use)

MAC_ENUM_CHANNEL_ACCESS_FAILURE Couldn't get access to the radio channel to
perform the transmission of the GTS request
frame

MAC_ENUM_NO_ACK No acknowledgement from the destination
device after sending the GTS request frame

MAC_ENUM_NO_DATA A beacon containing a GTS descriptor corre-
sponding to the device short address was not
received within the required time, or a MLME-
SYNC-LOSS.indication primitive was received
with a MAC_ENUM_BEACON_LOSS status

MAC_ENUM_DENIED The GTS allocation request has been denied
by the PAN Co-ordinator

MAC_ENUM_INVALID_PARAMETER Invalid parameter value or parameter not sup-
ported in the GTS Request primitive

MAC_ENUM_SUCCESS GTS successfully allocated or deallocated
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 145

Chapter 6
Structures

6.1.23 MAC_MlmeCfmAssociate_s

This structure contains an Associate confirm.

struct tagMAC_MlmeCfmAssociate_s

{

 uint8 u8Status;

 uint8 u8Pad;

 uint16 u16AssocShortAddr;

} MAC_MlmeCfmAssociate_s;

where:

 u8Status holds the status of the operation as a value from the MAC_enum_e
enumerations - the relevant enumerations are detailed in the table below.

 u16Pad is padding to force alignment.

 u16AssocShortAddr contains the short address allocated by the Co-ordinator.
If the address is 0xFFFE, the device will use 64-bit extended addressing. If the
association attempt failed, it will hold the value 0xFFFF.

Value Reason

MAC_ENUM_UNAVAILABLE_KEY The security settings corresponding to the Co-
ordinator address were not found in the PIB
ACL

MAC_ENUM_FAILED_SECURITY_CHECK Security processing of the association request
command failed for some other reason

MAC_ENUM_CHANNEL_ACCESS_FAILURE The association request command cannot be
sent due to the CSMA algorithm failing

MAC_ENUM_NO_ACK No acknowledge frame is received for the
association request command after the Co-
ordinator has tried to send the acknowledge-
ment MAC_MAX_FRAME_RETRIES (3)
times

MAC_ENUM_NO_DATA No association response command was
received within a timeout period after an
acknowledge to the association request com-
mand is received

MAC_ENUM_INVALID_PARAMETER A parameter in the Association request is out
of range or not supported

0x01 PAN is full

0x02 Access to the PAN denied by the Co-ordinator

MAC_ENUM_SUCCESS The association request was successful
146 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.24 MAC_MlmeCfmDisassociate_s

This structure contains a Disassociate confirm message.

typedef struct

{

 uint8 u8Status;

} MAC_MlmeCfmDisassociate_s;

where u8Status contains the result of the request as a value from the MAC_enum_e
enumerations - the relevant enumerations are detailed in the table below.

Status Reason

MAC_ENUM_UNAVAILABLE_KEY Couldn't find a security key in the ACL for the
transmission

MAC_ENUM_FAILED_SECURITY_CHECK Failure during security processing of the frame

MAC_ENUM_TRANSACTION_OVERFLOW No room available to store the disassociation noti-
fication command on the Co-ordinator - when Co-
ordinator requests disassociation

MAC_ENUM_TRANSACTION_EXPIRED Disassociation notification command was not
retrieved by the intended device in the timeout
period and has been discarded (Co-ordinator
requested disassociation)

MAC_ENUM_CHANNEL_ACCESS_FAILURE Couldn't get access to the radio channel to per-
form the transmission of the disassociate notifica-
tion command

MAC_ENUM_NO_ACK No acknowledgement from the associating device
after sending the disassociate notification com-
mand

MAC_ENUM_INVALID_PARAMETER Invalid parameter value or parameter not sup-
ported in the Disassociate Request primitive

MAC_ENUM_SUCCESS Disassociate request completed successfully
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 147

Chapter 6
Structures

6.1.25 MAC_MlmeCfmPoll_s

This structure contains a Poll confirm message.

typedef struct

{

 uint8 u8Status;

} MAC_MlmeCfmPoll_s;

where u8Status contains the result of the request as a value from the MAC_enum_e
enumerations - the relevant enumerations are detailed in the table below:

Status Reason

MAC_ENUM_UNAVAILABLE_KEY The security settings corresponding to the Co-ordi-
nator address are not found in the PIB ACL

MAC_ENUM_FAILED_SECURITY_CHECK Security processing of the data request command
fails for some other reason

MAC_ENUM_CHANNEL_ACCESS_FAILURE The data request command cannot be sent due to
the CSMA algorithm failing

MAC_ENUM_NO_ACK No acknowledge frame is received for the data
request command after the Co-ordinator has tried
to send the acknowledgement
MAC_MAX_FRAME_RETRIES (3) times

MAC_ENUM_NO_DATA No data is pending at the Co-ordinator, or a data
frame is not received within a timeout period after
an acknowledge to the data request command is
received, or a data frame with zero length payload
is received

MAC_ENUM_INVALID_PARAMETER A parameter in the Poll request is out of range or
not supported

MAC_ENUM_SUCCESS A data frame with non-zero payload length is
received after the acknowledge of the data request
command.
148 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.26 MAC_MlmeCfmRxEnable_s

This structure contains a Rx Enable confirm message.

typedef struct

{

 uint8 u8Status;

} MAC_MlmeCfmRxEnable_s;

where u8Status contains the result of the request as a value from the MAC_enum_e
enumerations - the relevant enumerations are detailed in the table below:

6.1.27 MAC_MlmeCfmGet_s

This structure contains a Get confirm message.

typedef struct

{

 uint8 u8Status;

 uint8 u8PibAttribute;

 uint16 u16Pad;

 MAC_Pib_u uPibAttributeValue;

} MAC_MlmeCfmGet_s;

where:

 u8Status is the status of the corresponding PIB Get request which
corresponds to the synchronous confirm (for enumerations, see Section 7.4.3).

 u8PibAttribute is the identifier of the MAC PIB attribute that has been read,
specified using one of the enumerations listed in Section 7.1.1.

 u16Pad is the padding for alignment

 uPibAttributeValue is the value which has been obtained

Status Reason

MAC_ENUM_INVALID_PARAMETER The combination of start time and duration requested will
not fit inside the superframe (only relevant for a beacon
enabled PAN)

MAC_ENUM_OUT_OF_CAP The start time requested has passed and the receive is
not allowed to be deferred to the next superframe period
or the requested duration will not fit in the current CAP
(only relevant for a beacon enabled PAN)

MAC_ENUM_TX_ACTIVE The receiver cannot be enabled because the transmitter is
active

MAC_ENUM_SUCCESS Rx Enable request completed successfully
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 149

Chapter 6
Structures

6.1.28 MAC_MlmeCfmSet_s

This structure contains a Set confirm message.

typedef struct

{

 uint8 u8Status;

 uint8 u8PibAttribute;

} MAC_MlmeCfmSet_s;

where:

 u8Status is the status of the corresponding PIB Set request which
corresponds to the synchronous confirm (for enumerations, see Section 7.4.3).

 u8PibAttribute is the identifier of the MAC PIB attribute that has been set,
specified using one of the enumerations listed in Section 7.1.1.

6.1.29 MAC_MlmeCfmStart_s

This structure contains a Start confirm message.

typedef struct

{

 uint8 u8Status;

} MAC_MlmeCfmStart_s;

where u8Status is the status of the corresponding Start request. It can take a value
from the MAC_enum_e enumerations - the relevant enumerations are detailed in the
table below.

Value Reason

MAC_ENUM_NO_SHORT_ADDRESS The PIB value for the short address is set to
0xFFFF

MAC_ENUM_UNAVAILABLE_KEY The u8SecurityEnable field of the request is set o
TRUE but the key and security information for the
broadcast address cannot be obtained from the
ACL in the PIB

MAC_ENUM_FRAME_TOO_LONG The security encoding process on a beacon results
in a beacon which is longer than the maximum MAC
frame size

MAC_ENUM_FAILED_SECURITY_CHECK For any other reason than the above that security
processing fails

MAC_ENUM_INVALID_PARAMETER For any parameter out of range or not supported

MAC_ENUM_SUCCESS Start primitive was successful
150 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.30 MAC_MlmeCfmReset_s

This structure contains a Reset confirm message.

typedef struct

{

 uint8 u8Status;

} MAC_MlmeCfmReset_s;

where u8Status can take either of the following values:

 MAC_ENUM_SUCCESS, indicating that the reset took place

 MAC_ENUM_DISABLE_TRX_FAILURE, indicating that the transmitter or
receiver of the node could not be switched off

6.1.31 MAC_MlmeCfmVsRdReg_s

This structure contains a Vendor-specific Read Register confirm message.

typedef struct

{

 uint32 u32Data;

} MAC_MlmeCfmVsRdReg_s;

where u32Data is the register data obtained.

6.1.32 MAC_MlmeIndAssociate_s

This structure contains an Associate indication.

typedef struct

{

 MAC_ExtAddr_s sDeviceAddr;

 uint8 u8Capability;

 uint8 u8SecurityUse;

 uint8 u8AclEntry;

} MAC_MlmeIndAssociate_s;

where:

 sDeviceAddr contains the 64-bit extended address of the associating device

 u8Capability holds the capabilities of the device as described in the
Associate Request

 u8SecurityUse is set to TRUE if the request command used security (and
FALSE otherwise)
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 151

Chapter 6
Structures

 u8AclEntry contains the security mode held in the ACL entry of the PIB for the
device. If an ACL entry for the device cannot be found then this value is set to
0x08. The security mode values are described in Scan confirm.

6.1.33 MAC_MlmeIndDisassociate_s

This structure contains a Disassociate indication.

typedef struct

{

 MAC_ExtAddr_s sDeviceAddr;

 uint8 u8Reason;

 uint8 u8SecurityUse;

 uint8 u8AclEntry;

} MAC_MlmeIndDisassociate_s;

where:

 sDeviceAddr contains the 64-bit extended address of the device, which
generated the Disassociate Request

 u8Reason contains the reason for the disassociation - one of:

 u8SecurityUse is TRUE if security is being used during the transmission (and
FALSE otherwise)

 u8AclEntry contains the security mode held in the ACL entry of the PIB for the
device. If an ACL entry for the device cannot be found then this value is set to
0x08. The security mode values are described in Scan confirm.

Disassociation reason Description

0 Reserved

1 Coordinator wishes device to leave the PAN

2 Device wishes to leave the PAN

0x03 - 0x7F Reserved

0x80 - 0xFF Reserved for MAC primitive enumeration values
152 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.34 MAC_MlmeIndGts_s

This structure contains a GTS indication.

typedef struct

{

 uint16 u16ShortAddr;

 uint8 u8Characteristics;

 uint8 u8Security;

 uint8 u8AclEntry;

} MAC_MlmeIndGts_s;

where:

 u16ShortAddr contains the 16-bit short address of the device to which the
GTS has been allocated or deallocated, in the range 0 to 0xFFFD.

 u8Characteristics carries the characteristics of the GTS that has been
allocated as encoded in Section 6.1.10. If a GTS has been deallocated then the
characteristics type field is set to 0.

 u8Security is set to TRUE if security is used in the transmission of frames
between the device and Co-ordinator (and FALSE otherwise).

 u8AclEntry holds the value of the security mode from the ACL entry
associated with the sender of the GTS request command, i.e. the security
mode used in the transmission.

6.1.35 MAC_MlmeIndBeacon_s

This structure contains a Beacon Notify indication.

typedef struct

{

 MAC_PanDescr_s sPANdescriptor;

 uint8 u8BSN;

 uint8 u8PendAddrSpec;

 uint8 u8SDUlength;

 MAC_Addr_u uAddrList[7];

 uint8 u8SDU[MAC_MAX_BEACON_PAYLOAD_LEN];

} MAC_MlmeIndBeacon_s;

where:

 sPANdescriptor holds the PAN information that the beacon carries. This
structure is described in Section 6.3.2.

 u8BSN contains the Beacon Sequence Number, which can take a value in the
range 0 to 255.

 u8PendAddrSpec consists of a byte which encodes the number of nodes that
have messages pending on the Co-ordinator which generated the beacon.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 153

Chapter 6
Structures

There are at most seven nodes which can be shown as having messages
stored on the Co-ordinator, although there may be more messages actually
stored. The Address Specification may contain a mixture of short and extended
addresses, up to the total of 7. It is encoded as follows:

 u8SDUlength contains the length in bytes of the beacon payload field, up to a
maximum of MAC_MAX_BEACON_PAYLOAD_LEN.

 uAddrList contains an array of seven short or extended addresses
corresponding to the numbers in u8PendAddrSpec. The addresses are
ordered so that all the short addresses are listed first (i.e. starting from index 0)
followed by the extended addresses. The union, which holds a short or
extended address, is detailed in Section 6.3.4.

 u8SDU is an array of MAC_MAX_BEACON_PAYLOAD_LEN bytes which
contains the beacon payload. The contents of the beacon payload are
specified at the Application/NWK layer.

6.1.36 MAC_MlmeIndSyncLoss_s

This structure contains a Sync Loss indication.

typedef struct

{

 uint8 u8Reason;

} MAC_MlmeIndSyncLoss_s;

where u8Reason is the reason for the loss of synchronisation as a value from the
MAC_enum_e enumerations - the relevant enumerations are detailed in the table
below.

Bits 0..2 3 4..6 7

Number of short
addresses pending

Reserved Number of extended
addresses pending

Reserved

Value Reason

MAC_ENUM_PAN_ID_CONFLICT Generated when a device detects a PAN ID conflict

MAC_ENUM_REALIGNMENT A Co-ordinator realignment command was received and
the device is not performing an Orphan Scan

MAC_ENUM_BEACON_LOST Failed to see MAC_MAX_LOST_BEACONS consecutive
beacons either when tracking transmissions or searching
for beacons after a Sync request
154 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.1.37 MAC_MlmeIndCommStatus_s

This structure contains a Comm Status indication.

typedef struct

{

 MAC_Addr_s sSrcAddr;

 MAC_Addr_s sDstAddr;

 uint8 u8Status;

} MAC_MlmeIndCommStatus_s;

where:

 sSrcAddr is a structure containing the address of the source node of the frame.
This structure is detailed in Section 6.3.3.

 sDstAddr is a structure containing the address of the destination node of the
frame. This structure is detailed in Section 6.3.3.

 u8Status is the result of the transaction whose status is being reported, as a
value from the MAC_enum_e enumerations. In the case of an Orphan
response, the possible results are:

Value Reason

MAC_ENUM_UNAVAILABLE_KEY Could not find a security key in the ACL for the transmission

MAC_ENUM_FAILED_SECURITY_CHECK Failure during security processing of the frame

MAC_ENUM_TRANSACTION_OVERFLOW No room available to store the association response command
on the Co-ordinator while waiting for data request from associat-
ing device

MAC_ENUM_TRANSACTION_EXPIRED Association response was not retrieved by the associating
device in the timeout period and has been discarded

MAC_ENUM_CHANNEL_ACCESS_FAILURE Could not get access to the radio channel to perform the trans-
mission

MAC_ENUM_NO_ACK No acknowledgement from the associating device after sending
the associate response command

MAC_ENUM_INVALID_PARAMETER Invalid parameter value or parameter not supported in the Asso-
ciate Response primitive

MAC_ENUM_SUCCESS Associate response command sent successfully
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 155

Chapter 6
Structures

6.1.38 MAC_MlmeIndOrphan_s

This structure contains an Orphan indication.

typedef struct

{

 MAC_ExtAddr_s sDeviceAddr;

 uint8 u8SecurityUse;

 uint8 u8AclEntry;

} MAC_MlmeIndOrphan_s;

where:

 sDeviceAddr contains the full 64-bit extended address of the orphaned node.

 u8SecurityUse indicates if security was being used when the orphan
notification was sent (set to 1 if this is true and 0 if it is false).

 u8AclEntry is the security mode (values 0 to 7) being used by the node
transmitting the orphan notification, as stored in the Co-ordinator’s ACL for the
address. If the orphan node cannot be found in the ACL, the value is set to 8.
156 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.2 MCPS Structures

6.2.1 MAC_McpsReqRsp_s

This structure contains an MCPS request or response.

typedef struct

{

uint8 u8Type;

uint8 u8ParamLength;

uint16 u16Pad;

MAC_McpsReqRspParam_u uParam;

} MAC_McpsReqRsp_s;

where:

 u8Type is the request/response type, represented by an enumeration from
MAC_McpsReqRspType_e (see Section 7.4.1).

 u8ParamLength is the parameter length, in bits, in the union below.

 u16Pad is is the number of bits of padding required to make up 32 bits.

 uParam is the union of all possible MCPS requests/responses (see Section
6.2.2).

6.2.2 MAC_McpsReqRspParam_u

This structure is the union of all possible MCPS requests and responses, and is an
element of the MAC_McpsReqRsp_s structure (see Section 6.2.1).

typedef union

{

MAC_McpsReqData_s sReqData;

MAC_McpsReqPurge_s sReqPurge;

} MAC_McpsReqRspParam_u;

where:

 sReqData is a structure that contains a Data request (to send a data frame).
For more information on this structure, see Section 6.2.5.

 sReqPurge is a structure that contains a Purge request (to remove a Data
request from the transaction queue). For more information on this structure,
see Section 6.2.6.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 157

Chapter 6
Structures

6.2.3 MAC_McpsSyncCfm_s

This structure contains an MCPS synchronous confirm.

typedef struct

{

 uint8 u8Status;

 uint8 u8ParamLength;

 uint16 u16Pad;

 MAC_McpsSyncCfmParam_u uParam;

} MAC_McpsSyncCfm_s;

where:

 u8Status is the status of the request which corresponds to the synchronous
confirm (for enumerations, see Section 7.4.3).

 u8ParamLength is the parameter length in the union below.

 u16Pad is padding to force alignment.

 uParam is the union of all possible MCPS synchronous confirms (see Section
6.2.4).

6.2.4 MAC_McpsSyncCfmParam_u

This structure is the union of all possible MCPS synchronous confirms, and is an
element of the MAC_McpsSyncCfm_s structure (see Section 6.2.3).

typedef union

{

 MAC_McpsCfmData_s sCfmData;

 MAC_McpsCfmPurge_s sCfmPurge;

} MAC_McpsSyncCfmParam_u;

where:

 sReqData is a structure that contains a Data confirm message (in response to
a Data request). For more information on this structure, see Section 6.2.7.

 sReqPurge is a structure that contains a Purge confirm message (in response
to a Purge request). For more information on this structure, see Section 6.2.8.
158 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.2.5 MAC_McpsReqData_s

This structure contains a Data request (for sending data).

struct tagMAC_McpsReqData_s

{

 uint8 u8Handle;

 MAC_TxFrameData_s sFrame;

} MAC_McpsReqData_s;

where:

 u8Handle is a handle which identifies the transmission, allowing more than
one transmission to be performed before the corresponding confirm has been
seen. It may take the values 0 to 0xFF; the handle is generated by the
Application/NWK layer.

 sFrame is a structure containing the data frame to be sent (see Section 6.3.6).

6.2.6 MAC_McpsReqPurge_s

This structure contains a Purge request (for removing a Data request from the
transation queue).

typedef struct

{

 uint8 u8Handle;

} MAC_McpsReqPurge_s;

where:

u8Handle is the handle of the Data request to be removed from the transaction queue.

6.2.7 MAC_McpsCfmData_s

This structure contains a Data confirm (in response to a Data request).

typedef struct

{

 uint8 u8Handle;

 uint8 u8Status;

} MAC_McpsCfmData_s;

where:

 u8Handle contains the handle of the MCPS-DATA.request for which status is
being reported.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 159

Chapter 6
Structures

 u8Status contains the result of the MCPS-DATA.request and may take any
of the following values:

6.2.8 MAC_McpsCfmPurge_s

This structure contains a Purge confirm (in response to a Purge request).

typedef struct

{

 uint8 u8Handle;

 uint8 u8Status;

} MAC_McpsCfmPurge_s;

where:

 u8Handle holds the handle of the transaction specified in the Purge request.

 u8Status contains the result of the attempt to remove the data from the
transaction queue. It can take a value from the MAC_enum_e enumerations -
the relevant enumerations are detailed in the table below:

Status Reason

MAC_ENUM_UNAVAILABLE_KEY Couldn't find a security key in the ACL for the transmission

MAC_ENUM_FAILED_SECURITY_CHECK Failure during security processing of the frame

MAC_ENUM_FRAME_TOO_LONG The size of the frame after security processing is greater than
the maximum size that can be transmitted, or the transmission is
too long to fit in the CAP or GTS period

MAC_ENUM_INVALID_GTS No Guaranteed Time Slot (GTS) allocated for this destination

MAC_ENUM_TRANSACTION_OVERFLOW No room available to store the data when an indirect transmis-
sion is specified in the Tx Options when a Co-ordinator requests
the transmission

MAC_ENUM_TRANSACTION_EXPIRED Disassociation notification command was not retrieved by the
intended device in the timeout period and has been discarded
(Co-ordinator requested disassociation)

MAC_ENUM_CHANNEL_ACCESS_FAILURE Couldn't get access to the radio channel to perform the trans-
mission of the data frame

MAC_ENUM_NO_ACK No acknowledgement from the destination device after sending
the data frame with the acknowledge option set

MAC_ENUM_INVALID_PARAMETER Invalid parameter value or parameter not supported in the Data
Request primitive

MAC_ENUM_SUCCESS Data request completed successfully

Status Reason

MAC_ENUM_INVALID_HANDLE Could not find a transaction with a handle matching
that of the purge request

MAC_ENUM_SUCCESS Purge request completed successfully
160 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.2.9 MAC_McpsDcfmInd_s

This structure contains an MCPS Deferred Confirm indication.

typedef struct

{

 uint8 u8Type;

 uint8 u8ParamLength;

 uint16 u16Pad;

 MAC_McpsDcfmIndParam_u uParam;

} MAC_McpsDcfmInd_s;

where:

 u8Type is the indication type, which will determine the parameter used in the
uParam union (enumerations are provided - see Section 7.4.2)

 u8ParamLength is the length of the parameter (in bytes) in the uParam union

 u16Pad is the number of bytes of padding to force alignment of the indication

 uParam is a union of all possible indications (see Section 6.2.10)

6.2.10 MAC_McpsDcfmIndParam_u

This structure is a union containing the possible MCPS Deferred Confirm indications.

typedef union

{

 MAC_McpsCfmData_s sDcfmData;

 MAC_McpsCfmPurge_s sDcfmPurge;

 MAC_McpsIndData_s sIndData;

} MAC_McpsDcfmIndParam_u;

where:

 sDcfmData contains a ‘deferred transmit data confirm’ (see Section 6.2.7)

 sDcfmPurge contains a ‘deferred purge confirm’ (see Section 6.2.8)

 sIndData contains a ‘received data indication’ (see Section 6.2.11)
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 161

Chapter 6
Structures

6.2.11 MAC_McpsIndData_s

This structure contains a Data indication (resulting from a received Data request).

typedef struct

{

 MAC_RxFrameData_s sFrame;

} MAC_McpsIndData_s;

where sFrame is a structure containing the data frame received (see Section 6.3.7).

6.3 Other Structures

6.3.1 MAC_ScanList_u

The MAC_ScanList_u structure is a union containing either the results of an energy
detect scan or the results of detecting beacons during an active or passive scan.

typedef union

{

 uint8 au8EnergyDetect[MAC_MAX_SCAN_CHANNELS];

 MAC_PanDescr_s asPanDescr[MAC_MAX_SCAN_PAN_DESCRS];

} MAC_ScanList_u;

where:

 au8EnergyDetect[] is a byte array containing the results of an energy
detect scan

 asPanDescr[] is an array of PAN descriptors, each containing information
from a beacon detected during an active or passive scan (see Section 6.3.2)
162 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.3.2 MAC_PanDescr_s

The MAC_PanDescr_s contains a PAN descriptor consisting of information about a
PAN from which a beacon has been received.

Typedef struct

{

 MAC_Addr_s sCoord;

 uint8 u8LogicalChan;

 uint8 u8GtsPermit;

 uint8 u8LinkQuality;

 uint8 u8SecurityUse;

 uint8 u8AclEntry;

 uint8 u8SecurityFailure;

 uint16 u16SuperframeSpec;

 uint32 u32TimeStamp;

} MAC_PanDescr_s;

where:

 sCoord is a structure which holds the MAC address of the Co-ordinator that
transmitted the beacon (see Section 6.3.3).

 u8LogicalChan holds the channel number on which the beacon was
transmitted. For the 2.45GHz PHY, this field may take a value in the range 11 to
26, corresponding to the allowed channel numbers for the radio.

 u8GtsPermit is set to 1 if the beacon is from a PAN Co-ordinator which
accepts GTS (Guaranteed Time Slot) requests.

 u8LinkQuality contains a measure of the quality of the transmission which
carried the beacon, as a value in the range 0 to 255 where 0 represents low
quality.

 u8SecurityUse is set to 1 if the beacon is using security, and 0 otherwise.

 u8AclEntry indicates the security mode in use by the sender of the beacon, as
retrieved from the ACL entry corresponding to the beacon sender. It may take a
value in the range 0 to 7, denoting the security suite in use. If the sender is not
found in the ACL then this value is set to 8.

The security modes are defined as follows (also refer to Section 1.16.2):

Value Mode

0 None

1 AES-CTR

2 AES-CCM-128

3 AES-CCM-64

4 AES-CCM-32
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 163

Chapter 6
Structures

 u8SecurityFailure is set to 1 if there was an error during the security
processing of the beacon, and 0 otherwise. Its value is always 0 if
u8SecurityUse is 0.

 u16SuperframeSpec contains information about the superframe used in the
PAN that this beacon describes. It follows the same format as that specified in
Section 7.2.2.1.2 of the IEEE Standard 802.15.4-2003.

 u32TimeStamp indicates the time at which the beacon was received, measured
in symbol periods.

6.3.3 MAC_Addr_s

The MAC_Addr_s structure holds the MAC address of a Co-ordinator that transmitted
a beacon.

typedef struct

{

 uint8 u8AddrMode;

 uint16 u16PanId;

 MAC_Addr_u uAddr;

} MAC_Addr_s;

 u8AddrMode denotes the type of addressing used to specify the address of the
Co-ordinator and may take the following values:

If the value is non-zero then the following fields contain the PAN identifier and
either the short or the extended address of the Co-ordinator that sent the
beacon.

 u16PanId is a the PAN ID.

 uAddr is a union which may contain either the 16-bit short address or the 64-bit
extended address of the Co-ordinator (see Section 6.3.4), according to value of
u8AddrMode.

5 AES-CBC-MAC-128

6 AES-CBC-MAC-64

7 AES-CBC-MAC-32

Addressing mode value Description

0 PAN identifier and address field are not present

1 Reserved

2 Address field contains 16-bit short address

3 Address field contains 64-bit extended address

Value Mode
164 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.3.4 MAC_Addr_u

The MAC_Addr_u structure is a union which contains either a 16-bit short address or a
64-bit extended address.

typedef union

{

 uint16 u16Short;

 MAC_ExtAddr_s sExt;

} MAC_Addr_u;

where:

 u16Short contains a 16-bit short address.

 sExt is a structure containing a 64-bit extended address (see Section 6.3.5).

6.3.5 MAC_ExtAddr_s

The MAC_ExtAddr_s structure contains a 64-bit extended address.

typedef struct

{

 uint32 u32L;

 uint32 u32H;

} MAC_ExtAddr_s;

where:

 u32L is the ‘low word’ containing the 32 least significant bits of the address.

 u32H is the ‘high word’ containing the 32 most significant bits of the address.

6.3.6 MAC_TxFrameData_s

The MAC_TxFrameData_s structure contains a data frame for transmission.

typedef struct

{

 MAC_Addr_s sSrcAddr;

 MAC_Addr_s sDstAddr;

 uint8 u8TxOptions;

 uint8 u8SduLength;

 uint8 au8Sdu[MAC_MAX_DATA_PAYLOAD_LEN];

} MAC_TxFrameData_s;

where:
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 165

Chapter 6
Structures

 sSrcAddr is a structure containing the source address of the frame as either a
16-bit short address or a 64-bit extended address (see Section 6.3.3). The PAN
ID for the source is also included.

 sDstAddr is a structure containing the destination address of the frame as
either a 16-bit short address or a 64-bit extended address (see Section 6.3.3).
The PAN ID for the destination is also included.

 u8TxOptions contains the options for this transmission, encoded as follows:

The above bits are set to 1 to invoke the option. A GTS Transmission overrides
an Indirect Transmission option. The Indirect Transmission option is only valid
for a Co-ordinator-generated data request; for a non-Co-ordinator device, the
option is ignored. If the Security option is set, the ACL corresponding to the
destination address is searched and keys are used to apply security to the data
frame to be sent.

 u8SduLength contains the length of the payload field of the frame, in bytes.

 au8Sdu is an array of bytes making up the frame payload, up to
MAC_MAX_DATA_PAYLOAD_LEN (118) in length, depending on the overhead
from the frame header.

6.3.7 MAC_RxFrameData_s

The MAC_RxFrameData_s structure contains a received data frame.

struct tagMAC_RxFrameData_s

{

 MAC_Addr_s sSrcAddr;

 MAC_Addr_s sDstAddr;

 uint8 u8LinkQuality;

 uint8 u8SecurityUse;

 uint8 u8AclEntry;

 uint8 u8SduLength;

 uint8 au8Sdu[MAC_MAX_DATA_PAYLOAD_LEN];

} MAC_RxFrameData_s;

where:

 sSrcAddr is a structure containing the source address of the frame as either a
16-bit short address or a 64-bit extended address (see Section 6.3.3). The PAN
ID for the source is also included.

 sDstAddr is a structure containing the destination address of the frame as
either a 16-bit short address or a 64-bit extended address (see Section 6.3.3).
The PAN ID for the destination is also included.

Bits 7-4 Bit 3 Bit 2 Bit 1 Bit 0

0000 Security Enabled
transmission

Indirect
Transmission

GTS
Transmission

Acknowledged
Transmission
166 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 u8LinkQuality contains a value in the range 0 and 0xFF which indicates the
quality of the reception of the received frame.

 u8SecurityUse indicates whether security was used in transmitting the frame:
1 if security used, 0 otherwise

 u8AclEntry indicates the security suite used during the frame transmission, as
retrieved from the ACL for the source address held in the PIB. The security
modes are defined as follows (also refer to Section 1.16.2):

 u8SduLength contains the length of the payload field of the frame, in bytes.

 au8Sdu is an array of bytes containing the frame payload.

6.3.8 MAC_DcfmIndHdr_s

The MAC_DcfmIndHdr_s structure contains the header information for a buffer used
to hold an MLME or MCPS deferred confirm or indication.

typedef struct

{

 uint8 u8Type;

 uint8 u8ParamLength;

 uint16 u16Pad;

} MAC_DcfmIndHdr_s;

where:

 u8Type indicates the deferred confirm or indication type

 u8ParamLength is the buffer length, in bytes

 u16Pad is the number of bytes of padding to force alignment

Value Mode

0 None

1 AES-CTR

2 AES-CCM-128

3 AES-CCM-64

4 AES-CCM-32

5 AES-CBC-MAC-128

6 AES-CBC-MAC-64

7 AES-CBC-MAC-32
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 167

Chapter 6
Structures

6.3.9 MAC_KeyDescriptor_s

The MAC_KeyDescriptor_s structure holds an entry of the Key table used in
IEEE 802.15.4-2006 security, containing one key and associated information.

typedef struct tagMAC_KeyDescriptor_s

{

 MAC_KeyIdLookupDescriptor_s *psKeyIdLookupDescriptor;

 uint8 u8KeyIdLookupEntries;

 MAC_KeyDeviceDescriptor_s *psKeyDeviceList;

 uint8 u8KeyDeviceListEntries;

 MAC_KeyUsageDescriptor_s *psKeyUsageList;

 uint8 u8KeyUsageListEntries;

 uint32 au32SymmetricKey[4];

}MAC_KeyDescriptor_s;

where:

 psKeyIdLookupDescriptor is a pointer to a list of key ID look-up
descriptors (used to identify the security key), which are each contained in a
MAC_KeyIdLookupDescriptor_s structure, described in Section 6.3.10

 u8KeyIdLookupEntries is the number of key ID look-up descriptors in the
psKeyIdLookupDescriptor list (above)

 psKeyDeviceList is a pointer to a list of key device descriptors indicating the
devices with which the local device can communicate using the key, where
each device is specified in a MAC_KeyDeviceDescriptor_s structure,
described in Section 6.3.11

 u8KeyDeviceListEntries is the number of devices in the
psKeyDeviceList list (above)

 psKeyUsageList is is a pointer to a list of the frame types of incoming frames
for which the key is valid, where each frame type is specified in a
MAC_KeyUsageDescriptor_s structure, described in Section 6.3.12

 u8KeyUsageListEntries is the number of frame types in the
psKeyUsageList list (above)

 au32SymmetricKey[4] is an array containing the 128-bit security key in four
32-bit elements
168 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.3.10 MAC_KeyIdLookupDescriptor_s

The MAC_KeyIdLookupDescriptor_s structure contains a key ID look-up
descriptor, which contains data used to identify a security key.

typedef struct tagMAC_KeyIdLookupDescriptor

{

 uint8 au8LookupData[9];

 uint8 u8LookupDataSize;

}MAC_KeyIdLookupDescriptor_s;

where:

 au8LookupData[9] is an array containing the data bytes used to identify a
security key - 5 or 9 bytes can be used, depending on the size setting below

 u8LookupDataSize is the number of data bytes used in the above array to
identify a security key:

 0x00: 5 bytes

 0x01: 9 bytes

6.3.11 MAC_KeyDeviceDescriptor_s

The MAC_KeyDeviceDescriptor_s structure contains a key device descriptor,
specifying a device with which the local device can communicate securely using a key.

typedef struct tagMAC_KeyDeviceDescriptor

{

 uint32 u32DeviceDescriptorHandle;

 bool_t bUniqueDevice;

 bool_t bBlacklisted;

}MAC_KeyDeviceDescriptor_s;

where:

 u32DeviceDescriptorHandle is the 32-bit handle of the device descriptor
for the device (see Section 6.3.13)

 bUniqueDevice indicates whether the key is uniquely associated with the
device - that is, whether the key is a link key or a group key:

 TRUE - Link key

 FALSE - Group key

 bBlacklisted indicates whether the device has been excluded from
communicating using the key because it has previously used the key and
exhausted the associated frame counter:

 TRUE - Excluded

 FALSE - Not excluded
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 169

Chapter 6
Structures

6.3.12 MAC_KeyUsageDescriptor_s

The MAC_KeyUsageDescriptor_s structure specifies a frame type (of an incoming
frame) for which a security key is valid.

typedef struct tagMAC_KeyUsageDescriptor

{

 uint8 u8FrameType;

 uint8 u8CommandFrameIdentifier;

}MAC_KeyUsageDescriptor_s;

where:

 u8FrameType indicates the type of frame:

 u8CommandFrameIdentifier identifies the command, in the case of a MAC
command frame:

Value Frame Type

0x00 Beacon

0x01 Data

0x02 Acknowledgment

0x03 MAC command

0x04–0xFF Reserved

Value Command

0x00 Not a MAC command

0x01 Association request

0x02 Association response

0x03 Disassociation notification

0x04 Data request

0x05 PAN ID conflict notification

0x06 Orphan notification

0x07 Beacon request

0x08 Co-ordinator realignment

0x09 GTS request

0x0A–0xFF Reserved
170 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
6.3.13 MAC_DeviceDescriptor_s

The MAC_DeviceDescriptor_s structure contains a device descriptor used in
IEEE 802.15.4-2006 security.

typedef struct tagMAC_DeviceDescriptor_s

{

 uint16 u16PanId;

 uint16 u16Short;

 MAC_ExtAddr_s sExt;

 uint32 u32FrameCounter;

 bool_t bExempt;

}MAC_DeviceDescriptor_s;

where:

 u16PanId is the PAN ID of the network to which the device belongs

 u16Short is the 16-bit short address of the device

 sExt is the 64-bit extended address of the device

 u32FrameCounter is the frame counter for frames received from the device

 bExempt is a flag indicating whether the device is exempt from the minimum
security level settings (see Section 6.3.14):

 TRUE - exempt

 FALSE - not exempt
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 171

Chapter 6
Structures

6.3.14 MAC_SecurityLevelDescriptor_s

The MAC_SecurityLevelDescriptor_s structure contains a security level
descriptor used in IEEE 802.15.4-2006 security.

typedef struct tagMAC_SecurityLevelDescriptor_s

{

 uint8 u8FrameType;

 uint8 u8CommandFrameIdentifier;

 uint8 u8MinimumSecurity;

 bool_t bOverideSecurityMinimum;

}MAC_SecurityLevelDescriptor_s;

where:

 u8FrameType is the type of frame for which minimum security levels are
specified:

 u8CommandFrameIdentifier identifies the command, in the case of a MAC
command frame, for which minimum security levels are specified:

Value Frame Type

0x00 Beacon

0x01 Data

0x02 Acknowledgement

0x03 MAC command

0x04–0xFF Reserved

Value Command

0x00 Not a MAC command

0x01 Association request

0x02 Association response

0x03 Disassociation notification

0x04 Data request

0x05 PAN ID conflict notification

0x06 Orphan notification

0x07 Beacon request

0x08 Co-ordinator realignment

0x09 GTS request

0x0A–0xFF Reserved
172 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 u8MinimumSecurity indicates the minimum acceptable security level for an
incoming frame of the specified frame type and, if applicable, the specified
command type (for details of the security suites, refer to Table 4 on page 45):

 bOverideSecurityMinimum is a flag indicating whether the source device of
a frame (of the specified frame type and, if applicable, the specified command
type) can over-ride the minimum security level set in u8MinimumSecurity:

 TRUE - Can over-ride

 FALSE - Cannot over-ride

Value Security Suite

0x00 MIC-32

0x01 MIC-64

0x02 MIC-128

0x03 ENC

0x04 ENC-MIC-32

0x05 ENC-MIC-64

0x06 ENC-MIC-64

0x07 ENC-MIC-128

0x08-0xFF Reserved
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 173

Chapter 6
Structures

174 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
7. Enumerations

This chapter contains the sets of enumerations provided in the header files. The
enumerations are presented in the following categories:

 MAC enumerations - see Section 7.1

 PHY enumerations - see Section 7.2

 MLME enumerations - see Section 7.3

 MCPS enumerations - see Section 7.4

7.1 MAC Enumerations

7.1.1 MAC PIB Attribute Enumerations

The MAC PIB attributes are identified using the following enumerations (also see
Section 8.1):

{

 MAC_PIB_ATTR_ACK_WAIT_DURATION = 0x40,

 MAC_PIB_ATTR_ASSOCIATION_PERMIT,

 MAC_PIB_ATTR_AUTO_REQUEST,

 MAC_PIB_ATTR_BATT_LIFE_EXT,

 MAC_PIB_ATTR_BATT_LIFE_EXT_PERIODS,

 MAC_PIB_ATTR_BEACON_PAYLOAD,

 MAC_PIB_ATTR_BEACON_PAYLOAD_LENGTH,

 MAC_PIB_ATTR_BEACON_ORDER,

 MAC_PIB_ATTR_BEACON_TX_TIME,

 MAC_PIB_ATTR_BSN,

 MAC_PIB_ATTR_COORD_EXTENDED_ADDRESS,

 MAC_PIB_ATTR_COORD_SHORT_ADDRESS,

 MAC_PIB_ATTR_DSN,

 MAC_PIB_ATTR_GTS_PERMIT,

 MAC_PIB_ATTR_MAX_CSMA_BACKOFFS,

 MAC_PIB_ATTR_MIN_BE,

 MAC_PIB_ATTR_PAN_ID,

 MAC_PIB_ATTR_PROMISCUOUS_MODE,

 MAC_PIB_ATTR_RX_ON_WHEN_IDLE,

 MAC_PIB_ATTR_SHORT_ADDRESS,

 MAC_PIB_ATTR_SUPERFRAME_ORDER,

 MAC_PIB_ATTR_TRANSACTION_PERSISTENCE_TIME,

 MAC_PIB_ATTR_MAX_FRAME_TOTAL_WAIT_TIME = 0x58,

 MAC_PIB_ATTR_MAX_FRAME_RETRIES,
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 175

Chapter 7
Enumerations

 MAC_PIB_ATTR_RESPONSE_WAIT_TIME,

 MAC_PIB_ATTR_SECURITY_ENABLED = 0x5d,

 MAC_PIB_ATTR_ACL_ENTRY_DESCRIPTOR_SET = 0x70,

 MAC_PIB_ATTR_ACL_ENTRY_DESCRIPTOR_SET_SIZE,

 MAC_PIB_ATTR_DEFAULT_SECURITY,

 MAC_PIB_ATTR_ACL_DEFAULT_SECURITY_MATERIAL_LENGTH,

 MAC_PIB_ATTR_DEFAULT_SECURITY_MATERIAL,

 MAC_PIB_ATTR_DEFAULT_SECURITY_SUITE,

 MAC_PIB_ATTR_SECURITY_MODE,

 MAC_PIB_ATTR_MACFRAMECOUNTER = 0x77,

 NUM_MAC_ATTR_PIB

} MAC_PibAttr_e;

7.1.2 MAC Operation Status Enumerations

Enumerations are provided for the status of a MAC operation, as follows (refer to
Section 5.6 for descriptions):
typedef enum

{

 MAC_ENUM_SUCCESS = 0,

 MAC_ENUM_COUNTER_ERROR = 0xDB,

 MAC_ENUM_IMPROPER_KEY_TYPE,

 MAC_ENUM_IMPROPER_SECURITY_LEVEL,

 MAC_ENUM_UNSUPPORTED_LEGACY,

 MAC_ENUM_UNSUPPORTED_SECURITY,

 MAC_ENUM_BEACON_LOSS = 0xE0,

 MAC_ENUM_CHANNEL_ACCESS_FAILURE,

 MAC_ENUM_DENIED,

 MAC_ENUM_DISABLE_TRX_FAILURE,

 MAC_ENUM_FAILED_SECURITY_CHECK,

 MAC_ENUM_FRAME_TOO_LONG,

 MAC_ENUM_INVALID_GTS,

 MAC_ENUM_INVALID_HANDLE,

 MAC_ENUM_INVALID_PARAMETER,

 MAC_ENUM_NO_ACK,

 MAC_ENUM_NO_BEACON,

 MAC_ENUM_NO_DATA,

 MAC_ENUM_NO_SHORT_ADDRESS,

 MAC_ENUM_OUT_OF_CAP,

 MAC_ENUM_PAN_ID_CONFLICT,

 MAC_ENUM_REALIGNMENT,

 MAC_ENUM_TRANSACTION_EXPIRED,

 MAC_ENUM_TRANSACTION_OVERFLOW,
176 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 MAC_ENUM_TX_ACTIVE,

 MAC_ENUM_UNAVAILABLE_KEY,

 MAC_ENUM_UNSUPPORTED_ATTRIBUTE,

 MAC_ENUM_SCAN_IN_PROGRESS

} MAC_Enum_e;

7.2 PHY Enumerations

7.2.1 PHY PIB Attribute Enumerations

The PHY PIB attributes are identified using the following enumerations (also see
Section 8.2):

typedef enum

{

 PHY_PIB_ATTR_CURRENT_CHANNEL = 0,

 PHY_PIB_ATTR_CHANNELS_SUPPORTED = 1,

 PHY_PIB_ATTR_TX_POWER = 2,

 PHY_PIB_ATTR_CCA_MODE = 3

} PHY_PibAttr_e;

7.2.2 PHY PIB Operation Status Enumerations

Enumerations are provided for the status of a PHY PIB operation, as follows (also see
Section 8.2):

typedef enum

{

 PHY_ENUM_INVALID_PARAMETER = 0x05,

 PHY_ENUM_SUCCESS = 0x07,

 PHY_ENUM_UNSUPPORTED_ATTRIBUTE = 0x0a

} PHY_Enum_e;
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 177

Chapter 7
Enumerations

7.3 MLME Enumerations

7.3.1 MLME Request and Response Type Enumerations

The MLME request and response types are enumerated as follows:

typedef enum{

 MAC_MLME_REQ_ASSOCIATE = 0,

 MAC_MLME_REQ_DISASSOCIATE,

 MAC_MLME_REQ_GET,

 MAC_MLME_REQ_GTS,

 MAC_MLME_REQ_RESET,

 MAC_MLME_REQ_RX_ENABLE,

 MAC_MLME_REQ_SCAN,

 MAC_MLME_REQ_SET,

 MAC_MLME_REQ_START,

 MAC_MLME_REQ_SYNC,

 MAC_MLME_REQ_POLL,

 MAC_MLME_RSP_ASSOCIATE,

 MAC_MLME_RSP_ORPHAN,

 MAC_MLME_REQ_VS_EXTADDR,

 NUM_MAC_MLME_REQ /* (endstop) */

} MAC_MlmeReqRspType_e;

7.3.2 MLME Deferred Confirm and Indication Type Enumerations

 The MLME deferred confirm and indication types are enumerated as follows:

typedef enum

{

 MAC_MLME_DCFM_SCAN,

 MAC_MLME_DCFM_GTS,

 MAC_MLME_DCFM_ASSOCIATE,

 MAC_MLME_DCFM_DISASSOCIATE,

 MAC_MLME_DCFM_POLL,

 MAC_MLME_DCFM_RX_ENABLE,

 MAC_MLME_IND_ASSOCIATE,

 MAC_MLME_IND_DISASSOCIATE,

 MAC_MLME_IND_SYNC_LOSS,

 MAC_MLME_IND_GTS,

 MAC_MLME_IND_BEACON_NOTIFY,

 MAC_MLME_IND_COMM_STATUS,

 MAC_MLME_IND_ORPHAN,

#ifdef TOF_ENABLED
178 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 MAC_MLME_DCFM_TOFPOLL,

 MAC_MLME_DCFM_TOFPRIME,

 MAC_MLME_DCFM_TOFDATAPOLL,

 MAC_MLME_DCFM_TOFDATA,

 MAC_MLME_IND_TOFPOLL,

 MAC_MLME_IND_TOFPRIME,

 MAC_MLME_IND_TOFDATAPOLL,

 MAC_MLME_IND_TOFDATA,

#endif

#if defined(DEBUG) && defined(EMBEDDED)

 MAC_MLME_IND_VS_DEBUG_INFO = 0xF0,

 MAC_MLME_IND_VS_DEBUG_WARN,

 MAC_MLME_IND_VS_DEBUG_ERROR,

 MAC_MLME_IND_VS_DEBUG_FATAL,

#endif /* defined(DEBUG) && defined(EMBEDDED) */

 NUM_MAC_MLME_IND,

 MAC_MLME_INVALID = 0xFF

} MAC_MlmeDcfmIndType_e;

7.3.3 MLME Synchronous Confirm Status Enumerations

Enumerations are provided for the status of a synchronous confirmation to an MLME
request.

This status may indicate:

 The request was processed without error

 The request was processed with errors

 The confirm will be deferred and posted via the Deferred Confirm/Indication
callback

 It is a dummy confirm to a response

The above outcomes are enumerated as follows:

typedef enum

{

 MAC_MLME_CFM_OK,

 MAC_MLME_CFM_ERROR,

 MAC_MLME_CFM_DEFERRED,

 MAC_MLME_CFM_NOT_APPLICABLE,

 NUM_MAC_MLME_CFM /* (endstop) */

} MAC_MlmeSyncCfmStatus_e;
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 179

Chapter 7
Enumerations

7.3.4 MLME Scan Type Enumerations

The MLME scan types are enumerated as follows:

typedef enum

{

 MAC_MLME_SCAN_TYPE_ENERGY_DETECT = 0,

 MAC_MLME_SCAN_TYPE_ACTIVE = 1,

 MAC_MLME_SCAN_TYPE_PASSIVE = 2,

 MAC_MLME_SCAN_TYPE_ORPHAN = 3,

 NUM_MAC_MLME_SCAN_TYPE

} MAC_MlmeScanType_e;

7.4 MCPS Enumerations

7.4.1 MCPS Request and Response Type Enumerations

The MCPS request/response types are enumerated as follows:

typedef enum

{

 MAC_MCPS_REQ_DATA = 0,

 MAC_MCPS_REQ_PURGE,

 NUM_MAC_MCPS_REQ /* (endstop) */

} MAC_McpsReqRspType_e;

7.4.2 MCPS Indication Type Enumerations

The MCPS indication types are enumerated as follows:

typedef enum

{

 MAC_MCPS_DCFM_DATA,

 MAC_MCPS_DCFM_PURGE,

 MAC_MCPS_IND_DATA,

 NUM_MAC_MCPS_IND

} MAC_McpsDcfmIndType_e;
180 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
7.4.3 MCPS Synchronous Confirm Status Enumerations

Enumerations are provided for the status of a synchronous confirmation to an MCPS
request. This status may indicate:

 The request was processed without error

 The request was processed with errors

 The confirm will be deferred and posted via the Deferred Confirm/Indication
callback

The above outcomes are enumerated as follows:

typedef enum

{

 MAC_MCPS_CFM_OK,

 MAC_MCPS_CFM_ERROR,

 MAC_MCPS_CFM_DEFERRED,

 NUM_MAC_MCPS_CFM /* (endstop) */

} MAC_McpsSyncCfmStatus_e;
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 181

Chapter 7
Enumerations

182 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
8. PIB Attributes

This chapter lists and describes the PAN Information Base (PIB) attributes.

 The MAC PIB attributes are detailed in Section 8.1

 The PHY PIB attributes are detailed in Section 8.2

For an introduction to the PIB, refer to Section 1.14 and Section 3.10.

8.1 MAC PIB Attributes

The following table contains the MAC PIB parameter names together with their data
types and the range of values. These are the names used in the MAC software, which
map to the equivalent names in the IEEE 802.15.4 Standard.

MAC PIB Attribute Type Notes

ckWaitDuration enum Can take the following values
MAC_PIB_ACK_WAIT_DURATION_HI
(default)
MAC_PIB_ACK_WAIT_DURATION_LO

bAssociationPermit boolean Default value is FALSE

bAutoRequest boolean Default value is TRUE

bBattLifeExt boolean Default value is FALSE

eBattLifeExtPeriods enum Can take the following values
MAC_PIB_BATT_LIFE_EXT_PERIODS_HI
(default)
MAC_PIB_BATT_LIFE_EXT_PERIODS_LO

au8BeaconPayload uint8 Array of uint8 values of size
u8BeaconPayloadLength

u8BeaconPayloadLength uint8 Maximum value is
MAC_MAX_BEACON_PAYLOAD_LEN

u8BeaconOrder uint8 Range is
MAC_PIB_BEACON_ORDER_MIN (0)
MAC_PIB_BEACON_ORDER_MAX (15)
(default)

u32BeaconTxTime uint32 Default value is 0

u8Bsn uint8 Beacon Sequence Number

sCoordExtAddr MAC_ExtAddr_s 64-bit Extended Address for the PAN
Co-ordinator

u16CoordShortAddr uint16 16-bit Short Address for the PAN
Co-ordinator

u8Dsn uint8 Data Frame Sequence Number

Table 7: MAC PIB Attributes
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 183

Chapter 8
PIB Attributes

bGtsPermit boolean Default value is TRUE

u8MaxCsmaBackoffs_ReadOnly uint8 Range is
MAC_PIB_MAX_CSMA_BACKOFFS_MIN
(0)
MAC_PIB_MAX_CSMA_BACKOFFS_MAX
(5)
Default is 4 and value cannot be set directly

u8MinBe_ReadOnly uint8 Range is
MAC_PIB_MIN_BE_MIN (0)
MAC_PIB_MIN_BE_MAX (3)
Default is 3 and value cannot be set directly
(0 value should not be used for JN514x)

u16PanId_ReadOnly uint16 16-bit PAN ID

bPromiscuousMode_ReadOnly boolean Default value is FALSE.
Value cannot be set directly

bRxOnWhenIdle_ReadOnly boolean Default value is FALSE.
Value cannot be set directly

u16ShortAddr_ReadOnly uint16 16-bit Short Address of device.
Cannot be set directly

u8SuperframeOrder uint8 Range is
MAC_PIB_SUPERFRAME_ORDER_MIN
(0)
MAC_PIB_SUPERFRAME_ORDER_MAX
(15) (default)

u16TransactionPersistenceTime uint16 Default value is 0x01F4

asAclEntryDescriptorSet MAC_PibAclEntry_s Array of structures defined in mac_pib.h

u8AclEntrySetSize uint8 Range is
MAC_PIB_ACL_ENTRY_DESCRIPTOR_S
ET_SIZE_MIN (0) (default)
MAC_PIB_ACL_ENTRY_DESCRIPTOR_S
ET_SIZE_MAX (15)

bDefaultSecurity boolean Default value is FALSE

u8AclDefaultSecurityMaterialLength uint8 Range is
MAC_PIB_ACL_DEFAULT_SECURITY_LE
N_MIN (0)
MAC_PIB_ACL_DEFAULT_SECURITY_LE
N_MAX (26)
Default value is 21

sDefaultSecurityMaterial MAC_PibSecurityMaterial_s Structure defined in mac_pib.h

u8DefaultSecuritySuite uint8 Range is
MAC_PIB_DEFAULT_SECURITY_SUITE_
MIN (0) (default)
MAC_PIB_DEFAULT_SECURITY_SUITE_
MAX (7)

MAC PIB Attribute Type Notes

Table 7: MAC PIB Attributes
184 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
In order to access the PIB attributes, a handle to the PIB is required. Once the handle
has been obtained, all the PIB attributes can be read and most can be written to
directly. For further details and example code, refer to Section 3.10.1.

The attributes with suffix ‘ReadOnly’ in Table 7 above can only be read using the PIB
handle. Write access to these attributes is provided via special API functions, as
indicated in Section 8.1.1.

8.1.1 MAC PIB Write Access using API Functions

The setting of attributes with suffix ‘ReadOnly’ in Table 7 needs to be done using API
functions, as these attribute settings also cause changes to hardware registers. The
affected attributes (IEEE standard and MAC software names) and their associated
functions are:

The above ‘Set’ functions are fully described in Section 5.3.

An example function call to set the 16-bit short address of the local node is:

 MAC_vPibSetShortAddr(pvMac, 0x1234);

u8SecurityMode uint8 Range is
MAC_SECURITY_MODE_UNSECURED
(default)
MAC_SECURITY_MODE_ACL
MAC_SECURITY_MODE_SECURED

Attribute Function to use when setting attribute

macMaxCSMABackoffs
(u8MaxCsmaBackoffs_ReadOnly)

MAC_vPibSetMaxCsmaBackoffs()

macMinBE (u8MinBe_ReadOnly) MAC_vPibSetMinBe()

macPANId (u16PanId_ReadOnly) MAC_vPibSetPanId()

macPromiscuousMode
(bPromiscuousMode_ReadOnly)

MAC_vPibSetPromiscuousMode()

macRxOnWhenIdle
(bRxOnWhenIdle_ReadOnly)

MAC_vPibSetRxOnWhenIdle()

macShortAddress
(u16ShortAddr_ReadOnly)

MAC_vPibSetShortAddr()

Table 8: MAC PIB Attributes with Set Functions

MAC PIB Attribute Type Notes

Table 7: MAC PIB Attributes
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 185

Chapter 8
PIB Attributes

8.1.2 MAC PIB Examples

The following is an example of writing the beacon order attribute in the PIB.

psPib->u8BeaconOrder = 5;

The following is an example of reading the Co-ordinator short address from the PIB.

uint16 u16CoordShortAddr;

u16CoordShortAddr = psPib->u16CoordShortAddr;

The following is an example of writing to one of the variables within an access control
list entry.

psPib->asAclEntryDescriptorSet[1].u8AclSecuritySuite = 0x01; /
AES-CTR/

8.2 PHY PIB Attributes

This section lists the PHY PIB parameters and describes how they can be accessed.

The following table contains the PHY PIB attribute names, specified in the IEEE
802.15.4 Standard, together with their code numbers and the enumeration names
defined by the software, making up the type PHY_PibAttr_e.

The values of these attributes can be read and written, respectively, using the
following API functions (detailed in Section 5.4):

 eAppApiPlmeGet()

 eAppApiPlmeSet()

Pre-defined values are available for the PHY PIB attributes, as specified in Table 10.

PHY PIB Attribute Value Enumeration

phyCurrentChannel 0x00 PHY_PIB_ATTR_CURRENT_CHANNEL

phyChannelsSupported 0x01 PHY_PIB_ATTR_CHANNELS_SUPPORTED

phyTransmitPower 0x02 PHY_PIB_ATTR_TX_POWER

phyCCAMode 0x03 PHY_PIB_ATTR_CCA_MODE

Table 9: PHY PIB Attributes and Enumerations (PHY_PibAttr_e)
186 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide

Both the Get and Set functions return a PHY_Enum_e enumeration status value to
indicate success or failure of the operation. The status values are defined in the IEEE
802.15.4 Standard, and enumerations are listed and described in Table 11 below.

Attribute Enumeration Attribute Value Enumerations

PHY_PIB_ATTR_CURRENT_CHANNEL PHY_PIB_CURRENT_CHANNEL_DEF (default - 11)
PHY_PIB_CURRENT_CHANNEL_MIN (minimum - 11)
PHY_PIB_CURRENT_CHANNEL_MAX (maximum - 26)

PHY_PIB_ATTR_CHANNELS_SUPPORTED PHY_PIB_CHANNELS_SUPPORTED_DEF (default -
0x07fff800)

PHY_PIB_ATTR_TX_POWER PHY_PIB_TX_POWER_DEF (default - 0x80)
PHY_PIB_TX_POWER_MIN (minimum - 0)
PHY_PIB_TX_POWER_MAX (maximum - 0xbf)
PHY_PIB_TX_POWER_MASK (0x3f)
{mask to be used with dB settings below}
PHY_PIB_TX_POWER_1DB_TOLERANCE (0x00)
PHY_PIB_TX_POWER_3DB_TOLERANCE (0x40)
PHY_PIB_TX_POWER_6DB_TOLERANCE (0x80)

PHY_PIB_ATTR_CCA_MODE PHY_PIB_CCA_MODE_DEF (default - 1)
PHY_PIB_CCA_MODE_MIN (minimum - 1)
PHY_PIB_CCA_MODE_MAX (maximum - 3)

Table 10: PHY PIB Attribute Value Enumerations

Status Enumeration Value Description

PHY_ENUM_INVALID_PARAMETER 0x05 A Set/Get request was issued with a parameter in the
primitive that is outside the valid range.

PHY_ENUM_SUCCESS 0x07 A Set/Get operation was successful.

PHY_ENUM_UNSUPPORTED_ATTRIBUTE 0x0A A Set/Get request was issued with the identifier of an
attribute that is not supported.

Table 11: PHY PIB Operation Status Enumerations (PHY_Enum_e)
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 187

Chapter 8
PIB Attributes

8.3 MAC PIB Security Attributes (Optional)

This section details the MAC PIB attributes that must be maintained if IEEE 802.15.4-
2006 security is implemented (for securing outgoing frames and unsecuring incoming
frames). Security is introduced in Section 1.16 and useful notes on IEEE 802.15.4-
2006 security are provided in Appendix B. Refer to the appendix for an introduction to
the look-up tables that are held in the attributes described in this section.

The MAC PIB security attributes are listed and described in the table below.

MAC PIB Security Attribute Type Notes

psMacKeyTable MAC_KeyDescriptor_s
(see Section 6.3.9)

Key table containing keys and their
related information. Each entry contains
one key plus three associated sub-tables,
as described in Appendix B.1.

u8MacKeyTableEntries uint8 Number of entries in the Key table
(psMacKeyTable).

psMacDeviceTable MAC_DeviceDescriptor_s
(see Section 6.3.13)

Device table containing the device
addresses. Each record contains the PAN
ID of the host network plus both the short
and extended addresses of the device, the
frame counter and a flag to indicate
whether the device is exempt from specific
security rules.

u8MacDeviceTableEntries uint8 Number of entries in the Device table
(psMacDeviceTable).

psMacSecurityLevelTable MAC_SecurityLevelDescriptor_s
(see Section 6.3.14)

Minimum Acceptable Security Level
table containing the minimum acceptable
security level for each frame type. Used
for incoming frames only.

u8MacSecuirtyLevelTableEntries uint8 Number of entries in the Minimum Accept-
able Security Level table (psMacSecurit-
yLevelTable).

u32MacFrameCounter uint32 Frame counter for all outgoing frames
(the frame counters for incoming frames
are stored in macDeviceTable).

u8MacAutoRequestSecurityLevel uint8 These attributes are used to specify the
security level, key identifier mode, key
source and key index parameters for
frames that are generated by the stack
itself (automatic data requests). For other
frames, this information is supplied by the
higher layer as part of the API function
call.

u8MacAutoRequestKeyIdMode uint8

au8MacAutoRequestKeySource uint8

u8MacAutoRequestKeyIndex uint8

au8MacDefaultKeySource uint8 In Key Identifier Mode 1, the ID value is
created from this attribute value. For other
key identifier modes, the data is taken
from various addresses.

Table 12: MAC PIB Attributes
188 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
 * These attributes are conventional MAC PIB attributes, as described in Section 8.1

sCoordExtAddr * MAC_ExtAddr_s In Key Identifier Mode 0, if there is no des-
tination address within the frame then the
PAN Co-ordinator addresses contained in
these attributes are used instead (no desti-
nation address is always assumed to
mean "PAN Co-ordinator's address")

u16CoordShortAddr * uint16

MAC PIB Security Attribute Type Notes

Table 12: MAC PIB Attributes
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 189

Chapter 8
PIB Attributes

190 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Part III:
Appendices
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 191

192 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
A. Application Queue API

This appendix describes the Application Queue API which can be used to handle
interrupts in a JN51xx wireless microcontroller running an IEEE 802.15.4 application.

A.1 Architecture

The Application Queue API provides a queue-based interface between an application
and both the IEEE 802.15.4 stack and the hardware drivers (for the JN51xx wireless
microcontroller):

 The API interacts with the IEEE 802.15.4 stack via the NXP 802.15.4 Stack API
(which sits on top of the 802.15.4 stack).

 The API interacts with the Peripheral Hardware Drivers via the JN51xx
Integrated Peripherals API (which sits on top of the Peripheral Hardware
Drivers).

This architecture is illustrated in Figure 20 below.

Note: Use of the Application Queue API is completely
optional. You can design your IEEE 802.15.4
applications to operate with or without this API.

Caution: This API cannot be used with any other stack
(such as the ZigBee PRO stack or JenNet-IP stack).

Figure 20: Application Queue API Software Architecture

Hardware

IEEE 802.15.4
Stack Layers

802.15.4
Stack API

Peripheral
Hardware Drivers

Integrated
Peripherals API

Board API

Interrupt
Handler

Application
Queue API

Application

Interrupts

Hardware
Interrupts

MCPS/MLME
Interrupts

Queues
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 193

Appendices
A.2 Purpose

The Application Queue API handles interrupts coming from the MAC sub-layer of the
IEEE 802.15.4 stack and from the integrated peripherals of the JN51xx wireless
microcontroller, removing the need for the application to deal with interrupts directly.
The API implements a queue for each of three types of interrupt:

 MCPS (MAC Data Services) interrupts coming from the stack

 MLME (MAC Management Services) interrupts coming from the stack

 Hardware interrupts coming from the hardware drivers

The application polls these queues for entries and then processes the entries.

A.3 Functions

This sections provides descriptions of the individual functions of the Application
Queue API.

The functions are listed below along with their page references.

Function Page

u32AppQApiInit 195

psAppQApiReadMlmeInd 196

psAppQApiReadMcpsInd 197

psAppQApiReadHwInd 198

vAppQApiReturnMlmeIndBuffer 199

vAppQApiReturnMcpsIndBuffer 200

vAppQApiReturnHwIndBuffer 201

Note: The Application Queue API allows callbacks to be
defined by the application, as with the normal IEEE
802.15.4 Stack API, but an application can be designed
such that they are not necessary.
194 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
u32AppQApiInit

Description

This function initialises the Application Queue API, as well as the underlying 802.15.4
Stack API and hence the whole 802.15.4 stack. The function creates queues for
storing a number of upward messages (MLME indications and confirmations, MCPS
indications and confirmations, Integrated Peripherals API indications) and registers
itself with the lower layers so that all such messages go through it. The function
registers user-defined callback functions for the three queues:

 Callback function for upward MLME indications and confirmations

 Callback function for upward MCPS indications and confirmations

 Callback function for upward indications from the Integrated Peripherals API

The callback functions are optional and should only be needed if the application must
be notified as soon as a message is placed in the queues.

The prototypes for all three callback functions take no parameters and return void.

Parameters

prMlmeCallback Pointer to optional callback function for upward MLME
indications and confirmations. If a callback is not required, a
value of NULL must be used.

prMcpsCallback Pointer to optional callback function for upward MCPS
indications and confirmations. If a callback is not required, a
value of NULL must be used.

prHwCallback Pointer to optional callback function for upward indications
from the Integrated Peripherals API. If a callback is not
required, a value of NULL must be used.

Returns

0 if initialisation failed.

Otherwise, the 32-bit version number of the IEEE 802.15.4 stack (most significant 16
bits are major revision, least significant 16 bits are patch revision/minor revision).

uint32 u32AppQApiInit(
PR_QIND_CALLBACK prMlmeCallback,
PR_QIND_CALLBACK prMcpsCallback,
PR_HWQINT_CALLBACK prHwCallback);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 195

Appendices
psAppQApiReadMlmeInd

Description

This function enables the application to poll the MLME indication/confirmation queue.
If an event is present in the queue, the application can process it. Once processing
has finished, the buffer (that contained the event) must be returned to the Application
Queue API using the vAppQApiReturnMlmeIndBuffer() function. The result is
returned in the structure MAC_MlmeDcfmInd_s (for details of this structure, refer to
Section 6.1.3).

Parameters

None

Returns

MAC_MlmeDcfmInd_s

Pointer to a buffer containing an MLME indication or confirmation, or NULL if the
queue is empty.

MAC_MlmeDcfmInd_s *psAppQApiReadMlmeInd(void);
196 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
psAppQApiReadMcpsInd

Description

This function enables the application to poll the MCPS indication/confirmation queue.
If an event is present in the queue, the application can process it. Once processing
has finished, the buffer (that contained the event) must be returned to the Application
Queue API using the vAppQApiReturnMcpsIndBuffer() function. The result is
returned in the structure MAC_McpsDcfmInd_s (for details of this structure, refer to
Section 6.2.9).

Parameters

None

Returns

MAC_McpsDcfmInd_s

Pointer to a buffer containing an MCPS indication or confirmation, or NULL if the
queue is empty.

MAC_McpsDcfmInd_s *psAppQApiReadMcpsInd(void);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 197

Appendices
psAppQApiReadHwInd

Description

This function enables the application to poll the hardware indication queue. If an
event is present in the queue, the application can process it. Once processing has
finished, the buffer (that contained the event) must be returned to the Application
Queue API using the vAppQApiReturnHwIndBuffer() function. The result is
returned in the structure AppQApiHwInd_s, detailed below.

Parameters

None

Returns

AppQApiHwInd_s, which has the following definition:

typedef struct

{

 uint32 u32DeviceId;

 uint32 u32ItemBitmap;

} AppQApiHwInd_s;

u32DeviceId and u32ItemBitmap are detailed in the Integrated Peripherals API
User Guides (JN-UG-3087 for JN516x, JN-UG-3066 for JN514x).

AppQApiHwInd_s * psAppQApiReadHwInd (void);
198 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vAppQApiReturnMlmeIndBuffer

Description

This function allows the application to return an MLME buffer previously passed up
to the application. Once returned, the buffer can be re-used to store and pass another
message.

Parameters

*psBuffer Pointer to MLME buffer to be returned

Returns

None

void vAppQApiReturnMlmeIndBuffer(
MAC_MlmeDcfmInd_s *psBuffer);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 199

Appendices
vAppQApiReturnMcpsIndBuffer

Description

This function allows the application to return an MCPS buffer previously passed up
to the application. Once returned, the buffer can be re-used to store and pass another
message.

Parameters

*psBuffer Pointer to MCPS buffer to be returned

Returns

None

void vAppQApiReturnMcpsIndBuffer(
MAC_McpsDcfmInd_s *psBuffer);
200 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
vAppQApiReturnHwIndBuffer

Description

This function allows the application to return a hardware event buffer previously
passed up to the application from the Integrated Peripherals API. Once returned, the
buffer can be re-used to store and pass another message.

Parameters

*psBuffer Pointer to hardware event buffer to be returned.

Returns

None

void vAppQApiReturnHwIndBuffer(
AppQApiHwInd_s *psBuffer);
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 201

Appendices
202 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
B. Notes on IEEE 802.15.4-2006 Security

The IEEE 802.15.4 standard defines the security features that may be incorporated in
an IEEE 802.15.4-based network. These features differ between the 2003 and 2006
versions of the standard (as indicated in Section 1.16). The NXP implementation of
IEEE 802.15.4 incorporates both versions, but NXP provide example code only for the
2006 version of security - this is available in the Application Note 802.15.4 Home
Sensor Demonstration for JN516x (JN-AN-1180). This appendix provides useful
information on IEEE 802.15.4-2006 security.

B.1 Security Features

IEEE 802.15.4 security is introduced in Section 1.16. The information provided in this
appendix is concerned with ‘Secured mode’ for the IEEE 802.15.4-2006 standard.
Security is implemented as a ‘security suite’ which can be selected from a set of seven
(as indicated in Table 4 on page 45 for IEEE 802.15.4-2006 security).

All the security suites of the IEEE 802.15.4-2006 standard are based on AES-CCM*
algorithms, and implement access control and sequential freshness (replay
protection). Optionally, encryption (data confidentiality) and integrity (data
authenticity) can be implemented, depending on the chosen security suite.

The above security features require look-up tables to be present on the participating
devices, including:

 Key table: Contains key descriptors with related key-specific information -
each entry includes a key and the following sub-tables:

 Key ID Look-up: Contains a list of data values used to identify the security
key. Each value is 5 or 9 bytes long and depends on the 'key identifier
mode', 'key source' and 'key index' values being used (specified in the
MCPS-Data.Request for outgoing frames and in the auxiliary security
header for incoming frames) and various address values. The key index
value is included within these bytes. Hence, it is possible for the
application (for outgoing frames or incoming frame) to influence the choice
of key independently of the address and mode. When looking for a key to
use with a frame, the MAC searches every record in the Key table and
each record in each Key ID Look-up sub-table until it finds a matching ID.

 Key device descriptors: Contains a list of key device descriptors, each
entry containing a handle to a device descriptor (containing device
addresses) and flags for specific security rules. This sub-table links the
key to specific device addresses. Having found a matching ID value in the
Key ID Look-up sub-table, the MAC searches the list of key device
descriptors to find a matching address.

Note: The application coding of IEEE 802.15.4-2006
security is complex and you are advised to use the
example code provided in the Application Note 802.15.4
Home Sensor Demonstration for JN516x (JN-AN-1180)
as a basis for your own applicaton development.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 203

Appendices
 Key usage descriptors: Contains a list of descriptors that indicate the
frame types (and, for command frames, command types) for which the key
is valid. Hence, it is possible to restrict the key to specific frame types.

 Device table: Contains device descriptors (device-specific addressing
information and security-related information) that are combined with
information from the Key table to secure outgoing frames and unsecure
incoming frames

 Minimum Security Level table: Contains information concerning the minimum
security level that the device expects to have been applied to a frame by the
originator, depending on frame type and the command frame identifier (for a
MAC command frame)

The above tables are held in the PAN Information Base (PIB) on a device - refer to
Section 8.3 for the relevant PIB attributes and Section 6.3.9 through to Section 6.3.14
for the relevant structures. More detailed descriptions of the tables can be found in the
IEEE 802.15.4-2006 standard.

IEEE 802.15.4-2006 security provides the following features (based on the use of the
above look-up tables):

 Black-listing of device addresses

 Minimum acceptable security level for incoming frames - different levels for
different frame types and exemption for specific devices are possible

 Ability for the application to select more than one key for the same device:

 Key Index to allow selection of more than one key using the same look-up
method (but not for Key Identifier Mode 0 - see below)

 Key Identifier Mode to determine how the address fields of a frame and
the au8macDefaultKeySource attribute are used in the look-up procedure -
this mode is available in the following variations (0, 1, 2 and 3):

0: Key is determined from the destination (on transmit) or source (on
receive) address fields within the frame, or the PAN Co-ordinator address
if those fields are not present

1: Key is determined from au8macDefaultKeySource and the Key index

2/3: Key is determined from data passed in from the application (on
transmit) or carried unencrypted in the frame (on receive), and from the Key
index

 Frame counter for outgoing frames and a record of the frame counter for
incoming frames from all other devices, eliminating replay attacks
204 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
B.2 Security Procedures and Examples

The procedures for securing outgoing frames and unsecuring incoming frames are
fully detailed in the IEEE 802.15.4-2006 standard, to which you should refer during
your application development. You are also advised to use the Application Note
802.15.4 Home Sensor Demonstration for JN516x (JN-AN-1180) as a basis for
implementing security in your applications.

Note the following:

 You must call the function vAppApiSetSecurityMode() in your application to
select the type of security (2003 or 2006) that your application will implement -
this function is detailed in Section 5.1.

 The look-up tables (introduced in Appendix B.1) are held in the PAN
Information Base (PIB) on a device. The PIB attributes that relate to security
are listed and described in Section 8.3.

 The ways in which the look-up tables relate to each other are illustrated in
Table 21 on page 206. The terminology used is the same as that used within
the NXP source code. Note that the tables are depicted as a series of entries
layered on top of one another.

 An example of a security implementation in a network is illustrated in Table 22
on page 207, which shows how a single network key could be shared by 20
nodes and used for all data frames. Key Identifier Mode 1 (see Appendix B.1) is
assumed, which means that the Key ID look-up uses the values from
au8macDefaultKeySource and hence psKeyIdLookupDescriptor can be the
same for all nodes.
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 205

Appendices
Figure 21: Relationships Between Security Tables

M
A

C
_

K
ey

U
sa

ge
D

es
cr

ip
to

r_
s

ui
n

t8
u

8F
ra

m
e

T
yp

e
;

ui
n

t8
u

8C
o

m
m

a
nd

F
ra

m
e

Id
en

tif
ie

r;

M
A

C
_K

ey
U

sa
ge

D
es

cr
ip

to
r_

s

u
in

t8
u8

F
ra

m
eT

yp
e;

u
in

t8
u8

C
om

m
an

dF
ra

m
e

Id
e

n
tif

ie
r;

M
A

C
_

K
ey

D
ev

ic
eD

es
cr

ip
to

r_
s

ui
n

t3
2

u
32

D
ev

ic
e

D
e

sc
rip

to
rH

a
nd

le
;

bo
ol

_
t

b
U

n
iq

u
eD

e
vi

ce
;

bo
ol

_
t

b
B

la
ck

lis
te

d;

u3
2

D
e

vi
ce

D
e

sc
rip

to
rH

a
nd

le
 in

 in
d

ex
 in

to
 P

IB
-

>
ps

M
a

cD
ev

ic
e

T
a

b
le

 a
rr

a
y

M
A

C
_

K
ey

D
ev

ic
eD

es
cr

ip
to

r_
s

u
in

t3
2

u3
2D

e
vi

ce
D

e
sc

rip
to

rH
a

nd
le

;
b

oo
l_

t
bU

n
iq

u
eD

ev
ic

e
;

b
oo

l_
t

bB
la

ck
lis

te
d;

u3
2D

e
vi

ce
D

es
cr

ip
to

rH
an

dl
e

 in
 in

de
x

in
to

 P
IB

-
>

ps
M

ac
D

e
vi

ce
T

a
bl

e
 a

rr
ay

M
A

C
_K

ey
Id

Lo
o

ku
pD

es
cr

ip
to

r_
s

ui
n

t8

a

u8
Lo

ok
u

pD
a

ta
[9

];
ui

n
t8

u
8L

oo
ku

p
D

at
aS

iz
e

;

M
A

C
_K

ey
Id

Lo
o

ku
pD

e
sc

rip
to

r_
s

u
in

t8

au

8L
oo

ku
pD

a
ta

[9
];

u
in

t8

u8

Lo
ok

up
D

a
ta

S
iz

e
;

M
A

C
_

D
ev

ic
e

D
e

sc
rip

to
r_

s

u
in

t1
6

u1

6P
an

Id
;

u
in

t1
6

u1

6S
ho

rt
;

M
A

C
_

E
xt

A
dd

r_
s

sE
xt

;
u

in
t3

2

u3
2F

ra
m

e
C

o
u

nt
e

r;
b

oo
l_

t

bE
xe

m
pt

;

M
A

C
_

D
ev

ic
e

D
es

cr
ip

to
r_

s

ui
n

t1
6

u

16
P

a
nI

d;
ui

n
t1

6

u
16

S
h

or
t;

M
A

C
_E

xt
A

d
dr

_
s

sE
xt

;
ui

n
t3

2

u
32

F
ra

m
eC

o
un

te
r;

bo
ol

_
t

b

E
xe

m
p

t;

M
A

C
_S

e
cu

rit
yL

ev
el

D
es

cr
ip

to
r_

s

u
in

t8
u

8F
ra

m
e

T
yp

e
;

u
in

t8
u

8C
o

m
m

a
nd

F
ra

m
eI

d
e

nt
ifi

e
r;

u
in

t8
u

8M
in

im
um

S
ec

ur
ity

;

b
oo

l_
t

b
O

ve
rid

eS
ec

u
rit

yM
in

im
u

m
;

M
A

C
_S

e
cu

rit
yL

ev
el

D
es

cr
ip

to
r_

s

ui
n

t8
u

8F
ra

m
eT

yp
e

;
ui

n
t8

u
8C

om
m

an
dF

ra
m

e
Id

en
tif

ie
r;

ui
n

t8
u

8M
in

im
um

S
e

cu
ri

ty
;

bo
ol

_
t

b
O

ve
ri

de
S

e
cu

ri
ty

M
in

im
um

;

M
A

C
_

K
ey

D
es

cr
ip

to
r_

s
M

A
C

_
K

e
yI

dL
oo

ku
pD

e
sc

rip
to

r_
s

*p
sK

ey
Id

L
oo

ku
p

D
es

cr
ip

to
r; u

in
t8

u8

K
e

yI
dL

o
ok

u
pE

nt
ri

es
;

M
A

C
_

K
e

yD
e

vi
ce

D
e

sc
rip

to
r_

s

*p
sK

ey
D

e
vi

ce
L

is
t;

u
in

t8

u8
K

e
yD

ev
ic

e
Li

st
E

nt
ri

es
;

M
A

C
_

K
e

yU
sa

g
eD

es
cr

ip
to

r_
s

*p

sK
ey

U
sa

ge
Li

st
;

u
in

t8

u8
K

e
yU

sa
g

eL
is

tE
n

tr
ie

s;

u
in

t3
2

au
32

S
ym

m
et

ric
K

e
y[

4
];

M
A

C
_K

ey
Id

L
oo

ku
p

D
es

cr
ip

to
r_

s
*p

sK
e

yI
d

Lo
ok

u
p

D
e

sc
ri

pt
o

r; ui
n

t8

u
8K

ey
Id

L
oo

ku
p

E
n

tr
ie

s;
M

A
C

_K
ey

D
e

vi
ce

D
es

cr
ip

to
r_

s

*p
sK

e
yD

ev
ic

e
Li

st
;

ui
n

t8

u
8K

ey
D

e
vi

ce
L

is
tE

n
tr

ie
s;

M
A

C
_K

ey
U

sa
ge

D
es

cr
ip

to
r_

s

*p
sK

e
yU

sa
g

e
Li

st
;

ui
n

t8

u
8K

ey
U

sa
ge

Li
st

E
nt

rie
s;

ui
n

t3
2

a
u3

2S
ym

m
e

tr
ic

K
e

y[
4]

;

M
A

C
_

K
ey

D
es

cr
ip

to
r_

s
P

IB
->

p
sM

a
cK

e
yT

a
b

le

M
A

C
_K

e
yD

es
cr

ip
to

r_
s

*

N
u

m
be

r
o

f
ar

ra
y

e
le

m
e

nt
s

is
 in

P

IB
->

u
8M

ac
K

ey
T

a
b

le
E

n
tr

ie
s

P
IB

->
ps

M
ac

S
ec

u
rit

yL
ev

el
T

ab
le

M
A

C
_S

e
cu

ri
ty

Le
ve

lD
es

cr
ip

to
r_

s
*

N
u

m
be

r
o

f
ar

ra
y

e
le

m
e

nt
s

is
 in

P

IB
->

u8
M

ac
S

ec
u

irt
yL

ev
el

T
ab

le
E

nt
ri

es

P
IB

->
p

sM
ac

D
ev

ic
eT

ab
le

M
A

C
_D

ev
ic

eD
es

cr
ip

to
r_

s
*

N
u

m
be

r
o

f
ar

ra
y

e
le

m
e

nt
s

is
 in

P

IB
->

u8
M

a
cD

ev
ic

e
T

ab
le

E
nt

ri
es

M
A

C
_K

ey
U

sa
ge

D
es

cr
ip

to
r_

s

u
in

t8
u

8
F

ra
m

e
T

yp
e

;
u

in
t8

u
8

C
o

m
m

a
nd

F
ra

m
eI

de
nt

ifi
e

r;

M
A

C
_K

ey
D

es
cr

ip
to

r_
s

M
A

C
_

K
e

yI
d

Lo
ok

u
pD

e
sc

rip
to

r_
s

*p
sK

e
yI

dL
o

ok
u

pD
e

sc
rip

to
r; u

in
t8

u8

K
e

yI
d

Lo
ok

u
p

E
n

tr
ie

s;
M

A
C

_
K

e
yD

ev
ic

e
D

es
cr

ip
to

r_
s

*p

sK
e

yD
ev

ic
e

Li
st

;
u

in
t8

u8

K
e

yD
ev

ic
e

Li
st

E
nt

rie
s;

M
A

C
_

K
e

yU
sa

g
eD

e
sc

rip
to

r_
s

*p

sK
e

yU
sa

g
eL

is
t;

u
in

t8

u8
K

e
yU

sa
g

e
Li

st
E

nt
rie

s;

u
in

t3
2

au

3
2S

ym
m

e
tr

ic
K

ey
[4

];

M
A

C
_D

ev
ic

eD
e

sc
rip

to
r_

s

u
in

t1
6

u1

6
P

an
Id

;
u

in
t1

6

u1
6

S
ho

rt
;

M
A

C
_

E
xt

A
d

dr
_s

sE

xt
;

u
in

t3
2

u3

2
F

ra
m

e
C

ou
nt

er
;

b
oo

l_
t

bE

xe
m

p
t;

M
A

C
_

S
ec

ur
ity

Le
ve

lD
es

cr
ip

to
r_

s

u
in

t8
u8

F
ra

m
eT

yp
e;

u
in

t8
u8

C
om

m
an

dF
ra

m
e

Id
e

nt
ifi

er
;

ui
nt

8
u8

M
in

im
u

m
S

ec
ur

ity
;

b
oo

l_
t

bO
ve

ri
de

S
e

cu
ri

ty
M

in
im

u
m

;

M
A

C
_K

ey
Id

Lo
ok

up
D

e
sc

rip
to

r_
s

u
in

t8

a

u
8L

oo
ku

p
D

at
a

[9
];

u
in

t8

u

8
Lo

ok
u

pD
a

ta
S

iz
e;

M
A

C
_K

ey
D

ev
ic

eD
es

cr
ip

to
r_

s
u

in
t3

2
u

3
2D

ev
ic

e
D

es
cr

ip
to

rH
an

dl
e

;
b

oo
l_

t
b

U
ni

q
ue

D
ev

ic
e

;
b

oo
l_

t
b

B
la

ck
lis

te
d

;

u
32

D
ev

ic
e

D
es

cr
ip

to
rH

a
n

dl
e

in
 in

de
x

in
to

P

IB
->

p
sM

a
cD

ev
ic

e
T

ab
le

 a
rr

a
y

206 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Figure 22: Security Example

M
A

C
_K

e
yD

ev
ic

eD
es

cr
ip

to
r_

s
u

in
t3

2
u

3
2D

ev
ic

e
D

es
cr

ip
to

rH
an

dl
e

;
b

oo
l_

t
b

U
ni

q
ue

D
ev

ic
e

;
b

oo
l_

t
b

B
la

ck
lis

te
d

;

u3
2D

e
vi

ce
D

es
cr

ip
to

rH
an

dl
e

 in
 in

de
x

in
to

 P
IB

-
>

ps
M

ac
D

e
vi

ce
T

a
bl

e
 a

rr
ay

M
A

C
_K

e
yD

e
vi

ce
D

e
sc

rip
to

r_
s

ui
nt

32
u

32
D

e
vi

ce
D

e
sc

rip
to

rH
a

nd
le

;
bo

ol
_

t
b

U
n

iq
u

eD
e

vi
ce

;
bo

ol
_

t
b

B
la

ck
lis

te
d;

u
32

D
ev

ic
e

D
e

sc
ri

pt
o

rH
a

nd
le

 in
 in

de
x

in
to

 P
IB

-
>

p
sM

a
cD

ev
ic

e
T

ab
le

 a
rr

a
y

M
A

C
_D

ev
ic

eD
es

cr
ip

to
r_

s

ui
n

t1
6

u

16
P

a
nI

d;
ui

n
t1

6

u
16

S
h

or
t;

M
A

C
_E

xt
A

d
dr

_
s

sE
xt

;
ui

n
t3

2

u
32

F
ra

m
eC

o
un

te
r;

bo
ol

_
t

b

E
xe

m
pt

;

M
A

C
_D

ev
ic

eD
es

cr
ip

to
r_

s

u
in

t1
6

u1

6P
an

Id
;

u
in

t1
6

u1

6S
ho

rt
;

M
A

C
_

E
xt

A
d

dr
_s

sE

xt
;

u
in

t3
2

u3

2F
ra

m
e

C
ou

nt
er

;
b

oo
l_

t

bE
xe

m
p

t;

P
IB

->
ps

M
ac

K
ey

T
ab

le

M
A

C
_K

e
yD

es
cr

ip
to

r_
s

*

N
um

b
er

 o
f a

rr
a

y
el

e
m

e
nt

s
is

 in

P
IB

->
u

8
M

a
cK

e
yT

ab
le

E
nt

ri
es

P
IB

->
ps

M
ac

S
ec

ur
ity

Le
ve

lT
ab

le

M
A

C
_S

ec
ur

ity
Le

ve
lD

es
cr

ip
to

r_
s

*

N
um

b
er

 o
f a

rr
a

y
el

e
m

e
nt

s
is

 in

P
IB

->
u

8M
ac

S
ec

u
irt

yL
e

ve
lT

a
bl

e
E

n
tr

ie
s

P
IB

->
ps

M
ac

D
e

vi
ce

T
ab

le

M
A

C
_

D
e

vi
ce

D
e

sc
ri

pt
o

r_
s

*

N
um

b
er

 o
f a

rr
a

y
el

e
m

e
nt

s
is

 in

P
IB

->
u

8M
ac

D
e

vi
ce

T
a

bl
e

E
n

tr
ie

s

M
A

C
_K

e
yU

sa
ge

D
e

sc
rip

to
r_

s

u
in

t8
u8

F
ra

m
eT

yp
e;

u
in

t8
u8

C
om

m
a

n
dF

ra
m

e
Id

e
nt

ifi
e

r;

M
A

C
_K

ey
D

e
sc

ri
pt

or
_s

M
A

C
_K

ey
Id

L
oo

ku
p

D
es

cr
ip

to
r_

s
*p

sK
ey

Id
L

oo
ku

p
D

es
cr

ip
t

or
;

ui
n

t8

u
8

K
e

yI
dL

oo
ku

pE
nt

ri
es

;
M

A
C

_K
ey

D
e

vi
ce

D
e

sc
rip

to
r_

s

*p
sK

ey
D

e
vi

ce
L

is
t;

ui
n

t8

u
8

K
e

yD
e

vi
ce

L
is

tE
n

tr
ie

s;
M

A
C

_K
ey

U
sa

ge
D

es
cr

ip
to

r_
s

*p

sK
ey

U
sa

ge
Li

st
;

ui
n

t8

u
8

K
e

yU
sa

g
eL

is
tE

n
tr

ie
s;

ui
n

t3
2

a
u

32
S

ym
m

et
ri

cK
e

y[
4

];

M
A

C
_D

ev
ic

eD
es

cr
ip

to
r_

s

ui
n

t1
6

u

1
6P

a
n

Id
;

ui
n

t1
6

u

1
6S

h
o

rt
;

M
A

C
_E

xt
A

dd
r_

s
sE

xt
;

ui
n

t3
2

u

3
2F

ra
m

eC
o

un
te

r;
bo

o
l_

t

b
E

xe
m

pt
;

M
A

C
_S

ec
ur

ity
Le

ve
lD

es
cr

ip
to

r_
s

ui
n

t8
u

8F
ra

m
e

T
yp

e
;

ui
n

t8
u

8C
o

m
m

a
nd

F
ra

m
eI

d
en

tif
ie

r;
ui

n
t8

u
8M

in
im

um
S

ec
u

rit
y;

bo
o

l_
t

b
O

ve
rid

eS
ec

u
rit

yM
in

im
u

m
;

M
A

C
_K

ey
Id

Lo
ok

up
D

es
cr

ip
to

r_
s

u
in

t8

au

8L
oo

ku
p

D
at

a[
9

];
u

in
t8

u8
Lo

ok
u

pD
a

ta
S

iz
e;

M
A

C
_K

ey
D

ev
ic

eD
es

cr
ip

to
r_

s
u

in
t3

2
u3

2D
e

vi
ce

D
es

cr
ip

to
rH

an
dl

e
;

b
oo

l_
t

bU
n

iq
ue

D
ev

ic
e

;
b

oo
l_

t
bB

la
ck

lis
te

d
;

u3
2D

e
vi

ce
D

e
sc

rip
to

rH
a

nd
le

 in
 in

d
ex

 in
to

P

IB
->

ps
M

ac
D

e
vi

ce
T

a
bl

e
 a

rr
ay

x1 x2
0

x1

x1

x1 x2
0

JN-UG-3024 v2.0 © NXP Laboratories UK 2014 207

Appendices
B.3 Performance Considerations

B.3.1 Memory Usage

Selection of specific modes minimises the amount of RAM required by the security
data. Key Identifier Modes 1, 2 and 3 provide the minimum space for a given size of
network, as they allow one key ID look-up descriptor to be used for all devices.

If multiple keys are required, it is possible to share the sub-tables between them.

B.3.2 Frame Size

The auxiliary security header in an IEEE 802.15.4 MAC frame is at least 5 bytes long.
In addition, the Key Identifier modes add extra bytes, as follows:

Different security levels also add a checksum of 0 (no MIC), 4, 8 or 16 bytes.

B.3.3 Conclusion

Key Identifier Mode 0 provides the best frame size but Key Identifier Mode 1 uses
frames that are only one byte larger while allowing for smaller data tables. Therefore,
in general use, Key Identifier Mode 1 provides the best compromise between memory
usage and frame size.

Key Identifier Mode Additional Header Data (bytes)

0 0

1 1

2 5

3 9

Table 13: Extra Header Data Bytes for Key Identifier Modes
208 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

 IEEE 802.15.4 Stack
User Guide
Revision History

Version Date Comments

1.0 19-Sep-2006 Initial release

1.1 06-Oct-2006 Clarification of network topologies in relation to IEEE 802.15.4 standard

2.0 11-Feb-2014 • Updated for JN516x and JN514x families of wireless microcontroller

• Incorporates information from former 802.15.4 Stack API Reference
Manual (JN-RM-2002), IEEE 802.15.4 Application Development
Reference Manual (JN-RM-2024) and Application Queue API
Reference Manual (JN-RM-2025)
JN-UG-3024 v2.0 © NXP Laboratories UK 2014 209

IEEE 802.15.4 Stack
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
210 © NXP Laboratories UK 2014 JN-UG-3024 v2.0

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks

	Part I: Concept and Operational Information
	1. Introduction to IEEE 802.15.4
	1.1 IEEE 802.15.4 Background and Context
	1.1.1 Motivation for Standard
	1.1.2 Application Areas

	1.2 Radio Frequencies and Data Rates
	1.3 Achieving Low Power Consumption
	1.4 Network Topologies
	1.4.1 Star Topology
	1.4.2 Tree Topology
	1.4.3 Mesh Topology

	1.5 Device Types
	1.6 Device Addressing
	1.7 Network Set-up
	1.8 Data Transfer
	1.8.1 Data Frames and Acknowledgements
	1.8.2 Data Transfer Types

	1.9 Software Stack Architecture
	1.9.1 Physical (PHY) Layer
	1.9.2 Media Access Control (MAC) Sub-layer

	1.10 Channel Management
	1.10.1 Channel Assignment
	1.10.2 Clear Channel Assessment (CCA)
	1.10.3 Channel Rejection

	1.11 Device Management
	1.11.1 PAN Co-ordinator Selection
	1.11.2 Device Association and Disassociation
	1.11.3 Orphan Devices

	1.12 Beacon and Non-beacon Enabled Operation
	1.12.1 Beacon Enabled Mode
	1.12.2 Non-beacon Enabled Mode

	1.13 Routing
	1.13.1 Routing in a Star Topology
	1.13.2 Routing in a Tree Topology
	1.13.3 Routing in a Mesh Topology

	1.14 PAN Information Base (PIB)
	1.15 MAC Interface Mechanism
	1.15.1 Service Primitives
	1.15.2 Blocking and Non-Blocking Operation
	1.15.3 Callback Mechanism
	1.15.4 Implementation of Service Primitives

	1.16 Security
	1.16.1 ACL Mode
	1.16.2 Secured Mode

	2. IEEE 802.15.4 Software
	2.1 Software Overview
	2.2 Application Programming Interfaces (APIs)
	2.2.1 802.15.4 Stack API
	2.2.2 JN51xx Integrated Peripherals API
	2.2.3 Board API
	2.2.4 Application Queue API (Optional)

	2.3 Software Installation
	2.4 Interrupts and Callbacks

	3. Network and Node Operations
	3.1 MAC Reset
	3.1.1 Reset Messages
	3.1.2 Reset Example

	3.2 Channel Scan
	3.2.1 Scan Types
	3.2.2 Scan Messages
	3.2.3 Scan Examples

	3.3 Start
	3.3.1 Start Messages
	3.3.2 Start Example

	3.4 Synchronisation
	3.4.1 Initialising Synchronisation
	3.4.2 Conflict Notification
	3.4.3 Sync Messages

	3.5 Beacons and Polling
	3.5.1 Beacon Notify Indication
	3.5.2 Poll Messages
	3.5.3 Beacon Examples
	3.5.4 Polling Example

	3.6 Association
	3.6.1 Associate Messages
	3.6.2 Association Examples

	3.7 Disassociate
	3.7.1 Disassociate Request
	3.7.2 Disassociate Confirm
	3.7.3 Disassociate Indication
	3.7.4 Disassociation Examples

	3.8 Data Transmission and Reception
	3.8.1 Transmission Power
	3.8.2 Data Request
	3.8.3 Data Confirm
	3.8.4 Data Indication
	3.8.5 Purge Request
	3.8.6 Purge Confirm
	3.8.7 Data Transfer Examples
	3.8.8 Receive Enable
	3.8.9 Receive Enable Request
	3.8.10 Receive Enable Confirm
	3.8.11 Receive Enable Examples

	3.9 Guaranteed Time Slot (GTS)
	3.9.1 GTS Request
	3.9.2 GTS Confirm
	3.9.3 GTS Indication
	3.9.4 GTS Examples

	3.10 PIB Access
	3.10.1 MAC PIB Attributes
	3.10.2 PHY PIB Attributes

	3.11 Issuing Service Primitives
	3.11.1 Sending Requests
	3.11.2 Registering Deferred Confirm/Indication Callbacks

	4. Application Development
	4.1 Application Template
	4.1.1 Pre-requisites
	4.1.2 Unpacking the Application Note
	4.1.3 Supplied Files

	4.2 Code Descriptions
	4.2.1 Contents of AN1xxx_154_Coord.c
	4.2.2 Contents of AN1xxx_154_EndD.c

	4.3 Adapting the Skeleton Code
	4.3.1 How Do I Program a Pre-defined PAN ID?
	4.3.2 How Do I Program Pre-defined Short Addresses?
	4.3.3 How Do I Add End Devices to the Network?
	4.3.4 How Do I Program the Channel Scans?
	4.3.5 How Do I Define the Processing of Received Data Packets?
	4.3.6 How Do I Program Data Transmission?

	4.4 Building Your Code
	4.4.1 Building Code Using Makefiles
	4.4.2 Building Code Using Eclipse

	Part II: Reference Information
	5. API Functions
	5.1 Network to MAC Layer Functions
	vAppApiMlmeRequest
	vAppApiMcpsRequest
	vAppApiSetSecurityMode
	vAppApiSetHighPowerMode (JN516x Only)

	5.2 MAC to Network Layer Functions
	u32AppApiInit
	vAppApiSaveMacSettings
	vAppApiRestoreMacSettings

	5.3 MAC Layer PIB Access Functions
	MAC_vPibSetMaxCsmaBackoffs
	MAC_vPibSetMinBe
	MAC_vPibSetPanId
	MAC_vPibSetPromiscuousMode
	MAC_vPibSetRxOnWhenIdle
	MAC_vPibSetShortAddr

	5.4 PHY Layer PIB Access Functions
	eAppApiPlmeGet
	eAppApiPlmeSet

	5.5 Callback Functions
	psMlmeDcfmIndGetBuf
	vMlmeDcfmIndPost
	psMcpsDcfmIndGetBuf
	vMcpsDcfmIndPost

	5.6 Status Returns

	6. Structures
	6.1 MLME Structures
	6.1.1 MAC_MlmeReqRsp_s
	6.1.2 MAC_MlmeReqRspParam_u
	6.1.3 MAC_MlmeDcfmInd_s
	6.1.4 MAC_MlmeDcfmIndParam_u
	6.1.5 MAC_MlmeSyncCfm_s
	6.1.6 MAC_MlmeSyncCfmParam_u
	6.1.7 MAC_MlmeReqAssociate_s
	6.1.8 MAC_MlmeReqDisassociate_s
	6.1.9 MAC_MlmeReqGet_s
	6.1.10 MAC_MlmeReqGts_s
	6.1.11 MAC_MlmeReqReset_s
	6.1.12 MAC_MlmeReqRxEnable_s
	6.1.13 MAC_MlmeReqScan_s
	6.1.14 MAC_MlmeReqSet_s
	6.1.15 MAC_MlmeReqStart_s
	6.1.16 MAC_MlmeReqSync_s
	6.1.17 MAC_MlmeReqPoll_s
	6.1.18 MAC_MlmeReqVsExtAddr_s
	6.1.19 MAC_MlmeRspAssociate_s
	6.1.20 MAC_MlmeRspOrphan_s
	6.1.21 MAC_MlmeCfmScan_s
	6.1.22 MAC_MlmeCfmGts_s
	6.1.23 MAC_MlmeCfmAssociate_s
	6.1.24 MAC_MlmeCfmDisassociate_s
	6.1.25 MAC_MlmeCfmPoll_s
	6.1.26 MAC_MlmeCfmRxEnable_s
	6.1.27 MAC_MlmeCfmGet_s
	6.1.28 MAC_MlmeCfmSet_s
	6.1.29 MAC_MlmeCfmStart_s
	6.1.30 MAC_MlmeCfmReset_s
	6.1.31 MAC_MlmeCfmVsRdReg_s
	6.1.32 MAC_MlmeIndAssociate_s
	6.1.33 MAC_MlmeIndDisassociate_s
	6.1.34 MAC_MlmeIndGts_s
	6.1.35 MAC_MlmeIndBeacon_s
	6.1.36 MAC_MlmeIndSyncLoss_s
	6.1.37 MAC_MlmeIndCommStatus_s
	6.1.38 MAC_MlmeIndOrphan_s

	6.2 MCPS Structures
	6.2.1 MAC_McpsReqRsp_s
	6.2.2 MAC_McpsReqRspParam_u
	6.2.3 MAC_McpsSyncCfm_s
	6.2.4 MAC_McpsSyncCfmParam_u
	6.2.5 MAC_McpsReqData_s
	6.2.6 MAC_McpsReqPurge_s
	6.2.7 MAC_McpsCfmData_s
	6.2.8 MAC_McpsCfmPurge_s
	6.2.9 MAC_McpsDcfmInd_s
	6.2.10 MAC_McpsDcfmIndParam_u
	6.2.11 MAC_McpsIndData_s

	6.3 Other Structures
	6.3.1 MAC_ScanList_u
	6.3.2 MAC_PanDescr_s
	6.3.3 MAC_Addr_s
	6.3.4 MAC_Addr_u
	6.3.5 MAC_ExtAddr_s
	6.3.6 MAC_TxFrameData_s
	6.3.7 MAC_RxFrameData_s
	6.3.8 MAC_DcfmIndHdr_s
	6.3.9 MAC_KeyDescriptor_s
	6.3.10 MAC_KeyIdLookupDescriptor_s
	6.3.11 MAC_KeyDeviceDescriptor_s
	6.3.12 MAC_KeyUsageDescriptor_s
	6.3.13 MAC_DeviceDescriptor_s
	6.3.14 MAC_SecurityLevelDescriptor_s

	7. Enumerations
	7.1 MAC Enumerations
	7.1.1 MAC PIB Attribute Enumerations
	7.1.2 MAC Operation Status Enumerations

	7.2 PHY Enumerations
	7.2.1 PHY PIB Attribute Enumerations
	7.2.2 PHY PIB Operation Status Enumerations

	7.3 MLME Enumerations
	7.3.1 MLME Request and Response Type Enumerations
	7.3.2 MLME Deferred Confirm and Indication Type Enumerations
	7.3.3 MLME Synchronous Confirm Status Enumerations
	7.3.4 MLME Scan Type Enumerations

	7.4 MCPS Enumerations
	7.4.1 MCPS Request and Response Type Enumerations
	7.4.2 MCPS Indication Type Enumerations
	7.4.3 MCPS Synchronous Confirm Status Enumerations

	8. PIB Attributes
	8.1 MAC PIB Attributes
	8.1.1 MAC PIB Write Access using API Functions
	8.1.2 MAC PIB Examples

	8.2 PHY PIB Attributes
	8.3 MAC PIB Security Attributes (Optional)

	Part III: Appendices
	A. Application Queue API
	u32AppQApiInit
	psAppQApiReadMlmeInd
	psAppQApiReadMcpsInd
	psAppQApiReadHwInd
	vAppQApiReturnMlmeIndBuffer
	vAppQApiReturnMcpsIndBuffer
	vAppQApiReturnHwIndBuffer

	B. Notes on IEEE 802.15.4-2006 Security

