
 
 
 
 
  
 

 
 
 

SYS TEC electronic GmbH   -   System House for Distributed Automation Solutions 
 

 
 
 
 
 

CAN / CANopen 
Extension for 
IEC 61131-3 

 
 
 

User Manual 
Version 7.0 

 
 
 

Edition May 2011 
 

Document No.: L-1008e_7 
 
 
 
 

SYSTEC electronic GmbH   August-Bebel-Straße 29   D-07973 Greiz 
Telefon: +49 (3661) 6279-0   Telefax: +49 (3661) 6279-99 

Web: http://www.systec-electronic.com   Mail: info@systec-electronic.com 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 2 
 

 
 
Status/Changes 
 
Status: Released 
 

Date/Version Section Change By 
2007/04/02 
6.0 

2, 3 and 5 Sections 2, 3 and 5 have been revised 
completely 

R. Sieber 

2011/05/25 
7.0 

4.4.5, 4.4.6, 
6 

New Sections: 
4.4.5 (CAN_SDO_READ_BIN), 
4.4.6 (CAN_SDO_WRITE_BIN) and 
6 (CAN Layer 2 FB) 

R. Sieber 

    
    
    
    
    
    
    
    
    
    
    

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 3 
 

Product names used in this manual which are also registered trademarks have not been marked 
additionally. The missing © mark does not imply that the trade name is unregistered. Nor is it possible 
to determine the existence of any patents or protection of inventions on the basis of the names used. 
 
The information in this manual has been carefully checked and is believed to be accurate. However, it 
is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal responsibility or 
any liability for consequential damages which result from the use or contents of this user manual. The 
information contained in this manual can be changed without prior notice. Therefore, SYS TEC 
electronic GmbH shall not accept any obligation. 
 
Furthermore, it is expressly stated that SYS TEC electronic GmbH does not assume warranty or legal 
responsibility or any liability for consequential damages which result from incorrect use of the 
hardware or software. The layout or design of the hardware can also be changed without prior notice. 
Therefore, SYS TEC electronic GmbH shall not accept any obligation. 
 
© Copyright 2011  SYS TEC electronic GmbH, 07973 Greiz, Germany. 
All rights reserved. No part of this manual may be reproduced, processed, copied or distributed in any 
way without prior written permission of SYS TEC electronic GmbH. 
 
 
Inform yourselves: 
 

Contact Direct Your local distributor 

Address: SYS TEC electronic GmbH 
August-Bebel-Str. 29 
D-07973 Greiz 
GERMANY 

Ordering 
Information: 

+49 (0) 36 61 / 62 79-0 
info@systec-electronic.com 

Technical Support: +49 (0) 36 61 / 62 79-0 
support@systec-electronic.com 

Fax: +49 (0) 36 61 / 6 79 99 

Web Site: http://www.systec-electronic.com 

Please find a list of our 
distributors under: 
 
http://www.systec-
electronic.com/distributors 

 
 
7th Edition Mai 2011 
 

mailto:info@systec-electronic.com�
mailto:support@systec-electronic.com�
http://www.systec-electronic.com/�


 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 4 
 

 

Table of Contents 
 

1 Introduction .............................................................................................................................7 
2 Basics of CANopen Integration of a PLC .......................................................................... 10 
2.1 Differences between a PLC with and without CANopen Master............................................ 10 
2.2 Node Configuration via PLC with CANopen Master .............................................................. 11 
2.3 Initial Initialization of the Network Variables........................................................................... 14 
3 IEC61131 Network Variables for CANopen ....................................................................... 16 
3.1 Basic Information for Network Variables................................................................................ 16 
3.2 Configuration Process............................................................................................................ 17 
3.2.1 Network Configuration............................................................................................................ 17 
3.2.2 CANopen Configurator........................................................................................................... 19 
3.2.3 Predefined DCF Files............................................................................................................. 19 
3.3 Integrating DCF Files into the PLC Project ............................................................................ 21 
3.3.1 Integrating Complete Network Projects ................................................................................. 21 
3.3.2 Manual Integration of Individual DCF Files ............................................................................ 23 
3.4 Using Network Variables in the PLC Program....................................................................... 27 
3.5 Summary of Required Steps .................................................................................................. 31 
3.6 Example Project for Network Variables ................................................................................. 31 
4 IEC61131 Function Blocks for CANopen........................................................................... 33 
4.1 Basics of CANopen Function Blocks ..................................................................................... 33 
4.1.1 Overview of the CANopen Function Blocks ........................................................................... 33 
4.1.2 Availability of the Function Blocks on Controls with and without CANopen Master .............. 34 
4.1.3 Synchronization between the CANopen Function Block and PLC Program ......................... 35 
4.1.4 Input/Output Parameters of the CANopen Function Blocks .................................................. 36 
4.1.5 CANopen-Specific Constants................................................................................................. 36 
4.2 Function Blocks for Accessing the Local CANopen Kernel ................................................... 39 
4.2.1 Function Block CAN_GET_LOCAL_NODE_ID...................................................................... 39 
4.2.2 Function Block CAN_GET_CANOPEN_KERNEL_STATE ................................................... 40 
4.3 Function Blocks for PDOs and CAN Layer 2 ......................................................................... 40 
4.3.1 Function Block CAN_REGISTER_COBID ............................................................................. 41 
4.3.2 Function Block CAN_PDO_READ8 ....................................................................................... 42 
4.3.3 Function Block CAN_PDO_WRITE8 ..................................................................................... 43 
4.4 Function Blocks for SDOs ...................................................................................................... 44 
4.4.1 Function Block CAN_SDO_READ8 ....................................................................................... 44 
4.4.2 Function Block CAN_SDO_WRITE8 ..................................................................................... 45 
4.4.3 Function Block CAN_SDO_READ_STR................................................................................ 47 
4.4.4 Function Block CAN_SDO_WRITE_STR .............................................................................. 48 
4.4.5 Function Block CAN_SDO_READ_BIN ................................................................................. 49 
4.4.6 Function Block CAN_SDO_WRITE_BIN ............................................................................... 51 
4.5 Function Blocks for Master Services...................................................................................... 52 
4.5.1 Function Block CAN_GET_STATE........................................................................................ 52 
4.5.2 Function Block CAN_NMT ..................................................................................................... 53 
4.5.3 Function Block CAN_RECV_EMCY_DEV ............................................................................. 54 
4.5.4 Function Block CAN_RECV_EMCY....................................................................................... 55 
4.5.5 Function Block CAN_WRITE_EMCY..................................................................................... 56 
4.5.6 Function Block CAN_RECV_BOOTUP_DEV ........................................................................ 57 
4.5.7 Function Block CAN_RECV_BOOTUP.................................................................................. 58 
4.5.8 Function Block CAN_ENABLE_CYCLIC_SYNC ................................................................... 59 
4.5.9 Function Block CAN_SEND_SYNC....................................................................................... 60 
4.6 Example Project for CANopen Function Blocks..................................................................... 60 
5 Configuration of a PLC with CANopen Master ................................................................. 63 
5.1 Basic Information for the Master Configuration...................................................................... 63 
5.2 Definition of the Node List ...................................................................................................... 63 
5.3 Configuration of the COBID for Node State Messages ......................................................... 64 
5.4 Definition of Waiting Periods .................................................................................................. 64 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 5 
 

5.5 Configuration of Heartbeat/Lifeguarding of the CANopen Devices ....................................... 65 
6 IEC61131 Function Blocks for CAN Layer 2...................................................................... 69 
6.1 Basic Information on CAN Layer 2 Function Blocks .............................................................. 69 
6.1.1 Overview of CAN Layer 2 Funtion Blocks.............................................................................. 69 
6.1.2 Synchronisation Between CAN Layer 2 Function Block and PLC Program.......................... 70 
6.1.3 CAN Layer 2-specific Constants ............................................................................................ 70 
6.2 Function Blocks for CAN Layer 2 ........................................................................................... 71 
6.2.1 Function Block CANL2_INIT .................................................................................................. 71 
6.2.2 Function Block CANL2_SHUTDOWN.................................................................................... 72 
6.2.3 Function Block CANL2_RESET............................................................................................. 73 
6.2.4 Function Block CANL2_GET_STATUS ................................................................................. 74 
6.2.5 Function Block CANL2_DEFINE_CANID .............................................................................. 74 
6.2.6 Function Block CANL2_DEFINE_CANID_RANGE ............................................................... 75 
6.2.7 Function Block CANL2_UNDEFINE_CANID ......................................................................... 76 
6.2.8 Function Block CANL2_UNDEFINE_CANID_RANGE .......................................................... 77 
6.2.9 Function Block CANL2_MESSAGE_READ8 ......................................................................... 78 
6.2.10 Function Block CANL2_MESSAGE_READ_BIN................................................................... 79 
6.2.11 Function Block CANL2_MESSAGE_WRITE8 ....................................................................... 80 
6.2.12 Function Block CANL2_MESSAGE_WRITE_BIN ................................................................. 81 
6.2.13 Function Block CANL2_MESSAGE_UPDATE8 .................................................................... 82 
6.2.14 Function Block CANL2_MESSAGE_UPDATE_BIN .............................................................. 83 
7 Index ...................................................................................................................................... 85 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 6 
 

 
List of Tables 
 
Table 1: Availability of services on the PLC with and without CANopen Master .................................. 10 
Table 2: Overview of EDS files for SYSTEC devices:........................................................................... 19 
Table 3: Overview of predefined DCF files ........................................................................................... 20 
Table 4: Network variables of the predefined DCF files........................................................................ 20 
Table 5: Assignment of data types between IEC61131 and CANopen ................................................ 30 
Table 6: Overview of the CANopen function blocks for IEC61131-3 .................................................... 33 
Table 7: Availability of CANopen FBs on controls with and without Master ......................................... 34 
Table 8: Constants for data type "CIA405_CANOPEN_KERNEL_ERROR"........................................ 37 
Table 9: Constants for data type "CIA405_STATE".............................................................................. 37 
Table 10: Constants for data type "CIA405_TRANSITION_STATE".................................................... 38 
Table 11: Constants for data type "CAN_SDO_TYPE"......................................................................... 38 
Table 12: Constants for data type "CIA405_SDO_ERROR" ................................................................ 38 
Table 13: Object Dictionary entry for interval limits of the network scan .............................................. 64 
Table 14: Object Dictionary entry for COBID of the node state messages........................................... 64 
Table 15: Object Dictionary entries for defining waiting periods ........................................................... 65 
Table 16: Configuration of Heartbeat .................................................................................................... 65 
Table 17: Configuration of Lifeguarding ................................................................................................ 66 
Table 18: Overview of CAN Layer 2 funtion blocks for IEC 61131-3.................................................... 69 
Table 19: Constants for data type "CANL2_ERROR"........................................................................... 70 
Table 20: Constants for Data Type "CANL2_BUS_STATUS" .............................................................. 70 
Table 21: Constants for Data Type "CANL2_CDRV_STATUS" ........................................................... 71 
 
 
 
List of Illustrations 
 
Figure 1: Node configuration procedure via CANopen Master ............................................................. 13 
Figure 2: CANopen node configuration................................................................................................. 18 
Figure 3: Importing networks into OpenPCS......................................................................................... 22 
Figure 4: Presentation of the imported network in the OpenPCS project browser ............................... 22 
Figure 5: Linking the imported network project to the active PLC resource ......................................... 23 
Figure 6: Creating a network in OpenPCS............................................................................................ 24 
Figure 7: Creating a network entry ........................................................................................................ 24 
Figure 8: Adding a new network node................................................................................................... 25 
Figure 9: Presentation of the imported network nodes in the OpenPCS project browser .................... 25 
Figure 10: Presentation of the network after changing names ............................................................. 26 
Figure 11: Linking the manually created network project to the active PLC resource.......................... 26 
Figure 12: Creating a new assignment table......................................................................................... 27 
Figure 13: Inserting network variables in the assignment table ............................................................ 28 
Figure 14: Linking the assignment table to the active PLC resource.................................................... 28 
Figure 15: Presentation of the resource components in the project browser ....................................... 29 
Figure 16: Process synchronization between CANopen and PLC program......................................... 35 
Figure 17: SYSTEC CANopen Master Configurator ............................................................................. 63 
Figure 18: Heartbeat configuration process .......................................................................................... 67 
Figure 19: Lifeguarding configuration process...................................................................................... 67 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 7 
 

1 Introduction 

This manual describes in its 1st part the integration of CANopen services in PLC programs 
according to standard IEC61131-3. This enables the application of network variables and 
CANopen access through specific function blocks. Prerequisite for this is a PLC with a 
CANopen interface. 
 
The functionality defined in the CiA Draft Standard 405 by the CiA (CAN in Automation e.V.) provides 
the basis for offering CANopen services for PLC programs according to EC1131-3. SYSTEC 
enhances this functionality with additional, manufacturer-specific function blocks (e.g. sending and 
receiving of PDOs or CAN Layer 2 messages, generation of SYNC objects). 
 
The second part of this manual describes the use of function blocks for processing protocol-
independent CAN-messages (CAN layer 2 messages) in a PLC program. By means of CAN layer 2 
function blocks, the PLC can also communicate with CAN-devices, which are not CANopen 
compatible. 
 
 
 
Using CANopen network variables ( → Section 3) 
 
Network variables are the simplest form of data exchange with other CANopen nodes. Access to 
network variables in a PLC program means the same as accessing internal, local variables in the 
PLC. For the PLC programmer it is therefore unimportant, whether e.g. an input variable is assigned 
to a local input of the control or whether it represents an input of a decentral extensionmodule. The 
application of network variables only requires basic CANopen knowledge. In general, a CANopen 
configurator as well as the availability of EDS files for the individual CANopen devices are 
usually prerequisites for integrating network variables (see section 3.1). 
 
With the aid of network variables it is possible: 
 

 To extend PLC inputs and outputs by using CANopen devices 
 

 To exchange process data between various controls in order to realize decentral automation 
projects 

 
 To include, in addition to SYSTEC modules, any other specialized CANopen devices in the project 

planning in order to design controls for special tasks with the aid of modular standard modules. 

 
 
Using CANopen function blocks ( → Section 4) 
 
CANopen function blocks enable direct access to specific CANopen services and, therefore, provide 
high-level application flexibility. A CANopen configurator or EDS files are not required for their 
utilization. However, the utilization of CANopen function blocks requires detailed knowledge of 
CANopen and its various services. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 8 
 

With the aid of CANopen function blocks it is possible: 
 

 To directly exchange data via SDO (Service Data Object) or PDO (Process Data Object) with other 
CANopen nodes 

 
 To request or influence the state of other CANopen nodes 

 
 To receive error messages of other CANopen nodes 

 
 To enable the generation of SYNC messages 

 
 
Using CAN Layer 2 function blocks (  Section 6) 
 
CAN Layer 2 function blocks allow for a protocol-independent exchange of data between PLC and 
diverse CAN-devices. Here, the PLC program directly processes the CAN-messages, which are 
transferred to the CAN-bus. 
 
CAN Layer 2 function blocks allow for: 
 

 a configuration of the CAN-interface of the control with the parameters preset by the PLC program 
 

 Writing and processing CAN-telegrams directly through the PLC program 
 

 Sending and receiving CAN-messages in an Extended-Frame-Format (29 bit CAN Identifier, 
according to CAN 2.0 B)  

 
 
Note: CAN Layer 2 function blocks cannot be used simultaneously with CANopen services on 

the same CAN-Interface. CAN Layer 2 function blocks can only be used if the CANopen 
functionality for the relevant CAN-Interfaces has been disabled in advance. 

 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 9 
 

 
 

 
 

Part 1 
 
 

CANopen 
 

(High Level Protocol) 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 10 
 

2 Basics of CANopen Integration of a PLC 

2.1 Differences between a PLC with and without CANopen Master 

The CANopen extension of a PLC and particularly the CANopen function blocks for IEC61131 are 
based on various CANopen services; some of which can be active on several nodes simultaneously 
(e.g. PDO and SDO transfer) while others can only be exclusively executed by one node (e.g. NMT 
Master services). This separation is also underlined by the terms "PLC with CANopen Master" and 
"PLC without CANopen Master". On a PLC without CANopen Master only the non-exclusive services 
are available while on a PLC with CANopen Master, the exclusive services can be used additionally. 
See Table 1 for an overview. Depending on the available services, a varying amount of CANopen 
function blocks exists for the PLC program. See Table 7 in section 4.1.2 for a detailed list. 
 

Table 1: Availability of services on the PLC with and without CANopen Master 

CANopen Service PLC without CANopen 
Master 

PLC with CANopen Master 

PDO X X 
SDO X X 
Heartbeat Producer / Consumer Producer / Consumer 
Lifeguarding Slave Master 
NMT Master - X 
SYNC Producer - X 
 
Legend: 
X = Functionality available 
- = Functionality not available 
 
 
With SYSTEC controls, the differentiation between "PLC with CANopen Master" and "PLC without 
CANopen Master" occurs model-dependently either through a configuration user interface, operating 
elements (e.g. DIP switch) or the node address. Since each node within a CANopen network has to 
be assigned with a unique address, it is also ensured, while linking to the node address, that the 
master functionality can only be executed by one node network-wide. 
 
 
With control types where activation of the master functionality occurs by selecting the node 
address, the master functionality of the PLC is permanently linked to the node address 20H. 
With these control types, only the functionality "PLC without CANopen Master" can be used on 
all the other node addresses. 
 
 
If the network only contains one PLC, it has to be operated in master mode (e.g. node address 20H). 
This ensures that the PLC program can monitor the state of other nodes via the CANopen function 
block CAN_GET_STATE (see section 2.2 for basics as well as section 4.5.1 for the description of the 
function block). Moreover, only a PLC in master mode can generate SYNC objects (see section 4.5.8). 
In networks with several controls, just one PLC has to be active in the master mode. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 11 
 

2.2 Node Configuration via PLC with CANopen Master 

A PLC with CANopen Master can configure other devices in the network. The DCF files of the IO 
modules which were also transferred to the control while downloading the PLC program are required 
for this. A PLC with CANopen Master also automatically monitors each CANopen module in the 
network via Heartbeat or Lifeguarding. This is also the basis for the state request using function block 
CAN_GET_STATE (see section 4.5.1). Monitoring of the node is primarily determined by the 
respective entries in the DCF file of the corresponding node. The alternative default configuration of 
Heartbeat or Lifeguarding, which is used when there is no DCF file available for the respective node, 
is described in section 5.5. Internally, monitoring of the node occurs via the master PLC according to 
the following principle: 
 
 
When switching on the operating voltage (Reset) and after completion of the program 
download, the master PLC checks whether the object 1F81H has been created in its own object 
dictionary (i.e. whether the object 1F81H is contained in the DCF file of the master PLC). If this is the 
case, the nodes specified therein are searched for via a node scan. If object 1F81H does not exist, the 
control determines all the available CANopen devices in the network via a network scan, which covers 
the entire range for all node addresses from 1 to 127 as standard (if necessary, the node range can 
be limited via index 3001H in the object dictionary of the master PLC, see section 5.2). Here, it is 
attempted to read the index 1000H in the object dictionary of the node on each node address (device 
type). If the device responds, it is checked whether a DCF file on the PLC is available for this node. In 
this case, the device’s PLC carries out configuration with the parameters specified in the DCF file. If 
no DCF file is available, the PLC checks whether the respective device can be monitored via 
Heartbeat. If the node does not support Heartbeat, availability of Lifeguarding is tested alternatively. 
Devices which support neither Heartbeat nor Lifeguarding cannot be monitored. A state request by the 
PLC program is thus not possible for the respective nodes (see below). See Figure 1 for details of the 
node configuration procedure via CANopen Master. And see section 5.5 for configuration details of 
Heartbeat and Lifeguarding.  
 
If the control receives bootup messages from other CANopen devices (e.g. because these devices are 
fed via a voltage supply which is subsequently switched on) after the network scan, these nodes are 
configured the same way as described above. 
 
Note: When using DCF files for configuring nodes, the user is responsible for activating node 

guarding (Heartbeat or Lifeguarding) accordingly. Otherwise, node monitoring and a state 
request by the PLC program are not possible for the respective node (see below). 

 
If errors occur during the configuration phase, the PLC sets a respective error state and checks it 
when restarting the PLC program (see below). Possible causes for configuration errors are: 
 
• A node marked as "Mandatory Slave" in the object 1F81H is not available (the absence of a node 

marked as "Mandatory Slave" is not an error) or 
• An error occurred while configuring a node with the parameters specified in the DCF file (SDO 

Abort due to access to a non-available object, write access to a read-only object, other logical 
configuration errors) 

 
 
During PLC program start-up the PLC at first checks whether any errors occurred during the 
previous configuration phase. If the configuration was successful and nothing contrary is set in object 
1F80H, the Master PLC sends the NMT command "Enter Pre-Operational State", followed by "Start 
Remote Node" for each node (node address = 0). This prompts the CANopen nodes to send their 
PDOs (Process Data Object) once. Subsequently, the PLC waits until the PDOs have been processed 
and the received values have been stored in the network image before starting the PLC program. This 
procedure ensures the initial initialization of the network variables (see section 2.3) 
 
Note: The waiting periods can be configured via Index 3003H in the Object Dictionary of the 

Master PLC, see section 5.4. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 12 
 

If Bit 3 ("Do not send NMT-Start Remote Node") has been set in object 1F80H or if errors occurred 
during the configuration phase, the PLC does not automatically switch the network into the operational 
state. In the Pre-operational state the PLC program can at first carry out further configurations via the 
SDO function blocks described in section 4.4 and finally set the network (compulsory) into the 
Operational state through the NMT function block described in section 4.5.2. 
 
 
When exiting the PLC program, the Master PLC sends the NMT command "Enter Pre-Operational 
State" to show each CANopen node that PDO processing has been deactivated. 
 
 
With Heartbeat as well as with Lifeguarding the node sends its current state (monitoring period) at 
regular intervals to the PLC with CANopen Master. This state is internally evaluated in the network 
layer and transferred to the PLC program when calling function block CAN_GET_STATE. To also 
enable the application of block CAN_GET_STATE on controls without Master, each recognized node 
state change is forwarded to all the other controls through a Broadcast message (Default-COBID 50H, 
configuration via Index 3002H, see section 5.3). A state request on controls without Master is 
therefore no longer possible when deactivating the Master PLC (e.g. disabling the PLC program). The 
function block CAN_GET_STATE sends the state UNKNOWN. This state is also returned when the 
respective node supports neither Heartbeat nor Lifeguarding. In this case, a state request for the 
respective node is not possible. 
 
The Master PLC monitors each node in the network in order to enable the PLC program (and 
thus the user) to carry out a state request of the nodes. However, the Master PLC does not 
react in case of an error; this is the user’s responsibility. 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 13 
 

Start Master

Node List available in Object
1F81H ?

Run Network Scan to detect
available nodes

Fill Node List with all node adresses
found during Network Scan

Fill Node List with all node adresses
specified in Object 1F81H

Get next node address from
Node List

Is node available (reading
 Object 1000H successfully) ?

Is an DCF File available
for this node at PLC ?

Is Heartbeat supported
by this node ?

Configure Heartbeat

Configure node with parameters
specified in DCF File

Are there any errors occurred
during configuration ?

Node Guarding must be
configured in DCF File,
otherwise there is no
guarding possible !

Set error state

Are there still other node
in Node List ?

Are there any errors occurred
(error state set) ?

Wait for start command
of PLC Program

Send NMT command
"Enter Pre-Operational State"

Send NMT command
"Enter Operational State"

Master Running

Stay in state Pre-Operational

PLC Program can force state change to
Operational by using FB CAN_NMT

yes no

no

yes

yes no

no

no

yes

yes

yes

no

no

yes

yes

no

The address range for the Network Scan
can be adjusted with Object 3001H in the
local Object Dictionary of the Master PLC
(see section 5)

The waiting period between this two NMT
commands can be adjusted with Object
3003H in the local Object Dictionary of
the Master PLC (see section 5)

Is Lifeguarding supported
by this node ?

Configure Lifeguarding

Is Bit 3 set in Object 1F80H ?
("Do not send NMT-Start Remote Node")

no

yes

For details of Heartbeat and
Lifeguarding configuration
see section 5

 
Figure 1: Node configuration procedure via CANopen Master 

 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 14 
 

2.3 Initial Initialization of the Network Variables 

The primary initial initialization of the network variables occurs with the initial values (entry 
"ParameterValue=" or "DefaultValue=") set in the DCF file of the PLC. These are used as start values 
for the network variables when creating the dynamic Object Dictionaries (see section 3.1). 
 
The content of the network variables is exchanged between the individual nodes by sending PDOs 
(Process Data Object). Usually the transfer of PDOs occurs event-controlled so that the 
communication partners are only informed of variable changes (asynchronous transfer). This 
procedure reduces the bus load to the necessary minimum. However, from a CANopen device’s point 
of view this means that it does not know the real value of a variable without further measures from the 
start time to the first change. Therefore, it is necessary that the Master control prompts all the 
CANopen devices to send their PDOs once when starting the PLC program. This way all CANopen 
nodes including the Master PLC know the real initial values of the input network variables. 
Subsequently, the notification of changes is sufficient. 
 
The initial initialization of network variables has been realized differently on controls with and without 
master functionality: 
 
 
PLC with CANopen Master 
 
The only possibility supported by all CANopen devices to prompt the nodes to mandatorily send their 
PDOs is to change the state from Pre-Operational to Operational. To achieve this, the Master PLC at 
first sends the NMT command "Enter Pre-Operational State", followed by "Start Remote Node" for all 
nodes (node address = 0) when starting its own PLC program. This way all CANopen nodes which 
were active at this time in the network are prompted to send their PDOs once. Thus, after starting a 
PLC program on the Master PLC all the active nodes of the network are in the Operational 
state. 
 
Note: The waiting period between the NMT command "Enter Pre-Operational State" and "Start 

Remote Node" can be configured via Index 3003H / Subindex 1 in the Object Dictionary 
of the Master PLC (see section 5.4). 

 
The PLC independently delays the first sending of its own output network variable until the first PLC 
cycle has finished. The PLC program can therefore pre-assign the output network variables within the 
first PLC cycle with specific values which may differ from the initial values set in the DCF file (also see 
section 7). At the same time, it can prevent the PLC from sending initial PDOs with invalid data (initial 
PDOs with zero bytes). 
 
The Master PLC sends the NMT command "Enter Operational State" with the specific node address of 
the respective device to CANopen IO devices which login at the network once the PLC program of the 
Master PLC has been started. The device is thus also prompted to transfer its PDOs with initial 
values. At the same time, the Master PLC also sends all its PDOs once, irrespective of whether the 
values therein have changed or not. This also ensures the correct initial initialization of network 
variables for devices which are connected with a delay. 
 
 
PLC without CANopen Master 
 
From the network’s point of view a PLC without CANopen Master acts the same way as any other 
CANopen IO device. During start-up (switching on the operating voltage, reset) the PLC sends a 
bootup message and thus logs into the network. Subsequently, the PLC remains in the Pre-
Operational state until it receives the NMT command "Enter Operational State" from the CANopen 
Master. The PLC reacts the same as any other CANopen IO device by sending its initial PDOs. 
 
Depending on the application it might be necessary for the PLC to link the execution of its own PLC 
program to the respective network state (Pre-Operational / Operational). The state of the own node 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 15 
 

can be determined via the CANopen function block CAN_GET_STATE (see section 4.5.1). The 
following example illustrates the request and evaluation of the own node state: 
 
VAR 
    FB_CanGetState : CAN_GET_STATE; 
END_VAR 
 
CAL   FB_CanGetState ( 
      DEVICE := 0,                     (* own node *) 
      ENABLE := TRUE) 
LD    FB_CanGetState.STATE 
EQ    16#0005                           (* Operational ? *) 
JMPCN PreOperationalMode 
 
OperationalMode: 
(* ... *) 
RET 
 
PreOperationalMode: 
(* ... *) 
RET 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 16 
 

3 IEC61131 Network Variables for CANopen 

3.1 Basic Information for Network Variables 

Numerous control units can exchange data via a CANopen network or can be extended by additional 
inputs and outputs via CANopen IO modules. At the PLC program layer the data exchange occurs 
through network variables which are declared as "VAR_EXTERNAL" according to standard 
IEC61131-3 and are thus marked as "outside of the control". The PLC administers a copy of these 
variables locally whereby the network layer is responsible for synchronizing this copy with the real 
value of the CANopen device. The initial initialization of the network variable described in section 2.3 
is also of particular importance. 
 
CANopen describe the PLC is a "common" IO module whose inputs and outputs are not led out at 
terminals but are mapped into the process image as network variables. Depending on the number and 
scope of network variables used in the PLC program, the appearance of the PLC changes in regard to 
network-sided inputs and outputs so that the same PLC can be represented differently to the 
CANopen network when executing different programs. To achieve this, the PLC uses a dynamic 
Object Dictionary (database-similar structure for the administration of variables as well as 
communication and mapping parameters), CANopen IO modules on the other hand usually have a 
static Object Dictionary. 
 
According to the specifications in the CiA Draft Standard 405 the network variables of a PLC are 
created in the Object Dictionary in the range of Index A000h - AFFFh. 
 
The following terms play a central role for further explanations of linking controls to decentral 
extension units: 
  
CANopen IO module: The CANopen IO module is a unit which provides the network with certain 

resources, such as inputs and outputs. This type of module is a slave unit for 
the network management (NMT). 

 
Mapping: The assignment variables as well as inputs and outputs to bytes or bit 

positions within a CAN message is called mapping. 
 
CANopen configurator: The CANopen configurator is a special software tool which enables the 

planning and management of CANopen networks, the logical connection of 
inputs and outputs of different units, as well as the setting of network 
parameters. Moreover, the CANopen configurator is used to link network 
variables in PLC programs to the inputs and outputs of the respective 
CANopen IO module. A CANopen configurator is always an external 
software tool which is not contained in the scope of delivery of the 
IEC61131 programming system OpenPCS. We recommend, among 
others, the program "ProCANopen" from Vector Informatik. 

 
EDS file: The EDS file (Electronic Data Sheet) is supplied by the device’s 

manufacturer and describes the various properties of the unit, e.g. usable 
IOs, factory default settings for mapping and network communication, as 
well as the parameters which can be modified by the user. 

 
DCF file: The DCF file (Device Configuration File) is generated by the CANopen 

configurator as the result of the configuration process. The configurator uses 
the EDS file as a "template" and amplifies it with the parameters set by the 
user, e.g. identifier and mapping. 

 
The network variables used in the PLC program are linked to the inputs and outputs of CANopen IO 
units in order to assign decentral IOs to a PLC. Usually a CANopen configurator is required for this 
task. In contrast to standard IO modules there is no EDS file which specifies which inputs and outputs 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 17 
 

are available for a PLC. The end user specifies the number and types of accessible inputs and outputs 
via a precise PLC program by declaring the respective network variables. Therefore, there is only one 
general EDS file for a PLC, which simply states that the control supports dynamic objects. 
 
 
Prerequisite for the application of network variables is usually the availability of EDS files for 
the respective CANopen IO modules and a CANopen configurator. For simple network 
topologies (only a few decentral standard IO modules) it is also possible to use the predefined 
DCF files supplied with the programming environment OpenPCS (see section 3.2.3). If these 
prerequisites are not met, network variables cannot be used. Network communication is then 
only possible through the CANopen function blocks described in section 4. 
 
 
 

3.2 Configuration Process 

3.2.1 Network Configuration 

The EDS file is very important for the configuration process of IO modules. The EDS file is read by the 
CANopen configurator to ensure that the user can access the resources provided by the CANopen IO 
module. In the configuration the user specifies, amongst other things, which inputs or outputs are to 
be used, in which bit or byte of a CAN message a respective value is transferred to the bus (mapping), 
and which identifier is to be used for this. As a result of this configuration process, the CANopen 
configurator generates a DCF file for the respective node (see Figure 2). A manual configuration of 
CANopen modules is only necessary if the user wishes to or has to change the standard parameters 
(identifier, mapping) specified by the manufacturer. The standard parameters usually result from a 
defined algorithm from the settable node number (Node ID) of a device and are displayed in the 
respective manual. 
 
In contrast to IO modules with static inputs and outputs, a PLC uses dynamic objects, i.e. the network 
variables defined in the respective PLC program. But since the manufacturer of a device is unable to 
know the objects which are created dynamically with the operating time, there are also no 
specifications on this in the EDS file. Therefore, a configurator is always required for linking dynamic 
objects. The result of the configuration process is then stored in the DCF file. The IEC61131 
programming system uses the DCF file for the PLC generated by the configurator for resolving the 
network variables declared as VAR_EXTERNAL and generates the required control information for 
the network layer from this. The DCF file of the control is thus the central link between CANopen 
and the IEC61131 PLC program. See Figure 2 for an overview of the CANopen node configuration. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 18 
 

CANopen
Configuration Tool

PLCxxx.EDS Slave1.EDS Slave2.EDS

Slave1.DCF Slave2.DCFPLCxxx.DCF

IEC 61131-
Compiler

IEC 61131 / OpenPCS

Program.POE

executeable
PLC Program

w ith DCF Files

Test &
Commissioning

P L C

CANopen
I/O Module 1

CANopen
I/O Modul 2

CAN-Bus

CANopen

D
ow

nl
oa

d 
C

AN
op

en
 C

on
fig

ur
at

io
n

Dow nload
PLC

Program

OpenPCS also provides pre-configured DCF Files
for systems without CANopen Configuration Tools !

 

Figure 2: CANopen node configuration 

 
 
The DCF files generated as result of the network configuration are assigned to the control resource in 
the IEC61131 programming system. The DCF file for the PLC is used for resolving the network 
variable declared as VAR_EXTERNAL as well as for configuring the object dictionaries of the PLC. 
The DCF files of the remaining IO modules are also transferred to the control and stored there during 
PLC program download. The CANopen Master contained in the PLC uses these DCF files to 
configure the IO modules accordingly in the field layer during system start. However, prerequisite for 
this is the activation of the master functionality of the PLC module (e.g. through DIP switch or 
configuration file, see the respective control manual for details). 
 
Alternatively, it is also possible to configure the CANopen IO modules via the PLC program. It is 
possible to write the required parameters into the Object Dictionary of the IO modules via the SDO 
function blocks described in section 4.4. 
 
 
Storing the EDS files for SYSTEC devices: 
 
The EDS files for various SYSTEC devices are stored in directory EDS-DCF within the OpenPCS path 
(e.g. C:\OpenPCS\EDS-DCF\). The EDS files for CANopen IO modules are also contained in the 
scope of delivery for these devices. Several EDS files can be selected for the PLC: 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 19 
 

Table 2: Overview of EDS files for SYSTEC devices: 

File name Application 
PLC02PDO.EDS Unspecific/General EDS file for a small number of nodes and 

network variables 
Enables max. 2 send PDOs and 2 receive PDOs 

PLC64PDO.EDS Unspecific/General EDS file for a large number of nodes and 
network variables 
Enables max. 64 send PDOs and 64 receive PDOs 

{DeviceName}_CAN0.EDS Device-specific EDS file for CAN instance 0 
(usually primary CAN instance with dynamic Object Dictionary) 
e.g.: PmC14_CAN0.EDS, PLCcoreCF54_CAN0.EDS 

{DeviceName}_CAN1.EDS Device-specific EDS file for CAN instance 1 
(usually secondary CAN instance with static Object Dictionary) 
e.g.: PmC14_CAN1.EDS, PLCcoreCF54_CAN1.EDS 

 
 
The EDS files differ, amongst other things, in the number of possible PDOs for data exchange 
between PLC and CANopen IO module. However, for controls with a dynamic Object Dictionary the 
number of PDOs created is determined by the precise configuration. 
 
 
 
3.2.2 CANopen Configurator 

Network parameters for the exchange of process data, e.g. send mode (synchronous, asynchronous), 
the used identifiers or mapping, are specified according to the demands of the user via a CANopen 
configurator. The configurator additionally enables the creation of links between PLC and 
CANopen IO modules required for network variables. The process data (usually inputs and outputs) 
of the IO modules is assigned here with symbolic names in order to reference them as network 
variables in the PLC program at a later date. 
 
The interface between the CANopen configurator and the OpenPCS programming environment is the 
DCF file of the PLC. This has to be assigned to the respective hardware as a configuration file. The 
control thus receives all the network information required for the exchange of process data with 
CANopen IO modules. 
 
 
 
3.2.3 Predefined DCF Files 

In order to also write PLC programs without a CANopen configurator for simple network topologies (a 
few decentral IO modules), SYSTEC supplies predefined DCF files with the programming environment 
OpenPCS which enable the integration of up to 5 decentral SYSTEC IO modules. Overall support of 
third party devices cannot be guaranteed, since the modules sometimes possess individual and 
specific features. The PLC programmer is limited to the default configuration (identifier, mapping) of 
the IO modules as well as the variable names for inputs and outputs specified in the DCF file when 
using predefined DCF files, but the costs and time required for the procurement and familiarization 
with such a configuration tool no longer apply. 
 
By using predefined DCF files it is possible to extend a PLC by the inputs and outputs of up to 5 
CANopen IO modules without a CANopen configurator. 
 
Prerequisite for the application of predefined DCF files is that the used CANopen IO modules 
support the standard configuration specified by CiA (CAN in Automation e.V.) in the CiA Draft 
Standards 301 and 401. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 20 
 

The following CANopen devices can for example be used with predefined DCF files: 
- SYSTEC CANopen IO-C12 (phyPS-409-Y) 
- SYSTEC CANopen IO-X1 
- SYSTEC CANopen IO-X2 
- SYSTEC CANopen IO-X3 
- SYSTEC CANopen IO-X4 
- SYSTEC CANopen-Chip164 (MM-215-Y) 
- SYSTEC CANopen-ChipF40 (MM-217-Y) 
- CANopen IO modules of third party manufactures which use a standard configuration according to 

the CiA Draft Standards 301 and 401. 
 
 
 
Storing predefined DCF files: 
 
The predefined DCF files are stored under the name DxSALVE.DCF in directory EDS-DCF within the 
OpenPCS path (e.g. C:\OpenPCS\EDS-DCF\). The number which replaces the symbolic character "x" 
in the file name states the number of supported CANopen IO modules:  
 

Table 3: Overview of predefined DCF files 

File Name Supported Save Addresses 
D1SLAVE.DCF 40H 
D2SLAVE.DCF 40H, 41H 
D3SLAVE.DCF 40H, 41H, 42H 
D4SLAVE.DCF 40H, 41H, 42H, 43H 
D5SLAVE.DCF 40H, 41H, 42H, 43H, 44H 
 
 
It is recommended to always integrate the DCF file as configuration file for the resource with which all 
required IO modules are currently covered. However, if a configuration file which supports more than 
the required number of IO modules is used, it does not have a negative effect on the functionality of 
the PLC program, but more memory space is occupied on the PLC and the administration tasks within 
the network layer increase, which finally leads to longer program run times. 
 
 
 
Variables of the predefined DCF files: 
 
When declaring the network variables in the PLC program, the symbolic names for the process data 
objects specified in the DCF file have to be used. In the predefined DCF files, the network variables 
specified in Table 4 are defined for the CANopen devices with the node addresses 40H…44H. 
 

Table 4: Network variables of the predefined DCF files 

Variable Name Variable Types Access Type 
IN0_IN7_xxH BYTE, USINT, SINT read 
IN8_IN15_xxH BYTE, USINT, SINT read 
IN16_IN23_xxH BYTE, USINT, SINT read 
OUT0_OUT7_xxH BYTE, USINT, SINT write 
OUT8_OUT15_xxH BYTE, USINT, SINT write 
OUT16_OUT23_xxH BYTE, USINT, SINT write 
AIN0_xxH WORD, UINT, INT read 
AIN1_xxH WORD, UINT, INT read 
AIN2_xxH WORD, UINT, INT read 
AIN3_xxH WORD, UINT, INT read 
AOUT0_xxH WORD, UINT, INT write 
AOUT1_xxH WORD, UINT, INT write 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 21 
 

 
The symbolic character string "xx" in the variable name is replaced by the respective node number of 
the supported CANopen device. Thus, the file D1SLAVE.DCF contains, e.g., the definition for the 
variable IN0_IN7_40H, and the file D3SLAVE.DCF defines the variables IN0_IN7_40H, IN0_IN7_41H, 
and IN0_IN7_42H. 
 
See the respective device documentation for the actual number of usable inputs and outputs of each 
CANopen IO module. 
 
 
 
Special features when using predefined DCF files: 
 
• While digital inputs and outputs are immediately functional after the integration of predefined DCF 

files and without any additional configuration work, analog systems usually have to be activated. 
See the manual of the respective CANopen device for more information. Activation can e.g. occur 
during program start-up via the SDO function blocks described in section 4.4. 

 
• Maximal configurations have been created for each PDO in the predefined DCF files (e.g. AIN0 … 

AIN3 for RPDO1). The individual devices usually support less objects in one PDO (e.g. only AIN0 
and AIN1). As a result, emergency messages with error code 16#8210 ("PDO not processed due 
to length error") or error code 16#8220 ("PDO length exceeded") can appear. 

 
 
 

3.3 Integrating DCF Files into the PLC Project 

There are several ways to integrate DCF files into the PLC project. Since a CANopen configurator 
which combines all DCF files in a joint project is usually used to create the DCF files, this network 
should, if possible, also be imported into the OpenPCS programming environment as a consistent 
entity. See section 3.3.1 for a description of the procedure. Alternatively, there is also the option to 
create network nodes in OpenPCS and to manually assign them to already existing DCF files. This is, 
e.g., necessary when working with predefined DCF files (see section 3.2.3) or when OpenPCS does 
not recognize the format of the project file generated by the CANopen configurator. See section 3.5 for 
the necessary steps.  
 
 
 
When integrating DCF files, remember that the current content of the DCF file is imported as a 
copy into the OpenPCS programming environment. To accept subsequently made changes to 
the DCF file in the PLC project, the already imported network has to be deleted from the 
OpenPCS programming environment and the import process has to be repeated. 
 
 
 
 
3.3.1 Integrating Complete Network Projects 

When integrating complete network projects, all DCF files of a CANopen network are transferred into 
the OpenPCS programming environment as a consistent entity. This is the easiest and also safest 
way of importing DCF files into the IEC61131 programming system. To integrate a network project into 
OpenPCS, change to "Network" view in the project browser (see Figure 3). 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 22 
 

Proceed as described below to integrate a complete network project: 
 
1. Right mouse click on the "PowerMap" icon (see Figure 3) 
 
2. Select "Load File -> Import ProCANopen network" in the context menu (see Figure 3) 

 

 
Figure 3: Importing networks into OpenPCS 

 
3. Select the directory with the network project to be imported in the file dialog which appears and 

confirm it via "OK" 
 
Once the import of the network has been completed, the respective CANopen nodes are 
displayed in the "Network" view of the project browser (see Figure 4). 
 

 
Figure 4: Presentation of the imported network in the OpenPCS project browser 

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 23 
 

4. The name of the imported network can be freely changed, if necessary. The menu item "Rename 
Network" in the context menu of the network node is responsible for this. 

 
5. To link the imported network project to the active PLC resource, select the menu item "Link to 

Active Resource" in the context menu of the network (see Figure 5). 
 

 
Figure 5: Linking the imported network project to the active PLC resource 

 
 
See section 3.4 for the next required steps for using the network variables defined in the PLC 
program. 
 
 
 
3.3.2 Manual Integration of Individual DCF Files 

Manual integration of individual DCF files is an alternative to the integration of complete network 
projects described in section 3.3.1. Manual integration enables, e.g., the application of predefined 
DCF files (see section 3.2.3) as well as the import of DCF files from network projects where OpenPCS 
cannot recognize the format of the project file generated by the CANopen configurator. To integrate 
DCF files into OpenPCS, change to the "Network" view in the project browser (see section Figure 6). 
 
 
Proceed as described below to manually integrate DCF files: 
 
1. Right mouse click on the "PowerMap" icon (see Figure 6) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 24 
 

2. Select "Add Network" in the context menu (see Figure 6) 
 

 
Figure 6: Creating a network in OpenPCS 

 
3. In the dialog "Create a new file" (see Figure 7) select the category "PowerMap Network" as the 

"File Type" and the entry "CANopen Network" as the "Template". Enter a name for the network 
which is to be created in the field "Name". Finally close the dialog via "OK".  
 

 
Figure 7: Creating a network entry 

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 25 
 

4. Click on the icon for the previously created network and select the menu item "Load File -> Import 
DCF File" in the context menu of the network (see Figure 8) 
 

 
Figure 8: Adding a new network node 

 
5. Select the DCF file to be imported in the file dialog which appears and click on the "OK" button to 

confirm the selection. This creates a new network node to which the respective DCF file is 
assigned. This process has to be repeated for each DCF file to be imported. 
 
Once the manual import of all the DCF files has been completed, the corresponding CANopen-
nodes are displayed in the "Network" view of the project browser (see Figure 9). 
 

 
Figure 9: Presentation of the imported network nodes in the OpenPCS project browser 

 
6. If necessary, the name of the network and the imported nodes can be changed. The menu item 

"Rename Network" or "Rename Node" in the context menu is used for this task (see Figure 10) 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 26 
 

 

 
Figure 10: Presentation of the network after changing names 

 
7. To link the network created from the manually imported DCF files to the active PLC resource, 

select the menu item "Link to Active Resource" in the context menu of the network (see Figure 
11). 
 

 
Figure 11: Linking the manually created network project to the active PLC resource 

 
 
See section 3.4 for the next required steps to use the network variables defined in the network project 
in the PLC program. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 27 
 

3.4 Using Network Variables in the PLC Program 

Network variables are declared in a PLC program within the key words VAR_EXTERNAL ... 
END_VAR. This means they are marked as outside of the program and thus also as "outside of the 
PLC". The actual declaration of the network variables does not differ from the declaration of the local 
variables:  
 
VAR_EXTERNAL 
    NetVar1 : BYTE ; 
    NetVar2 : UINT ; 
END_VAR 
 
 
In addition to CANopen, there can also be other sources for external variables, e.g. EPL (Ethernet 
Power Link) or OPC. Therefore, the OpenPCS programming environment requires an assignment 
table in which the source of an external variable is specified. 
 
This means that the following steps are required for the declaration of network variables in the PLC 
program: 
 
1. Creating a network and integrating the required DCF files in the PLC project as described in 

section 3.3  
 
2. Calling the menu item "File -> New…" in order to create a new assignment table with the aid of the 

dialog "Create a new file". In the dialog "Create a new file" (see Figure 12), select the category 
"Declarations" as the "File Type" and the entry "I/O Mapping" as the "Template". Enter a name for 
the assignment table which is to be created in the "Name" field. Finally close the dialog via the 
"OK" button.  
 

 
Figure 12: Creating a new assignment table 

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 28 
 

3. After creating the assignment table, the entries for the network variables have to be inserted into 
the assignment table from the network nodes of the PLC via double click (in this example nodes 
"PLC (32)") (see Figure 13). After being inserted, it is possible to adapt the name ("Name" 
column) and type ("IEC Type" column) of the network variables in the assignment table for 
utilization in the PLC program (also see the comments below). 
 

 
Figure 13: Inserting network variables in the assignment table 

 
4. To link the newly created assignment table to the active PLC resource, change to the "Files" view 

in the project browser and then select the menu item "Link to Active Resource" in the context 
menu of the assignment table (see Figure 14) 
 

 
Figure 14: Linking the assignment table to the active PLC resource 

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 29 
 

5. In the "Files" view in the project browser it is possible to check whether the components required 
for a PLC program with network variables are linked to the active PLC resource (see Figure 15): 
 
- PLC program (here "TrafL_US") 
- Network ("CAN0", for creation see section 3.3) 
- Assignment table ("NetVarAssign") 
 

 
Figure 15: Presentation of the resource components in the project browser 

 
6. Declaration of the required network variables in the PLC program within the VAR_EXTERNAL ... 

END_VAR section, the name ("Name" column) and type ("IEC Type" column) have to correspond 
exactly to the definition of the network variables in the assignment table, e.g.: 
 
VAR_EXTERNAL 
    NetVar1 : BYTE ; 
    NetVar2 : UINT ; 
END_VAR 

 
 
 
The following points have to be considered for the declaration of the network variables: 
 

 The names of the network variables have to correspond exactly between the PLC program and 
the assignment table. The variable name is the mutual reference point between IEC61131 and 
CANopen. 

 
 A compatible data type for IEC61131 and CANopen has to be selected as the type of network 

variables (see Table 5). 
 

 The initial values specified in the DCF file of the PLC are used as the initial values of the network 
variables (entry "ParameterValue=" or "DefaultValue="). Therefore, the renewed specification of 
an explicit initial value for the declaration of the network variables in the PLC program is not 
permitted in order to prevent discrepancies with the specifications in the DCF file. However, within 
the first PLC cycle the PLC program can, prior to the initial sending of specific values, assign 
output network variables which can deviate from the initial values specified in the DCF file (for the 
initial initialization of network variables also see section 2.3). 

 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 30 
 

In compliance with IEC61131 a data type has to be selected according to the application (logic, 
arithmetic) for the declaration of network variables in the PLC program. There is no clear assignment 
between IEC61131 and CANopen. Table 5 contains the assignment of the data types used by 
IEC61131 and CANopen which can be applied as network variables. 
 
Note that there is no clear assignment of the data types between IEC61131 and CANopen. 
Therefore, the IEC61131 type has to be selected for the PLC program according to the variable 
application. 
 
 

Table 5: Assignment of data types between IEC61131 and CANopen 

IEC61131 CANopen Application Data Size (Bit) 
BOOL Boolean (*) Logic 1 
BYTE Unsigned8 Logic 8 
USINT Unsigned8 Arithmetic (without 

VZ) 
8 

SINT Integer8 Arithmetikc (with VZ) 8 
WORD Unsigned16 Logik 16 
UINT Unsigned16 Arithmetic (without 

VZ) 
16 

INT Integer16 Arithmetic (with VZ) 16 
DWORD Unsigned32 Logik 32 
UDINT Unsigned32 Arithmetic (without 

VZ) 
32 

DINT Integer32 Arithmetic (without 
VZ) 

32 

REAL Float Arithmetic 32 
 
The data types labeled with (*) in Table 5 are not available for all control types. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 31 
 

3.5 Summary of Required Steps 

The steps described below are required to integrate network variables in a PLC program. A practical 
implementation is displayed in the example project in section 3.6. . 
 

Create Network

("Netw ork" view  in Project Brow ser)

Integration of DCF Files
(either via import of complete Netw ok Project

or via import of individual DCF Files)

Link Network to
active PLC Resource

Create Assignment Table

(Menu "File -> New ...")

Import of Network Variables
into Assignment Table

(View  "Netw ork" in Project Brow ser)

Link Assignment Table to
active PLC Resource

Definition of Network Variables as
VAR_EXTERNAL in PLC Program

(Name and type as defined in Assignment Table!)
 

 
 
 
 
 
The step-by-step procedure for creating 
a network and for integrating the DCF 
files is described in section 3.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The step-by-step procedure for creating 
network variables is described in 
section 3.4 
 
 

 
 
 

3.6 Example Project for Network Variables 

The example project "TrafLghtl" (Traffic Light) contained in the "SYSTEC-OpenPCS-Extension" 
software package displays the integration of network variables based on the application of predefined 
DCF files. The file "D1SALVE.DCF", which is correspondingly entered for the project configuration of 
the resource, is used. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 32 
 

The example project "TrafLghtl" realizes the function of a pedestrian traffic light. The PLC controls the 
lights for vehicles (red, amber, green) and a CANopen IO module (node address 40H) switches the 
signals for pedestrians (red and green). The PLC and decentral IO module are both provided with a 
button to start the traffic light. The traffic light cycle is started via a 0/1 intersection at one of these 
inputs. 
 
 
For access to the inputs and outputs of the CANopen IO module, the network variables declared in 
D1SLAVE.DCF are assigned in the PLC program (TRAFLGHT.POE) as follows: 
 
VAR_EXTERNAL 
    IN0_IN7_40H : BYTE ;    (* declared in D1SLAVE.DCF *) 
    OUT0_OUT7_40H : BYTE ;  (* declared in D1SLAVE.DCF *) 
END_VAR 
 
 
The logical link of the buttons at the local input of the PLC and at the input of the IO module accessible 
via CANopen occurs via a command sequence 
 
WaitStartButton: 
(* Link buttons of PLC and I/O module *) 
LD  StartButton                     (* button on PLC        *) 
OR  IN0_IN7_40H.0                   (* button on I/O module *) 
ST  FB_StartCondition.CLK 
 
 
The following command sequence is responsible for setting both outputs at the CANopen IO module: 
 
ProgExit: 
(* copy pedestrian data into network variables *) 
(* for I/O module                              *) 
LD  PedGreen 
ST  OUT0_OUT7_40H.0 
LD  PedRed 
ST  OUT0_OUT7_40H.1 
 
 
This ensures that the two local bit variables are copied into the output variable of the CANopen IO 
module of type BYTE. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 33 
 

4 IEC61131 Function Blocks for CANopen 

4.1 Basics of CANopen Function Blocks 

There are various manufacturer-specific function blocks within the IEC61131-3 to access CANopen. 
These contain, as a subset, the functionality defined by CiA (CAN in Automation e.V.) in CiA Draft 
Standard 405. Furthermore, there are additional function blocks for sending and receiving PDOs or 
CAN Layer 2 messages as well as for generating SYNC objects. 
 
 
 
4.1.1 Overview of the CANopen Function Blocks 

Table 6 displays an overview of the CANopen function blocks for the IEC61131-3. All the blocks have 
been realized as manufacturer-specific function blocks and are thus an integral part of the PLC 
firmware. The availability of blocks depends on the operational mode of a control. For detailed 
information please refer to section 4.1.2. 
 

Table 6: Overview of the CANopen function blocks for IEC61131-3 

Function Block DS 405 Meaning Section 
CAN_GET_LOCAL_NODE_ID yes Request own node address 4.2.1 
CAN_GET_CANOPEN_KERNEL_STATE yes Request CANopen kernel state of 

own PLC 
4.2.2 

CAN_REGISTER_COBID no Register COBID for reception of 
PDOs 

0 

CAN_PDO_READ8 no Read received PDO 4.3.2 
CAN_PDO_WRITE8 no Send PDO 4.3.3 
CAN_SDO_READ8 yes Read object entries of a node via 

SDO transfer 
4.4.1 

CAN_SDO_WRITE8 yes Write object entries of a node via 
SDO transfer 

4.4.2 

CAN_SDO_READ_STR yes Read character strings from the 
Object Dictionary of a node via SDO 
transfer 

4.4.3 

CAN_SDO_WRITE_STR yes Write character strings to the Object 
Dictionary of a node via SDO 
transfer 

4.4.4 

CAN_SDO_READ_BIN yes Read binary data from the Object 
Dictionary of a node via SDO 
transfer 

4.4.5 

CAN_SDO_WRITE_BIN yes Write binary data to the Object 
Dictionary of a node via SDO 
transfer 

4.4.6 

CAN_GET_STATE yes Request node state 4.5.1 
CAN_NMT yes Send NMT messages 4.5.2 
CAN_RECV_EMCY_DEV yes Read received emergency message 

(specific nodes) 
4.5.3 

CAN_RECV_EMCY yes Read received emergency message 
(any nodes) 

4.5.4 

CAN_WRITE_EMCY no Send emergency message 4.5.5 
CAN_RECV_BOOTUP_DEV no Read received bootup message 

(specific nodes) 
4.5.6 

CAN_RECV_BOOTUP no Read received bootup message 
(any nodes) 

4.5.7 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 34 
 

CAN_ENABLE_CYCLIC_SYNC no Enable or disable cyclic SYNC 
messages 

4.5.8 

CAN_SEND_SYNC no Send an individual SYNC message 4.5.9 
 
 
The column "CiA 405" in Table 6 indicates whether the functionality of the respective block is defined 
by the CiA Draft Standard 405 ("yes") or whether this block is a manufacturer-specific expansion of 
this standard ("no"). Please note that due to the specific peculiarities of the IEC61131 programming 
system implementation of blocks defined by the CiA also differs slightly from the Draft Standard 405. 
For general information please refer to the section 4.1.4, detailed information is contained in the 
respective function block section. 
 
 
 
4.1.2 Availability of the Function Blocks on Controls with and without CANopen Master 

The CANopen function blocks for IEC61131 are based on various CANopen services; some of which 
can be simultaneously active on several nodes (e.g. PDO and SDO transfer), while others can only be 
executed by a single node (e.g. NMT services). A PLC without CANopen Master only provides the 
non-exclusive services, while a PLC with CANopen Master also utilizes the exclusive services. The 
differentiation of the two PLC variants generally occurs via the node address for SYSTEC controls 
(see section 2.1). 
 
Table 7 displays the availability of the individual CANopen function blocks on controls with and without 
Master. A PLC program can define the node address - and thus indirectly the number of usable 
function blocks – via function block CAN_GET_LOCAL_NODE_ID (see section 4.2.1). 
 

Table 7: Availability of CANopen FBs on controls with and without Master 

Function Block PLC without CANopen-
Master 

PLC with CANopen-
Master 

CAN_GET_LOCAL_NODE_ID X X 
CAN_GET_CANOPEN_KERNEL_STATE X X 
CAN_REGISTER_COBID X X 
CAN_PDO_READ8 X X 
CAN_PDO_WRITE8 X X 
CAN_SDO_READ8 X X 
CAN_SDO_WRITE8 X X 
CAN_SDO_READ_STR X X 
CAN_SDO_WRITE_STR X X 
CAN_SDO_READ_BIN X X 
CAN_SDO_WRITE_BIN X X 
CAN_GET_STATE (x) X 
CAN_NMT - X 
CAN_RECV_EMCY_DEV - X 
CAN_RECV_EMCY - X 
CAN_WRITE_EMCY X X 
CAN_RECV_BOOTUP_DEV - X 
CAN_RECV_BOOTUP - X 
CAN_ENABLE_CYCLIC_SYNC - X 
CAN_SEND_SYNC - X 
 
Legend: 
X = Functionality available 
(x) = Functionality availability, but limited (please refer to the text) 
- = Functionality not available 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 35 
 

The function block CAN_GET_STATE can only be indirectly realized on a PLC without 
CANopen Master. The support of a PLC with CANopen Master is required. For detailed 
information please refer to sections 2.2 (description of node monitoring) and 4.5.1 (description 
of function block CAN_GET_STATE). 
 
 
 
4.1.3 Synchronization between the CANopen Function Block and PLC Program 

The majority of CANopen function blocks for IEC113-3 are executed asynchronous to the actual PLC 
program. The process synchronization between CANopen and PLC program occurs via the ENABLE 
and CONFIRM signals of the function blocks. The interaction of both signals is illustrated by Figure 16. 
 
 

ENABLE 

CONFIRM 
1 2 3 4 5 6

(a) 

(b)

(c)

(d)

FB Call 

 
Figure 16: Process synchronization between CANopen and PLC program 

 
 
The complete and successful execution of a CANopen service executed asynchronously to the PLC 
program occurs in the following steps: 
 
1. Once the PLC program has installed all the input variables with valid values, it sets the input 

ENABLE to TRUE and calls the CANopen function block (call 1). The function block recognizes a 
rising edge at input ENABLE and subsequently accepts all the input values and starts the 
respective CANopen service (step (a)). The function block then returns to the PLC program and 
the initiated CANopen device is executed in the background. 

 
2. The function block is called by the PLC program several times until realization of the CANopen 

service has been completed. The input ENABLE has to remain set to TRUE to enable continued 
execution of the CANopen service in the background (calls 2 and 3). 

 
3. After successful completion of the CANopen service, the function block sets its output CONFIRM to 

TRUE. This signals to the PLC program that the service has been finished via CANopen and, if 
necessary, displays that further output variables are now occupied with valid values (e.g. with the 
data read by a node, step (b), call 4). 

 
4. The PLC program confirms to the function block that the CANopen service has been completed by 

setting the input ENABLE to FALSE. Thus, the PLC program also signals that it has, if necessary, 
accepted the output variables supplied by the function block (step (c), call 5). During the last step, 
the function block sets its output CONFIRM to FALSE again, so that the system is now back in the 
initial state (step (d)). 

 
 
The network layer usually only allows the execution of a limited number of CANopen services 
executed asynchronously to the PLC program at any time. The start of a service by setting the 
input ENABLE to TRUE (step 1) locks the respective resource for utilization by other function 
blocks. This locked state remains after service completion until the respective function block 
has been called again with input ENABLE set to FALSE (step 4) (FB sets its output CONFIRM 
to TRUE, step 3). The interim call of another CANopen function block results in the error 
message TRANSFER_BUSY at output ERROR. 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 36 
 

Output CONFIRM only changes from FALSE to TRUE, if the respective CANopen service is 
completed successfully. Any occurred errors are displayed at the output ERROR or ERRORINFO. It 
is, therefore, necessary that a PLC program not only monitors the output CONFIRM but also the value 
of ERROR in order to evaluate occurred errors. 
 
If the function block with input ENABLE set to FALSE is called, this always results in cancellation of a 
CANopen service active in the background and causes the internal reset of the function block. At the 
same time, the output CONFIRM is set to FALSE and the outputs ERROR and ERRORINFO are set 
to the value NO_ERROR. 
 
 
 
4.1.4 Input/Output Parameters of the CANopen Function Blocks 

The realization of the CANopen function blocks ensures they fulfill the functionality defined by the CiA 
Draft Standard 405. However, the used input and output parameters sometimes differ from the 
specification of the standard. 
 

 Arrays or structures are not used as input or output parameters of a function block; instead the 
member elements contained in the array or structure are addressed as direct variables ("flat" 
input/output structure). This reduces the internal overhead during parameter passing. 

 
 Instead of a specific type definition (e.g. "CIA405_DEVICE") the respective underlying elementary 

type (e.g. USINT) is used for the input and output parameter of the function block. 
 

 Instead of enumerated types (e.g. "CIA405_STATE") numerical constants are used. These are 
listed in the section 4.1.5. 

 
The precise input/output parameters of the CANopen function blocks that are used are described in 
detail in the respective function block section. 
 
 
 
4.1.5 CANopen-Specific Constants 

To identify internal error states of the network layer, the CiA Draft Standard 405 defines the specific 
data type "CIA405_CANOPEN_KERNEL_ERROR". This summarizes the error states which can occur 
within the local network layer of a PLC. These error codes are used by various function blocks as the 
output parameter ERROR. Table 8 lists the assignment of the used numeric constants to the 
corresponding error codes. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 37 
 

Table 8: Constants for data type "CIA405_CANOPEN_KERNEL_ERROR" 

Constant Error Code 
16#0000 (= 00 dec) NO_ERROR 
16#0001 (= 01 dec) OTHER_ERROR 
16#0002 (= 02 dec) DATA_OVERFLOW 
16#0003 (= 03 dec) TIME_OUT 
16#0010 (= 16 dec) CAN_BUS_OFF 
16#0011 (= 17 dec) CAN_ERROR_PASSIVE 
16#0021 (= 33 dec) GENERIC_ERROR (SYSTEC-specific) 
16#0022 (= 34 dec) FUNCTION_NOT_AVAIALBE 
16#0023 (= 35 dec) NO_MASTER_MODE 
16#0024 (= 36 dec) INVALID_DEVICE 
16#0025 (= 37 dec) TRANSFER_BUSY 
16#0030 (= 48 dec) NO_SDO_CHANNEL_AVAIALBE 
16#0031 (= 49 dec) SDO_BUSY 
16#0032 (= 50 dec) SDO_INITIALIZE_ERROR 
16#0033 (= 51 dec) SDO_LENGTH_ERROR 
16#0034 (= 52 dec) SDO_ERROR (SDO Abort Code at ERRORINFO) 
16#0040 (= 64 dec) NO_VALID_DATA_AVAIALBE 
16#0041 (= 65 dec) COBID_ALREADY_REGISTERED 
16#0042 (= 66 dec) NO_FREE_COBID_TABLE_ENTRY 
16#0043 (= 67 dec) NO_SUCH_COBID_REGISTERED 
16#0044 (= 68 dec) NO_FREE_RECEIVE_CHANNEL 
16#0045 (= 69 dec) DATA_LENGTH_ZERO_NOT_ALLOWED 
 
 
To identify the current state of the CANopen device, the CiA Draft Standard 405 defines the specific 
data type "CIA405_STATE". Table 9 lists the assignment of the used numeric constants to the 
respective state values. The state values UNKNOWN and NOT_AVAIL are an extension of the 
respective definitions of the CiA Draft Standard 301; all the other constant values correspond with this 
standard. 
 

Table 9: Constants for data type "CIA405_STATE" 

Constant State Value 
16#0000 INIT 
16#0001 RESET_COMM 
16#0002 RESET_APP 
16#0003 PRE_OPERATIONAL 
16#0004 STOPPED 
16#0005 OPERATIONAL 
16#0006 UNKNOWN 
16#0007 NOT_AVAIL 
 
 
To identify the state in which a CANopen device should change, the CiA Draft Standard 405 defines 
the specific data type "CIA405_TRANSITION_STATE". Table 10 lists the assignment of the used 
numeric constants to the respective state values. The constant values correspond with the respective 
definitions of the CiA Draft Standard 301. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 38 
 

Table 10: Constants for data type "CIA405_TRANSITION_STATE" 

Constant State Value 
16#0000 START_REMOTE_NODE 
16#0001 STOP_REMOTE_NODE 
16#0002 ENTER_PRE_OPERATIONAL 
16#0003 RESET_NODE 
16#0004 RESET_COMMUNICATION 
 
 
The CiA Draft Standard 405 furthermore defines the specific data types "CIA405_SDO_ERROR" as 
well as "EMCY_ERR_CODE" and "EMCY_ERR_REGISTER". These data types represent the error 
message generated by another node. 
 
 
The SYSTEC specific data type "CAN_SDO_TYPE" is used with some SDO function blocks to select 
the SDO transfer mode. Table 11 lists the assignment of the used numeric constants to the respective 
SDO types. 
 

Table 11: Constants for data type "CAN_SDO_TYPE" 

Constant SDO Type 
0 SDO_TYPE_AUTO_BEST_CASE 
1 SDO_TYPE_SEGMENTED_TRANSFER 
2 SDO_TYPE_BLOCK_TRANSFER 
 
 
The data type "CIA405_SDO_ERROR" is used for the parameter ERRORINFO of the SDO function 
blocks and provides the SDO Abort Code of the communication partner. The general Abort Codes are 
defined in the CiA Draft Standard 301, but can be extended by the manufacturer of the respective 
CANopen module. Table 12 lists the assignment of the used numeric constants to the typical SDO 
Abort Codes. 
 

Table 12: Constants for data type "CIA405_SDO_ERROR" 

Constant SDO Abort Code 
16#05030000 TOGGEL_BIT_ERROR 
16#05040000 TIME_OUT 
16#05040001 UNKNOWN_COMMAND_SPECIFIER 
16#05040002 INVALID_BLOCK_SIZE 
16#05040003 INVALID_SEQUENCE_NUMBER 
16#05040004 CRC_ERROR 
16#05040005 OUT_OF_MEMORY 
16#06010000 UNSUPPORTED_ACCESS 
16#06010001 READ_TO_WRITE_ONLY_OBJ 
16#06010002 WRITE_TO_READ_ONLY_OBJ 
16#06020000 OBJECT_NOT_EXIST 
16#06040041 OBJECT_NOT_MAPPABLE 
16#06040042 PDO_LENGTH_EXCEEDED 
16#06040043 GEN_PARAM_INCOMPATIBILITY 
16#06040047 GEN_INTERNAL_INCOMPATIBILITY 
16#06060000 ACCESS_FAILED_DUE_HW_ERROR 
16#06070010 DATA_TYPE_LENGTH_NOT_MATCH 
16#06070012 DATA_TYPE_LENGTH_TOO_HIGH 
16#06070013 DATA_TYPE_LENGTH_TOO_LOW 
16#06090011 SUB_INDEX_NOT_EXIST 
16#06090030 VALUE_RANGE_EXCEEDED 
16#06090031 VALUE_RANGE_TOO_HIGH 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 39 
 

16#06090032 VALUE_RANGE_TOO_LOW 
16#06090036 MAX_VALUE_LESS_MIN_VALUE 
16#08000000 GENERAL_ERROR 
16#08000020 DATA_NOT_TRANSF_OR_STORED 
16#08000021 DATA_NOT_TRANSF_DUE_LOCAL_CONTROL 
16#08000022 DATA_NOT_TRANSF_DUE_DEVICE_STATE 
16#08000023 OBJECT_DICTIONARY_NOT_EXIST 
 
 
The data types "EMCY_ERR_CODE" and "EMCY_ERR_REGISTER" are used for the respective 
parameters of function blocks CAN_RECV_EMCY and CAN_RECV_EMCY_DEV. They contain the 
emergency error information of the node which generates the respective emergency message. The 
general emergency errors are defined in the CiA Draft Standard 301, but can be extended by the 
manufacturer of the respective CANopen module. 
 
 

4.2 Function Blocks for Accessing the Local CANopen Kernel 

The function blocks for accessing the local CANopen kernel of your own PLC enable the request of 
the node address as well as the state of the network layer. These function blocks do not require 
communication with other nodes. 
 
 
 
4.2.1 Function Block CAN_GET_LOCAL_NODE_ID 

FB for requesting the local node address. 
 
Prototype of the Function Block 
 
              +-----------------------+ 
              | CAN_GET_LOCAL_NODE_ID | 
              |                       | 
      BOOL ---|ENABLE          CONFIRM|--- BOOL 
              |                       | 
              |                 DEVICE|--- USINT 
              |                       | 
     USINT ---|NETNUMBER              | 
              |                       | 
              +-----------------------+ 
 
Definition of Operands 
 
DEVICE Local node address of the PLC 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC 61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_GET_LOCAL_NODE_ID is used to request the local node address of the 
PLC. The node address of a control influences the availability of the various function blocks (PLC with 
and without CANopen Master, see section 4.1.2) 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 40 
 

4.2.2 Function Block CAN_GET_CANOPEN_KERNEL_STATE 

FB for state request of the CANopen kernel of your own PLC. 
 
Prototype of the Function Block 
 
               +------------------------------+ 
               | CAN_GET_CANOPEN_KERNEL_STATE | 
               |                              | 
      BOOL  ---|ENABLE                 CONFIRM|--- BOOL 
               |                              | 
               |                         STATE|--- WORD 
               |                              | 
      USINT ---|NETNUMBER                     | 
               |                              | 
               +------------------------------+ 
 
Definition of Operands 
 
STATE State or error code according to the data type 

"CIA405_CANOPEN_KERNEL_ERROR" (see Table 8 in section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_GET_CANOPEN_KERNEL_STATE is used to request the state of the 
CANopen kernel of your own PLC. 
 
 

4.3 Function Blocks for PDOs and CAN Layer 2 

From the PLC’s point of view PDOs and CAN Layer 2 messages are generated by a transmitter at any 
time. Their reception does not depend on the execution of the PLC program, but occurs 
asynchronously. Therefore, the reception of these messages cannot be controlled or influenced by 
calling a function block. Processing of PDOs and CAN Layer 2 messages via a PLC program thus 
requires the buffering of the asynchronously received messages in the network layer until function 
block CAN_PDO_READ8 has been called (see section 4.3.2). PLC program-relevant messages 
should be filtered here due to the number of possible CAN messages. To achieve this, the CAN 
identifiers (COBIDs) of the relevant messages are at first registered via function block 
CAN_REGISTER_COBID (see section 0). Reception, and therefore access via the function block 
CAN_PDO_READ8, is only possible for registered messages. 
 
The function blocks for PDOs and CAN Layer 2 messages manufacturer-specifically extend the 
functional scope of available CANopen services defined by the CiA Draft Standard 405. 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 41 
 

 
Note: The here described function blocks CAN PDO_READ8 (section 4.3.2) and 

CAN_PDO_WRITE8 (section 4.3.3) allow for an integration of devices in existing 
CANopen-networks, which are not CANopen-capable.They have been designed as a 
supplement to the function blocks defined in the CiA Draft Standard 405 and are 
therefore subject to the restrictions given by CANopen (e.g. selection of useable CAN-
identifiers) 
 
A non-restricted data exchange on CAN Layer 2 level without CANopen restrictions 
allows for the CAN Layer 2 function blocks described in the second part of this 
manual (see section 6) 

 
 
 
 
4.3.1 Function Block CAN_REGISTER_COBID 

FB for registering or deleting the reception of PDOs and CAN Layer 2 messages via the network layer. 
 
Prototype of the Function Block 
 
               +--------------------+ 
               CAN_REGISTER_COBID 
               |                    | 
      UINT  ---|COBID        CONFIRM|--- BOOL   
      BOOL  ---|REGISTER            | 
               |               ERROR|--- WORD 
      BOOL  ---|ENABLE              | 
               |                    | 
      USINT ---|NETNUMBER           | 
               |                    | 
               +--------------------+ 
 
Definition of Operands  
 
COBID COBID (CAN identifier) of the new message to be entered into the registry or to be 

deleted from the registry (0 for deleting all messages) 
 
REGISTER TRUE = Enter COBID into registry 

FALSE = Delete COBID from registry 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_REGISTER_COBID is used to register a PDO or a CAN Layer 2 message for 
reception by the network layer or to delete such a registration. When calling the block with input 
REGISTER set to TRUE, the specified COBID (CAN identifier) for receiving messages in the network 
layer is registered. When calling with REGISTER = FALSE, registry of the respective COBIDs is 
deleted again. Calling the block with REGISTER = FALSE and COBID = 0 deletes all registries and all 
the messages stored in the buffer of the network layer. 
 
Basically, the network layer only supports access to PDOs and CAN Layer 2 messages by calling 
function block CAN_PDO_READ8 (see section 4.3.2) for registered messages. 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 42 
 

 
 
 
4.3.2 Function Block CAN_PDO_READ8 

FB for reading PDOs and CAN Layer 2 messages from the receive buffer of the network layer. 
 
Prototype of the Function Block 
 
               +--------------------+ 
               |    CAN_PDO_READ8   | 
               |                    | 
      UINT  ---|COBID        CONFIRM|--- BOOL 
               |                    | 
      BOOL  ---|ENABLE         ERROR|--- WORD 
               |           ERRORINFO|--- DWORD 
               |                    | 
               |               DATA0|--- BYTE 
               |               DATA1|--- BYTE 
               |               DATA2|--- BYTE 
               |               DATA3|--- BYTE 
               |               DATA4|--- BYTE 
               |               DATA5|--- BYTE 
               |               DATA6|--- BYTE 
               |               DATA7|--- BYTE 
               |          DATALENGTH|--- USINT 
               |                    | 
      USINT ---|NETNUMBER           | 
               |                    | 
               +--------------------+ 
 
Definition of Operands 
 
COBID COBID (CAN identifier) of the message to be read (PDO or CAN Layer 2) 
DATA0 - DATA7 Data bytes of the received CAN message 
DATALENGTH Length of the received CAN message 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
ERRORINFO Reserved for additional error information 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_PDO_READ8 is used for reading PDOs and CAN Layer 2 messages from 
the receive buffer of the network layer. It is only supported to access messages which have been 
registered via function block CAN_REGISTER_COBID (see section 0). If several messages with the 
same COBID are received between to subsequent calls of CAN_PDO_READ8, the last received 
message overwrites the previous one. This way the current message always remains in the receive 
buffer. After reading via the function block CAN_PDO_READ8, the respective message is deleted 
from the receive buffer of the network layer. This prevents repeated reading of a message by the PLC 
program. 
 
If the output CONFIRM has been set to TRUE when the function block returns, the elements DATA0 
to DATA7 contain the individual bytes of the received message. Output DATALENGTH states the 
number of valid data bytes (from DATA0). But if output CONFIRM has been set to FALSE, the receive 
buffer in the network layer does not contain messages with the specified COBID. With CONFIRM it is 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 43 
 

thus possible to distinguish whether a valid message with a 0 byte length or without a message has 
been received. An unavailable message is also displayed via the error code 
NO_VALID_DATA_AVAILABLE at output ERROR (see Table 8, section 4.1.5). 
 
 
 
4.3.3 Function Block CAN_PDO_WRITE8 

FB for sending PDOs and CAN Layer 2 messages via the network layer. 
 
Prototype of the Function Block 
 
               +--------------------+ 
               |   CAN_PDO_WRITE8   | 
               |                    | 
      UINT  ---|COBID        CONFIRM|--- BOOL 
               |                    | 
      BOOL  ---|ENABLE         ERROR|--- WORD 
               |           ERRORINFO|--- DWORD 
               |                    | 
      BYTE  ---|DATA0               | 
      BYTE  ---|DATA1               | 
      BYTE  ---|DATA2               | 
      BYTE  ---|DATA3               | 
      BYTE  ---|DATA4               | 
      BYTE  ---|DATA5               | 
      BYTE  ---|DATA6               | 
      BYTE  ---|DATA7               | 
      USINT ---|DATALENGTH          | 
               |                    | 
      USINT ---|NETNUMBER           | 
               |                    | 
               +--------------------+ 
 
Definition of Operands 
 
COBID COBID (CAN identifier) of the message to be sent (PDO or CAN Layer 2) 
DATA0 - DATA7 Data bytes of the CAN message to be sent 
DATALENGTH Length of the CAN message to be sent 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR"  

(see Table 8, section 4.1.5) 
 
ERRORINFO Reserved for additional error information 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_PDO_WRITE8 is used for sending PDOs and CAN Layer 2 messages via the 
network layer. The individual bytes of the message to be sent have to be transferred to the elements 
DATA0 to DATA7. Output DATALENGTH states the number of valid data bytes (from DATA0). 
 
When calling the function block CAN_PDO_WRITE8 the message to be sent is stored in the send 
buffer of the CANopen kernel. If no error occurs during this phase (message could be successfully 
stored in the send buffer), the block whose output CONFIRM has been set to TRUE returns. However, 
there is no feedback to the PLC program stating whether the message has been sent successfully or 
not. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 44 
 

 
 

4.4 Function Blocks for SDOs 

A PLC can write or read entries in the Object Dictionary of a node via SDOs. Data transfer takes place 
in confirmation mode to ensure that communication errors can be recognized reliably. Since the 
complete SDO transfer always consists of several CAN messages, it has to take place 
asynchronously in the background in order not to block the PLC program. The function blocks for 
SDOs immediately return after the transfer has been initialized. The procedure described in section 
4.1.3 is used to synchronize between the CANopen function block and the PLC program using the 
parameters ENABLE and CONFIRM. 
 
The network layer provides an SDO channel to be used by the PLC program. This ensures that only 
one SDO function block can be active at a time. Upon successful initialization of the SDO transfer, the 
SDO channel is locked and cannot be used by other blocks. This lock state remains until the active 
SDO function block is recalled with input ENABLE set to FALSE after completion of the data transfer 
(see section 4.1.3). 
 
 
 
4.4.1 Function Block CAN_SDO_READ8 

FB for reading object entries of a node via SDO transfer. 
 
Prototype of the Function Block 
 
               +--------------------+ 
               CAN_SDO_READ8 
               |                    | 
      USINT ---|DEVICE       CONFIRM|--- BOOL 
      WORD  ---|INDEX               | 
      BYTE  ---|SUBINDEX       ERROR|--- WORD 
               |           ERRORINFO|--- DWORD 
      BOOL  ---|ENABLE              | 
               |               DATA0|--- BYTE 
               |               DATA1|--- BYTE 
               |               DATA2|--- BYTE 
               |               DATA3|--- BYTE 
               |               DATA4|--- BYTE 
               |               DATA5|--- BYTE 
               |               DATA6|--- BYTE 
               |               DATA7|--- BYTE 
               |          DATALENGTH|--- USINT 
               |                    | 
      USINT ---|NETNUMBER           | 
               |                    | 
               +--------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be read (1-127 or 0 for local OD) 
INDEX Number of the index entry to be read 
SUBINDEX Number of the subindex entry to be read 
 
DATA0 - DATA7 Data bytes of the read entry 
DATALENGTH Length of the read entry 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
ERRORINFO SDO Abort Code of the communication partner according to data type 

"CIA405_SDO_ERROR" (see Table 12, section 4.1.5) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 45 
 

NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 
this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_READ8 is used for reading object entries of a node by using the SDO 
transfer. The SDO transfer always takes place in the background; the procedure described in section 
4.1.3 therefore has to be used for synchronization between the function block and PLC program, using 
the parameters ENABLE and CONFIRM. 
 
If the output CONFIRM has been set to TRUE when the function block returns, the elements DATA0 
to DATA7 contain the individual bytes of the read object entry. Output DATALENGTH states the 
number of valid data bytes (from DATA0). 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with input 
ENABLE set to FALSE (see section 4.1.3). If calling through ENABLE = FALSE is skipped, the 
resource remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to read values from your own OD. 
 
 
 
4.4.2 Function Block CAN_SDO_WRITE8 

FB for writing object entries of a node via SDO transfer. 
 
Prototype of the Function Block 
 
               +--------------------+ 
               |   CAN_SDO_WRITE8   | 
               |                    | 
      USINT ---|DEVICE       CONFIRM|--- BOOL 
      WORD  ---|INDEX               | 
      BYTE  ---|SUBINDEX       ERROR|--- WORD 
               |           ERRORINFO|--- DWORD 
      BOOL  ---|ENABLE              | 
               |                    | 
      BYTE  ---|DATA0               | 
      BYTE  ---|DATA1               | 
      BYTE  ---|DATA2               | 
      BYTE  ---|DATA3               | 
      BYTE  ---|DATA4               | 
      BYTE  ---|DATA5               | 
      BYTE  ---|DATA6               | 
      BYTE  ---|DATA7               | 
      USINT ---|DATALENGTH          | 
               |                    | 
      USINT ---|NETNUMBER           | 
               |                    | 
               +--------------------+ 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 46 
 

Definition of Operands 
 
DEVICE Address of the node to be written (1-127 or 0 for local OD) 
INDEX Number of the index entry to be written 
SUBINDEX Number of the subindex entry to be written 
 
DATA0 - DATA7 Data bytes of the entry to be written 
DATALENGTH Length of the entry to be written 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
ERRORINFO SDO Abort Code of the communication partner according to the data type 

"CIA405_SDO_ERROR" (see Table 12, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_WRITE8 is used for writing object entries of a node, using the SDO 
transfer. The SDO transfer always takes place in the background; the procedure described in section 
4.1.3 therefore has to be used for synchronization between the function block and PLC program, using 
the parameters ENABLE and CONFIRM. 
 
The individual bytes of the object entry to be written have to be transferred to the elements DATA0 to 
DATA7. Input DATALENGTH states the number of valid data bytes (from DATA0). 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with the input 
ENABLE set to FALSE (see section 4.1.3). If calling through ENABLE = FALSE is skipped, the 
resource remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to write values in your own OD. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 47 
 

4.4.3 Function Block CAN_SDO_READ_STR 

FB for reading character strings from the Object Dictionary of a node via SDO transfer. 
 
Prototype of the Function Block 
 
                +--------------------+ 
                |  CAN_SDO_READ_STR  | 
                |                    | 
      USINT  ---|DEVICE       CONFIRM|--- BOOL 
      WORD   ---|INDEX               | 
      BYTE   ---|SUBINDEX       ERROR|--- WORD 
      USINT  ---|SDOTYPE    ERRORINFO|--- DWORD 
                |                    | 
      BOOL   ---|ENABLE              | 
                |                    | 
      STRING ---|RXDATA--------RXDATA|--- STRING 
      INT    ---|MAXLENGTH   RXLENGTH|--- INT 
                |                    | 
      USINT  ---|NETNUMBER           | 
                |                    | 
                +--------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be read (1-127 or 0 for local OD) 
INDEX Number of the index entry to be read 
SUBINDEX Number of the subindex entry to be read 
SDOTYPE Type of the SDO transfer mode to be used according to data type 

"CAN_SDO_TYPE" (see Table 11, section 4.1.5) 
 
Note: If no value is explicitly assigned to this input (input open or not used), the 
function block uses mode "SDO_TYPE_AUTO_BEST_CASE". The network layer 
individually selects the best suitable SDO transfer mode based on the amount of 
data to be transferred. 

 
RXDATA String variable for receiving the read characters 
 
MAXLENGTH Limitation of the number of characters to be read. If the number is 0, the buffer 

length of the transferred string is internally determined and used as the delimiter 
for the number of characters to be read (Note: the standard buffer size of a string 
in OpenPCS is 32 characters). 

 
RXLENGTH Length of the read character string 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
ERRORINFO SDO Abort Code of the communication partner according to data type 

"CIA405_SDO_ERROR" (see Table 12, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_READ_STR is used for reading character strings from the Object 
Dictionary of a node by using the SDO transfer. The SDO transfer always takes place in the 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 48 
 

background; the procedure described in section 4.1.3 has to be, therefore, used for synchronization 
between the function block and PLC program, using the parameters ENABLE and CONFIRM. 
 
If output CONFIRM has been set to TRUE when the function block returns, the string transferred as 
element RXDATA contains the character string of the read object entry. Output RXLENGTH states the 
number of read characters (equals LEN(RXDATA);). 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with input 
ENABLE set to FALSE (see section 4.1.3). If calling through ENABLE = FALSE is skipped, the 
resource remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to read values from your own OD. 
 
 
 
4.4.4 Function Block CAN_SDO_WRITE_STR 

FB for writing character strings into the Object Dictionary of a node via SDO transfer. 
 
Prototype of the Function Block 
 
                +---------------------+ 
                |  CAN_SDO_WRITE_STR  | 
                |                     | 
      USINT  ---|DEVICE        CONFIRM|--- BOOL 
      WORD   ---|INDEX                | 
      BYTE   ---|SUBINDEX        ERROR|--- WORD 
      USINT  ---|SDOTYPE     ERRORINFO|--- DWORD 
                |                     | 
      BOOL   ---|ENABLE               | 
                |                     | 
      STRING ---|TXDATA---------TXDATA|--- STRING 
      INT    ---|TXLENGTH             | 
                |                     | 
      USINT  ---|NETNUMBER            | 
                |                     | 
                +---------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be written (1-127 or 0 for local OD) 
INDEX Number of the index entry to be written 
SUBINDEX Number of the subindex entry to be written 
SDOTYPE Type of the SDO transfer mode to be used according to data type 

"CAN_SDO_TYPE" (see Table 11, section 4.1.5) 
 
Note: If no value is explicitely assigned to this input (input open or not used), the 
function block uses mode "SDO_TYPE_AUTO_BEST_CASE". The network layer 
individually selects the best suitable SDO transfer mode based on the amount of 
data to be transferred. 

 
TXDATA String variable with the character string to be written 
TXLENGTH Number of characters to be written; if the number is 0, the length of the character 

string contained in the string TXDATA is internally determined (equals 
LEN(TXDATA);) and used as the number of characters to be written. 

 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
ERRORINFO SDO Abort Code of the communication partner according to data type 

"CIA405_SDO_ERROR" (see Table 12 , section 4.1.5) 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 49 
 

 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_WRITE_STR is used for writing character strings into the Object 
Dictionary of a node by using the SDO transfer. The SDO transfer always takes place in the 
background; the procedure described in section 4.1.3 therefore has to be used for synchronization 
between the function block and PLC program, using the parameters ENABLE and CONFIRM. 
 
The character string to be written in to the Object Dictionary has to be transferred to element 
TXDATA. Input TXLENGTH specifies the number of valid characters. If this value is 0, the length of 
the character string contained in string TXDATA is internally determined (equals LEN(TXDATA);) and 
used as the number of characters to be written. In this case, the string content occupied entirely is 
written. 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with input 
ENABLE set to FALSE (see section 4.1.3). If calling through ENABLE = FALSE is skipped, the 
resource remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to write values in your own OD. 
 
 
 
4.4.5 Function Block CAN_SDO_READ_BIN 

FB for reading binary data from the Object Dictionary of a node via SDO transfer. 
 
Prototype of the Function Block 
 
                  +--------------------+ 
                  |  CAN_SDO_READ_BIN  | 
                  |                    | 
      USINT    ---|DEVICE       CONFIRM|--- BOOL 
      WORD     ---|INDEX               | 
      BYTE     ---|SUBINDEX       ERROR|--- WORD 
      USINT    ---|SDOTYPE    ERRORINFO|--- DWORD 
                  |                    | 
      BOOL     ---|ENABLE              | 
                  |                    | 
      POINTER  ---|PTR_RXDATA          | 
      INT      ---|MAXLENGTH   RXLENGTH|--- INT 
                  |                    | 
      USINT    ---|NETNUMBER           | 
                  |                    | 
                  +--------------------+ 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 50 
 

Definition of Operands 
 
DEVICE Address of the node to be read (1-127 or 0 for local OD) 
INDEX Number of the index entry to be read 
SUBINDEX Number of the subindex entry to be read 
SDOTYPE Type of the SDO transfer mode to be used according to data type 

"CAN_SDO_TYPE" (see Table 11 in section 4.1.5) 
 
Note: If no value is assigned explicitly to this input (input open or not used), the 
function block uses mode "SDO_TYPE_AUTO_BEST_CASE". The network layer 
individually selects the best suitable SDO transfer mode based on the amount of 
data to be transferred. 

 
PTR_RXDATA Address of an object for receiving the read data bytes 
 
MAXLENGTH Limitation of number of bytes to read, if 0, the length of the object addressed by 

PTR_RXDATA is internally determined and used as the number of bytes to be 
read (the maximum of bytes reads equals the number of bytes the object is able to 
take up). 

 
RXLENGTH Number of read data bytes 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
ERRORINFO SDO Abort Code of the communication partner according to data type 

"CIA405_SDO_ERROR" (see Table 12, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_READ_STR is used for reading binary data from the Object Dictionary 
of a node by using the SDO transfer. The SDO transfer always takes place in the background; the 
procedure described in section 4.1.3 therefore has to be used for synchronization between the 
function block and the PLC program, using the parameters ENABLE and CONFIRM. 
 
If output CONFIRM has been set to TRUE when the function block returns, then the object addressed 
by element PTR_RXDATA contains the binary data bytes of the read object entry. Output RXLENGTH 
states the number of read bytes. 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with input 
ENABLE set to FALSE (see section 4.1.3). If calling through ENABLE = FALSE is skipped, the 
resource remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to read values from your own OD. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 51 
 

4.4.6 Function Block CAN_SDO_WRITE_BIN 

FB for writing binary data into the Object Dictionary of a node via SDO transfer. 
 
Prototype of the Function Block 
 
                  +---------------------+ 
                  |  CAN_SDO_WRITE_BIN  | 
                  |                     | 
      USINT    ---|DEVICE        CONFIRM|--- BOOL 
      WORD     ---|INDEX                | 
      BYTE     ---|SUBINDEX        ERROR|--- WORD 
      USINT    ---|SDOTYPE     ERRORINFO|--- DWORD 
                  |                     | 
      BOOL     ---|ENABLE               | 
                  |                     | 
      POINTER  ---|PTR_TXDATA           | 
      INT      ---|TXLENGTH             | 
                  |                     | 
      USINT    ---|NETNUMBER            | 
                  |                     | 
                  +---------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be written (1-127 or 0 for local OD) 
INDEX Number of the index entry to be written 
SUBINDEX Number of the subindex entry to be written 
SDOTYPE Type of the SDO transfer mode to be used according to the data type 

"CAN_SDO_TYPE" (see Table 11, section 4.1.5) 
 
Note: If no value is explicitely assigned to this input (input open or not used), the 
function block uses mode "SDO_TYPE_AUTO_BEST_CASE". The network layer 
individually selects the best suitable SDO transfer mode based on the amount of 
data to be transferred. 

 
PTR_TXDATA Address of an object with binary data to be written 
 
TXLENGTH Number of bytes to write, if 0, the length of the object addressed by PTR_TXDATA 

is determined internally and used as the number of bytes to be written 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
ERRORINFO SDO Abort Code of the communication partner according to data type 

"CIA405_SDO_ERROR" (see Table 12, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SDO_WRITE_STR is used for writing binary data into the Object Dictionary 
of a node by using the SDO transfer. The SDO transfer always takes place in the background; the 
procedure described in section 4.1.3 therefore has to be used for synchronization between the 
function block and PLC program, using the parameters ENABLE and CONFIRM. 
 
The address of an object with the binary data to be written in to the Object Dictionary has to be 
transferred to element PTR_TXDATA. Input TXLENGTH specifies the number of valid bytes. If this 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 52 
 

value is 0, the length of the object addressed via PTR_TXDATA is internally determined and used as 
the number of bytes to be written. 
 
The network layer only supports a limited number of SDO transfers via the PLC program at a time 
(Standard: max. 5 transfers, if there is no deviating entry in the manual of the PLC). After starting the 
SDO transfer by setting ENABLE to TRUE, the respective SDO channel is locked and cannot be used 
by other blocks. The lock state remains until the SDO function block has been recalled with input 
ENABLE set to FALSE (see section 4.1.3). If calling with ENABLE = FALSE is skipped, the resource 
remains permanently locked and is no longer available for the PLC. 
 
The local Object Dictionary of the PLC can be accessed by calling the function block with DEVICE = 0. 
This way it is also possible to write values in your own OD. 
 
 
 

4.5 Function Blocks for Master Services 

The function blocks for Master services enable state requests, monitoring and changing of the 
operational mode of any node, and the generation of SYNC messages. CANopen services are used 
which are exclusively permitted for just one node in the network (e.g. NMT services). Therefore, the 
functionality "PLC with CANopen Master" is connected to a specific node address so that only one 
control in the network can use this function (see section 4.1.2).  
 
 
 
4.5.1 Function Block CAN_GET_STATE 

FB for requesting the node state of devices. 
 
Prototype of the Function Block 
 
               +-----------------+ 
               |  CAN_GET_STATE  | 
               |                 | 
      USINT ---|DEVICE    CONFIRM|--- BOOL 
               |                 | 
      BOOL  ---|ENABLE      STATE|--- WORD 
               |                 | 
      USINT ---|NETNUMBER        | 
               |                 | 
               +-----------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be requested (1-127 or 0 for own node) 
 
STATE Node state according to data type "CIA405_STATE" (see Table 9, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 53 
 

Description 
 
The function block CAN_GET_STATE is used to request the node state of a device. The state request 
is based on monitoring via Heartbeat or Lifeguarding. See section 2.2 for detailed information. The 
return values at output STATE have the following meaning: 
 
UNKNOWN: The CANopen device at the specified address supports neither Heartbeat nor 

Lifeguarding, i.e. its state cannot be monitored. On a PLC without CANopen 
Master this state is also reported if there is no PLC with CANopen Master available 
in the network which supports state forwarding according to section 2.2 or if this 
Master PLC is in stop state (PLC program has stopped). 

 
NOT_AVAIL: The CANopen device at the specified address no longer responds to Heartbeat or 

Lifeguarding requests and is, thus, no longer available for the system. 
 
Other: Except for the state values UNKNOWN and NOT_AVAIL the return values 

correspond with the respective definitions in the CiA Draft Standard 301 (see Table 
9, section 4.1.5). 

 
The local node state of your own PLC is returned when calling the function block with DEVICE = 0. 
 
 
 
4.5.2 Function Block CAN_NMT 

FB for sending NMT messages. 
 
Prototype of the Function Block 
 
               +-----------------+ 
               |     CAN_NMT     | 
               |                 | 
      USINT ---|DEVICE    CONFIRM|--- BOOL 
      WORD  ---|STATE            | 
               |            ERROR|--- WORD 
      BOOL  ---|ENABLE           | 
               |                 | 
      USINT ---|NETNUMBER        | 
               |                 | 
               +-----------------+ 
 
Definition of Operands 
 
DEVICE Address of the node to be controlled (1-127 or 0 for all nodes) 
 
STATE Node state according to data type "CIA405_TRANSITION_STATE" (see Table 10, 

section 4.1.5) 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 54 
 

Description 
 
The function block CAN_NMT is used to control the state of a node (DEVICE = 1...127) or with 
DEVICE = 0 all nodes in the network. With the aid of this block a PLC program can also set the 
network to the Operational state manually if the CANopen Master has suppressed automatic network 
start. This is, e.g., the case if Bit 3 ("Do not send NMT-Start Remote Node") has been set in object 
1F80H or if errors occurred during the configuration phase (see section 2.2). Table 8 contains the 
possible states (see section 4.1.5). 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2). 
 
 
 
4.5.3 Function Block CAN_RECV_EMCY_DEV 

FB for reading emergency messages of a specific node from the receive buffer of the network layer. 
 
Prototype of the Function Block 
 
               +-------------------------+ 
               |    CAN_RECV_EMCY_DEV    | 
               |                         | 
      USINT ---|DEVICE            CONFIRM|--- BOOL 
               |                         | 
      BOOL  ---|ENABLE              ERROR|--- WORD 
               |                         | 
               |            EMCY_ERR_CODE|--- WORD 
               |        EMCY_ERR_REGISTER|--- BYTE 
               |          EMCY_ERR_FIELD1|--- BYTE 
               |          EMCY_ERR_FIELD2|--- BYTE 
               |          EMCY_ERR_FIELD3|--- BYTE 
               |          EMCY_ERR_FIELD4|--- BYTE 
               |          EMCY_ERR_FIELD5|--- BYTE 
               |                         | 
      USINT ---|NETNUMBER                | 
               |                         | 
               +-------------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node (1-127) for which the reception of emergency messages is to 

be checked 
 
EMCY_ERR_CODE 
EMCY_ERR_REGISTER 
EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 
 Emergency error information according to CiA Draft Standard 301 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB(see section 4.1.3) 
 
 
Description 
 
The function block CAN_RECV_EMCY_DEV is used for reading emergency messages of a specific 
node from the receive buffer of the network layer. If output CONFIRM has been set to TRUE when the 
function block returns, the elements EMCY_ERR contain the emergency error information of the node 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 55 
 

according to the CiA Draft Standard 301. However, if output CONFIRM has been set to FALSE, the 
receive buffer of the network layer does not contain any emergency message for the respective node. 
 
The function block always returns the emergency message of the respective node which has been 
entered first in the receive buffer (= oldest message), the message is subsequently deleted from the 
receive buffer. Each emergency message can thus only be read once by the PLC program. The 
function blocks CAN_RECV_EMCY_DEV and CAN_RECV_EMCY (see section 4.5.4) both access 
the same receive buffer. 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2). 
 
 
 
4.5.4 Function Block CAN_RECV_EMCY 

FB for reading emergency messages of any node from the receive buffer of the network layer. 
 
Prototype of the Function Block 
 
               +-------------------------+ 
               |      CAN_RECV_EMCY      | 
               |                         | 
      BOOL  ---|ENABLE            CONFIRM|--- BOOL 
               |                         | 
               |                   DEVICE|--- USINT 
               |                         | 
               |                    ERROR|--- WORD 
               |                         | 
               |            EMCY_ERR_CODE|--- WORD 
               |        EMCY_ERR_REGISTER|--- BYTE 
               |          EMCY_ERR_FIELD1|--- BYTE 
               |          EMCY_ERR_FIELD2|--- BYTE 
               |          EMCY_ERR_FIELD3|--- BYTE 
               |          EMCY_ERR_FIELD4|--- BYTE 
               |          EMCY_ERR_FIELD5|--- BYTE 
               |                         | 
      USINT ---|NETNUMBER                | 
               |                         | 
               +-------------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node (1-127) which received an emergency message 
 
EMCY_ERR_CODE 
EMCY_ERR_REGISTER 
EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 
 Emergency error information according to CiA Draft Standard 301 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_RECV_EMCY is used for reading emergency messages of any node from 
the receive buffer of the network layer. If output CONFIRM has been set to TRUE when the function 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 56 
 

block returns, output DEVICE states the node address which received a message. The elements 
EMCY_ERR contain the emergency error information of the node according to the CiA Draft Standard 
301. However, if output CONFIRM has been set to FALSE, the receive buffer of the network layer 
does not contain any emergency message. 
 
The function block always returns the emergency message of the respective node which has been 
entered first in the receive buffer (= oldest message), the message is subsequently deleted from the 
receive buffer. Each emergency message can thus only be read once by the PLC program. The 
function blocks CAN_RECV_EMCY_DEV (see section 4.5.3) and CAN_RECV_EMCY both access 
the same receive buffer. 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2). 
 
 
 
4.5.5 Function Block CAN_WRITE_EMCY 

FB for sending application-specific emergency messages via the network layer. 
 
Prototype of the Function Block 
 
               +--------------------------+ 
               |      CAN_WRITE_EMCY      | 
               |                          | 
      BOOL  ---|ENABLE             CONFIRM|--- BOOL 
               |                          | 
               |                     ERROR|--- WORD 
               |                          | 
      WORD  ---|EMCY_ERR_CODE             | 
      BYTE  ---|EMCY_ERR_REGISTER         | 
      BYTE  ---|EMCY_ERR_FIELD1           | 
      BYTE  ---|EMCY_ERR_FIELD2           | 
      BYTE  ---|EMCY_ERR_FIELD3           | 
      BYTE  ---|EMCY_ERR_FIELD4           | 
      BYTE  ---|EMCY_ERR_FIELD5           | 
               |                          | 
      WORD  ---|EMCY_ADD_INFO             | 
               |                          | 
      USINT ---|NETNUMBER                 | 
               |                          | 
               +--------------------------+ 
 
Definition of Operands 
 
EMCY_ERR_CODE 
EMCY_ERR_REGISTER 
EMCY_ERR_FIELD1 - EMCY_ERR_FIELD5 
 Emergency error information according to the CiA Draft Standard 301 for the 

emergency message to be sent 
 
EMCY_ADD_INFO 
 Additional, user-specific emergency error information; is entered in Index 1003H of 

the Object Dictionary (Error Field, see CiA Draft Standard 301); is not a component 
of the emergency message to be sent, but is used for diagnosis purposes and can, 
therefore, also be zero 

 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 57 
 

NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 
this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_WRITE_EMCY is used to send application-specific emergency messages via 
the network layer. The elements EMCY_ERR contain the emergency error information of the user 
application to be sent according to the CiA Draft Standard 301. Via element EMCY_ADD_INFO, the 
user application can transfer further error information which is not a component of the emergency 
message to be sent, but entered in Index 1003H of the Object Dictionary (Error Field, see CiA Draft 
Standard 301). This error information is only used for diagnosis purposes and can, therefore, also be 
zero. Index 1003H of the Object Dictionary can be read via a configuration or diagnosis tool. 
 
When calling function block CAN_WRITE_EMCY, the message to be sent is stored in the send buffer 
of the CANopen kernel. If no error occurs during this phase (message could be successfully stored in 
the send buffer), the block whose output CONFIRM has been set to TRUE returns. However, there is 
no feedback to the PLC program stating whether the message has been sent successfully or not. 
 
 
 
4.5.6 Function Block CAN_RECV_BOOTUP_DEV 

FB for reading bootup messages of a specific node from the receive buffer of the network layer. 
 
Prototype of the Function Block 
 
               +-----------------------+ 
               CAN_RECV_BOOTUP_DEV 
               |                       | 
      USINT ---|DEVICE          CONFIRM|--- BOOL 
               |                       | 
      BOOL  ---|ENABLE            ERROR|--- WORD 
               |                       | 
      USINT ---|NETNUMBER              | 
               |                       | 
               +-----------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node (1-127) for which the reception of bootup messages is to be 

checked 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_RECV_BOOTUP_DEV is used for reading bootup messages of a specific 
node from the receive buffer of the network layer. If output CONFIRM has been set to TRUE when the 
function block returns, the specified node received a bootup message. However, if output CONFIRM 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 58 
 

has been set to FALSE, the receive buffer in the network layer does not contain a bootup message for 
the respective node. 
 
After reading a bootup message, it is deleted from the receive buffer and, therefore, only reported 
once to the PLC program. The function blocks CAN_RECV_BOOTUP_DEV and 
CAN_RECV_BOOTUP (see section 4.5.7) both access the same receive buffer. 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2). 
 
 
 
4.5.7 Function Block CAN_RECV_BOOTUP 

FB for reading bootup messages of any node from the receive buffer of the network layer. 
 
Prototype of the Function Block 
 
               +-------------------------+ 
               CAN_RECV_BOOTUP 
               |                         | 
      BOOL  ---|ENABLE            CONFIRM|--- BOOL 
               |                         | 
               |                   DEVICE|--- USINT 
               |                         | 
               |                    ERROR|--- WORD 
               |                         | 
      USINT ---|NETNUMBER                | 
               |                         | 
               +-------------------------+ 
 
Definition of Operands 
 
DEVICE Address of the node (1-127) which received a bootup message 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_RECV_BOOTUP is used for reading bootup messages of any node from the 
receive buffer of the network layer. If output CONFIRM has been set to TRUE when the function block 
returns, output DEVICE states the node address which received a message. However, if output 
CONFIRM has been set to FALSE, the receive buffer in the network layer does not contain bootup 
messages. 
 
The function block always returns the bootup message of the respective node which has been entered 
first in the receive buffer (= oldest message); the message is subsequently deleted from the receive 
buffer. Each bootup message can thus only be read once by the PLC program. The function blocks 
CAN_RECV_BOOTUP_DEV (see section 4.5.6) and CAN_RECV_BOOTUP both access the same 
receive buffer. 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2). 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 59 
 

 
 
4.5.8 Function Block CAN_ENABLE_CYCLIC_SYNC 

FB for activating or deactivating cyclic SYNC messages. 
 
Prototype of the Function Block 
 
               +--------------------------+ 
               |  CAN_ENABLE_CYCLIC_SYNC  | 
               |                          | 
      BOOL  ---|SYNC_MODE          CONFIRM|--- BOOL 
      TIME  ---|SYNC_TIME                 | 
               |                     ERROR|--- WORD 
      BOOL  ---|ENABLE                    | 
               |                          | 
      USINT ---|NETNUMBER                 | 
               |                          | 
               +--------------------------+ 
 
Definition of Operands 
 
SYNC_MODE TRUE = Activate the generation of cyclic SYNC messages 

FALSE = Deactivate the generation of cyclic SYNC messages 
 
SYNC_TIME Time between two consecutive SYNC messages or 0 for SYNC message after 

each PLC cycle 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_ENABLE_CYCLIC_SYNC is used for activating or deactivating the 
generation of cyclic SYNC messages via the PLC. When activated, the control generates a SYNC 
message between two consecutive PLC cycles if the last SYNC at least dates back to the time 
specified at input SYNC_TIME. If the time since the last SYNC is less than SYNC_TIME, no SYNC 
message is generated. The input value SYNC_TIME = 0 prompts the control to finish each PLC cycle 
with a SYNC message. In this case, the exchange of the network process image takes place 
synchronous to the exchange of the process image for the local inputs and outputs of the PLC. 
 
At the end of each PLC cycle the control always checks the time specification for sending a SYNC 
message. The time specified at input SYNC_TIME is, therefore, the minimum time between two 
consecutive SYNC messages. The real time interval between two SYNC messages can, in the worst 
case scenario, vary by the length of one PLC cycle: 
 
Tsync [worst case] = SYNC_TIME + TPLC cycle 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2) and can only be used as an alternative to function block CAN_SEND_SYNC (see section 
4.5.9). 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 60 
 

4.5.9 Function Block CAN_SEND_SYNC 

FB for sending an individual SYNC message. 
 
Prototype of the Function Block 
 
               +-----------------+ 
               |  CAN_SEND_SYNC  | 
               |                 | 
       BOOL ---|ENABLE    CONFIRM|--- BOOL 
               |                 | 
               |            ERROR|--- WORD 
               |                 | 
      USINT ---|NETNUMBER        | 
               |                 | 
               +-----------------+ 
 
Definition of Operands 
 
ERROR Error code according to data type "CIA405_CANOPEN_KERNEL_ERROR" (see 

Table 8, section 4.1.5) 
 
NETNUMBER Network number (Note: If the PLC only supports one CANopen interface, setting of 

this input can be skipped since numeric variables have already been set with the 
initial value 0 according to IEC61131) 

 
ENABLE Input for enabling or disabling the FB (see section 4.1.3) 
CONFIRM Output for message completed through the FB (see section 4.1.3) 
 
 
Description 
 
The function block CAN_SEND_SYNC is used for generating individual SYNC messages with 
complete control of the PLC program. Each time the block with output ENABLE set to TRUE is called, 
a SYNC message is sent. Due to these targeted measures it is possible to only generate SYNC 
messages when really relevant data have been changed (e.g. in connection with the function blocks 
for PDOs and CAN Layer 2 messages CAN_PDO_READ8 or CAN_PDO_WRITE8, see section 4.3). 
 
This function block is only available on a control in mode "PLC with CANopen Master" (see section 
4.1.2) and can only be used as an alternative to function block CAN_ENABLE_CYCLIC_SYNC (see 
section 4.5.8). 
 
 
 

4.6 Example Project for CANopen Function Blocks 

The example project "CopDemo" included in the OpenPCS standard installation shows the application 
of various CANopen function blocks. It contains two programs with identical functionality, whereby one 
program realizes data exchange via PDO function blocks ("PDODEMO.POE") and the other one via 
SDO function blocks ("SDODEMO.POE"). 
 
Both demo programs of the example project "CopDemo" read process data from a CANopen IO 
module (node address 40H) and subsequently write it back onto the IO module. Therefore, the outputs 
of the IO module follow its input values. The demo program for the PDO function blocks reads the 
PDO generated by the IO module as a reaction to the changes at its inputs and returns the process 
data contained therein to the IO module via PDO. In the demo program for the SDO functionality, the 
PLC cyclically reads the current value of the inputs from the respective entry in the Object Dictionary 
of the node und subsequently writes it back onto the OD entry for the outputs via SDO. 
 
The following consitheations are based on the demo program for SDO function blocks 
("SDODEMO.POE"). The internal process control is based on the variable ProcStep which states the 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 61 
 

respective current process step and is used for program linking. Its value is incremented after each 
successful completion of a process step: 
 
(* === SDO processing === *) 
RunCycle: 
LD    ProcStep 
EQ    1 
JMPC  StartSDORead 
LD    ProcStep 
EQ    2 
JMPC  RunSDORead 
 
 
As described in section 4.1.3 (synchronization between CANopen function blocks and PLC program) 
a rising edge is required at input ENABLE to start an SDO transfer. To achieve this, instance 
FB_SDO_Read8 is at first called with ENABLE := FALSE. During the subsequent second call 
ENABLE := TRUE is set and the required CANopen communication parameters are additionally 
transferred (DEVICE, INDEX, SUBINDEX): 
 
(* Init SDO read *) 
StartSDORead: 
CAL   FB_SDO_Read8 ( 
      ENABLE := FALSE) 
 
CAL   FB_SDO_Read8 ( 
      DEVICE := RX_DEVICE, 
      INDEX := RxIndex, 
      SUBINDEX := RxSubIndex, 
      ENABLE := TRUE) 
 
LD    ProcStep 
ADD   1 
ST    ProcStep 
RET 
 
 
After starting the SDO transfer, the variable ProcStep used for the internal process control is 
incremented so that the process step for waiting for completion of the SDO transfer is called from the 
next PLC cycle onwards. The PLC repeats this process step cyclically as long as the output value of 
FB_SDO_Read8.CONFIRM is set to FALSE and output FB_SDO_Read8.ERROR does not display 
errors (equals zero): 
 
 
(* Processing SDO read *) 
RunSDORead: 
CAL   FB_SDO_Read8 ( 
      ENABLE := TRUE) 
 
LD    FB_SDO_Read8.CONFIRM 
JMPC  RunSDOReadEnd 
LD    FB_SDO_Read8.ERROR 
EQ    0 
RETC 
 
RunSDOReatheror: 
LD    ProcStep  (* restart SDO transfer after error *) 
SUB   1 
ST    ProcStep 
RET 
 
 
If the function block returns to FB_SDO_Read8.ERROR with an output value unequal to zero, the 
SDO transfer has been cancelled due to an error. The error code of FB_SDO_Read8.ERROR then 
states the reason (according to Table 8, section 4.1.5). As a result of this, the value of the variable 
ProcStep is decremented again to ensure that the process step for starting the SDO transfer is 
executed again in the following PLC cycle. 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 62 
 

 
If output FB_SDO_Read8.CONFIRM contains the value TRUE, the SDO transfer has been 
successful. In this case, program execution is continued at label RunSDOReadEnd (see below). As 
described in section 4.1.3 (synchronization between CANopen function block and PLC program), the 
PLC program has to inform the network layer about completion of the SDO transfer. To achieve this, 
instance FB_SDO_Read8 is recalled with ENABLE := FALSE. This also causes the network layer to 
reactivate the SDO channel so that it can be used by other function blocks again. The read data is 
subsequently transferred locally and the variable ProcStep is re-incremented. The SDO transfer is 
now completely finished; from the next PLC cycle, the control continues its program execution with the 
following process step: 
 
 
RunSDOReadEnd: 
CAL   FB_SDO_Read8 ( 
      ENABLE := FALSE) 
 
      (* copy received data *) 
LD    FB_SDO_Read8.DATALENGTH 
ST    DataLength 
LD    FB_SDO_Read8.DATA0 
ST    Data[0] 
 
LD    ProcStep 
ADD   1 
ST    ProcStep 
RET 
 
 
Without the last call ENABLE := FALSE the SDO channel remains in the lock state and can only be 
used by the locking instance – in this case FB_SDO_Read8. For the demo program 
"SDODEMO.POE" this would mean that the subsequent call of instance FB_SDO_Write8 for returning 
the data (not described here) aborts with the error message TRANSFER_BUSY at output ERROR. 
Sending of the data would no longer be possible. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 63 
 

5 Configuration of a PLC with CANopen Master 

5.1 Basic Information for the Master Configuration 

The basis for the configuration of the CANopen Master is the DCF file of the Master PLC. Integration 
of the DCF file into the PLC configuration is described in section 3.3. The configuration objects 
described below have to be parameterized accordingly in this DCF file. It is recommended to use the 
"SYSTEC CANopen Master Configurator" which is opened in the OpenPCS programming 
environment via the menu item "Extras -> Tools -> CANopen Master Configurator" (see Figure 17). 
The Master Configurator is described in detail in the manual L-1109 "Software Manual CANopen 
Master Configurator".  
 
 

 
Figure 17: SYSTEC CANopen Master Configurator 

 
 

5.2 Definition of the Node List 

Definition of the nodes to be configured and monitored by the CANopen Master takes place via the 
node list in the object entry 1F81H (NMT Slave Assignment, see CiA DS302 V3). Configuration of this 
object should preferably be carried out in the "NMT Slave" view of the "SYSTEC CANopen Master 
Configurator".  
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 64 
 

If object 1F81H has not been created in the Object Dictionary of the Master PLC (i.e. object 1F81H is 
not contained in the DCF file of the Master PLC), the control determines all the CANopen devices 
available in the network via a network scan which, as standard, covers the entire range for all node 
addresses from 1 to 127. Due to the application-specific requirements it might be necessary to limit 
the scanning range to ensure that not all the available node numbers between 1 and 127 are included 
in the network scan. A manufacturer-specific object with the Index 3001H is created for setting interval 
limits. This object contains two sub-entries for marking the lower limit (Subindex 1) and the upper limit 
(Subindex 2). See Table 13 for a description of the design of object 3001H. The network scan then 
only takes place within this interval (incl. lower and upper limit). Node monitoring for nodes with a 
node number outside this interval is not possible. 
 

Table 13: Object Dictionary entry for interval limits of the network scan 

Index Sub-
index 

Name Default 
Value 

Typ
e 

Attr. Meaning 

0 Number of entries 2 u8 ro  
1 Network scan Upper 

limit 
1 u8 rw First valid node number for network 

scan 

3001H 

2 Network scan Lower 
limit 

127 u8 rw Last valid node number for network 
scan 

 
If object 3001H is not in the Object Dictionary, the specified default values apply. 
 
 

5.3 Configuration of the COBID for Node State Messages 

Basis for the CANopen function block CAN_GET_STATE, with which a PLC program can determine 
the current state of a network node, is node monitoring via Heartbeat or Lifeguarding. Since this node 
monitoring only takes place on the Master PLC, the current states of the network nodes are unknown 
to all the other controls. Therefore, a Master PLC sends a broadcast message with the current node 
state to all controls without CANopen Master when recognizing a change of a node state. This 
ensures that the new state is also known on these controls and can be requested there by calling the 
CANopen function block CAN_GET_STATE. The default COBID can be configured via the Object 
Dictionary to prevent conflicts during integration of third party CANopen devices (see Table 14). When 
changing the default COBID, please note that this has to be carried out for all nodes concerned.  
 

Table 14: Object Dictionary entry for COBID of the node state messages 

Index Sub-
index 

Name Default 
Value 

Typ
e 

Attr. Meaning 

0 Number of entries 3 u8 ro  3002H 
1 COBID node state 

message 
50H u32 rw COBID of the node state message 

which is sent by the Master PLC 
when a monitored node changes its 
state 

 
If object 3002H is not in the Object Dictionary, the specified default values apply. 
 
 

5.4 Definition of Waiting Periods 

When starting the PLC program, the Master PLC sends the NMT command "Enter Pre-Operational 
State", followed by "Start Remote Node" for all nodes (node address = 0). This prompts the CANopen 
nodes to send their PDOs once. Subsequently, the PLC waits until the PDOs have been processed 
and the received values have been stored in the network image before starting the PLC program. This 
ensures the initial initialization of the network variables. The respective waiting periods can be 
configured via object 3003H in the Object Dictionary of the Master PLC (see Table 15). 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 65 
 

 

Table 15: Object Dictionary entries for defining waiting periods 

Index Sub-
index 

Name Default 
Value 

Typ
e 

Attr. Meaning 

0 Number of entries 1 u8 ro  3003H 
1 Boot Network Delay 50 u16 rw Waiting period in [ms] between 

sending the NMT commands 
EnterPreOperational and 
EnterOperational when starting the 
PLC program 

 2 PLC Start Delay 100 U16 rw Waiting period in [ms] between the 
NMT command EnterOperational 
and the start of the PLC program in 
order to process the initial PDOs 
and to store the received values in 
the network image 

 
If object 3003H is not in the Object Dictionary, the specified default values apply. 
 
 
 

5.5 Configuration of Heartbeat/Lifeguarding of the CANopen Devices 

The CANopen Master uses Heartbeat or Lifeguarding to monitor the CANopen devices. Monitoring of 
the node is primarily determined by the respective entries in the DCF file of the respective node. If 
there is no DCF file available for the respective node, selection of the monitoring method as well as 
configuration of the monitoring time occurs via the DCF file of the PLC (which has to be operated in 
Master mode). If neither Heartbeat nor Lifeguarding has been configured as monitoring methods in the 
DCF file, the Master uses the optimum method (i.e. Heartbeat). If Heartbeat is not available for the 
device, Lifeguarding is used. 
 
 
Configuration of Heartbeat:  
 
Configuration of Heartbeat occurs with object entry 1016H (Heartbeat Consumer, also see CiA DS301 
V4.x). A free subindex entry has to be carried out for each device to be monitored. The subindex can 
be selected freely. The entry has the following structure. 
 
Data type: UNSIGNED32 
 

Table 16: Configuration of Heartbeat 

Bits 31-24 23-16 15-0 
Value Reserved (00H) Node-ID Heartbeat Time 
Encoded as - UNSIGNED8 UNSIGNED16 
Example, 
Subindex 1 

00h 40H 0BB8H 

 
 
In the example, the Heartbeat Consumer is set to 3000ms for the device with the node address 40H. 
The Heartbeat Producer of the device is configured with a third of the value (here 1000ms). This 
means that the Master PLC stores the value 1000 in the object entry 1017H for the device. 
 
See Figure 18 for details of the Heartbeat configuration process. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 66 
 

Configuration of Lifeguarding:  
 
Configuration of Lifeguarding occurs with the object entry 1F81H (NMT Slave Assignmet, see CiA 
DS302 V3). For each device to be monitored, the entry has to be carried out in the subindex which 
corresponds to the node address of the device. The entry has the following structure: 
 
Data type: UNSIGNED32 
 

Table 17: Configuration of Lifeguarding 

Bits 31-16 15-8 7-0 
Value Guard Time Retry Factor Not used 
Encoded as UNSIGNED16 UNSIGNED8 UNSIGNED8 
Example, 
Subindex 41H 

05DCH 41H 0H 

 
 
In the example, Lifeguarding is set with a time of 1500ms for the device with node address 41H. The 
repetition factor for the device is set to 5. The Master PLC sets the following values in the device: 
 
Guard Time  Object entry 100CH: 1500ms 
Lifetime Factor Object entry 100DH: 5 
 
The interval between two requests of the Master equals the Guard Time multiplied by a safety factor 
of 0.8. In this example, a request is carried out approx. every 1200ms. 
 
See Figure 19 for details of the Lifeguarding configuration process. 
 
 
Configuration with Default Values: 
 
If neither Heartbeat nor Lifeguarding has been configured for the CANopen device in the DCF file, the 
Master PLC uses default values for node monitoring. The configuration takes place as described 
below: 
 
1. Does the device support Heartbeat? 

Access to the object entry 1017H of the device: If the object entry is available, the Heartbeat 
Producer of the device (object 1017H) is set to 1000ms and the Heartbeat Consumer of the 
Master PLC (object 1016H) is set to 3000ms. 

 
2. If the device supports Lifeguarding instead of Heartbeat, a lifetime (object 100CH) of 1000ms and 

a lifetime factor (object 100DH) of 3 are set in the device. These parameters are stored for the 
device in the Master PLC in the object entry 1F81H. 

 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 67 
 

Configuration of Heartbeat

yes

Heartbeat configured

yes

Is Heartbeat Consumer (Object
1016H) configured in PLC ?

Is Heartbeat Producer (Object
1017H) configured in node ?

Configure Heartbeat Producer
in node with a third of the
Heartbeat Consumer time

of the PLC

no

Configure Heartbeat
Consumer in PLC with the

treble value of the Heartbeat
Producer time of node

no

yes

Configure Heartbeat Producer
in node with standard value

(1000 ms) as well as
Heartbeat Consumer in PLC

with standard value
(3000 ms) too

nein

Is Heartbeat Producer (Object
1017H) configured in node ?

 
 

Figure 18: Heartbeat configuration process 

 
 

Configuration of Lifeguarding

yes

Lifeguarding configured

yes

Lifeguading values for nodes
configured in Object 1F81H ?

Is Lifeguarding Slave (Objects
100CH and 100DH) configured in

Node ?

no

no

yes

Start Lifeguarding
Master in PLC

no

Configure Lifeguarding
Slave in node with
values from Object

1F81H of PLC

Is Lifeguarding Slave (Objects
100CH and 100DH) configured in

Node ?

Configure Lifeguarding
Master in PLC with

values of Lifeguarding
Slave in node,

store this values also
to Object 1F81H in

PLC

Configure Lifeguarding
Master in PLC and

Lifeguarding Slave in
node with default

values
(Lifeguarding Time

= 1000ms and
Lifeguarding Factor

= 3)

 
 

Figure 19: Lifeguarding configuration process 

 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 68 
 

 
 
 

 
Part 2 

 
 

CAN Layer 2 
 

(Low Level Protocol) 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 69 
 

6 IEC61131 Function Blocks for CAN Layer 2 

6.1 Basic Information on CAN Layer 2 Function Blocks 

Within the IEC61131-3 different manufacturer-specific function blocks are available for a direct access 
to the CAN-interface. Herewith, CAN-telegrams can be written and processed directly through the 
PLC program. Furthermore, those function blocks support CAN-messages in the Extended-Frame 
Format (29 Bit CAN identifier according to CAN 2.0B). The CAN Layer 2 function blocks allow the PLC 
a flexible data exchange with any devices, which are not CANopen capable. 
 
 
 
Note: CAN Layer 2 function blocks cannot be used simultaneously with CANopen 

services on the same CAN-Interface. CAN Layer 2 function blocks can only be used 
if the CANopen-functionality for the respective CAN-Interface has been disabled in 
advance. (see section 6.2.1) 

 
 
 
 
6.1.1 Overview of CAN Layer 2 Funtion Blocks 

Table 18 shows an overview about the CAN Layer 2 function blocks for the IEC61131-3. All function 
blocks are realized as firmware blocks and hence part of the PLC firmware. Depending on the CAN 
controller inside the PLC are not all functionalities available in all cases. This especially concerns the 
filtering of CAN-messages (REGISTER_CANID / UNREGISTER_CANID) as well as the use of RTR-
Frames. Availability or restrictions of particular functionalities are listed in the System Manual of the 
respective control.  
 

Table 18: Overview of CAN Layer 2 funtion blocks for IEC 61131-3  

Function Block  Meaning Section  
CANL2_INIT Initializing of the CAN-Interface (Requires 

deactivation of the CANopen functionality for 
this interface) 

6.2.1 

CANL2_SHUTDOWN Deactivation of the CAN-Interface 6.2.2 
CANL2_RESET Reset of the CAN-Interface 6.2.3 
CANL2_GET_STATUS Status request of the CAN-Interface 6.2.4 
CANL2_DEFINE_CANID Definition of a CAN-Object for data transfer  6.2.5 
CANL2_DEFINE_CANID_RANGE Definition of an range of CAN-Objects for data 

exchange 
6.2.6 

CANL2_UNDEFINE_CANID Rejection of a previously defined CAN-object 6.2.7 
CANL2_UNDEFINE_CANID_RANGE Rejection of a previously defined range of 

CAN-objects 
6.2.8 

CANL2_MESSAGE_READ8 Reading out of received CAN-messages, data 
are passed at FB-outputs  

6.2.9 

CANL2_MESSAGE_READ_BIN Reading out of received CAN-messages, data 
are written in the object addressed via pointer  

6.2.10 

CANL2_MESSAGE_WRITE8 Sending of CAN-massages, data are passed 
on FB-inputs 

6.2.11 

CANL2_MESSAGE_WRITE_BIN Sending of CAN-messages, data are read 
from the object addressed via pointer 

6.2.12 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 70 
 

CANL2_MESSAGE_UPDATE8 Update of data of an RTR-message, data are 
passed on FB-inputs 

6.2.13 

CANL2_MESSAGE_UPDATE_BIN Update of data of an RTR-message, data are 
read from the object addressed via pointer 

6.2.14 

 
 
 
6.1.2 Synchronisation Between CAN Layer 2 Function Block and PLC Program 

The process-synchronisation between CAN-Interface and the PLC program occurs by means of signal 
ENABLE and CONFIRM of the function blocks. The meaning of the signals ENABLE and CONFIRM 
as well as the process of synchronisation are identical to the synchronisation described for CANopen 
function blocks in section 4.1.3 (for details refer to section 4.1.3). 
 
 
 
6.1.3 CAN Layer 2-specific Constants 

To mark error status, the data type "CANL2_ERROR” is used. Here, the error status which can occur 
within the CAN-Interface of an PLC, are summarized. These error codes are used by different function 
blocks as output parameter ERROR. Table 19 shows the allocation of used numeric constants to the 
respective error codes. 
 

Table 19: Constants for data type "CANL2_ERROR" 

Constant Errorcode 
16#00 (= 00 dez) NO_ERROR 
16#01 (= 01 dez) OTHER_ERROR 
16#02 (= 02 dez) INVALID_NETNUMBER 
16#03 (= 03 dez) INVALID_PARAMETER 
16#04 (= 04 dez) NO_MESSAGE 
16#05 (= 05 dez) UNSUPPORTED_BITRATE 
16#06 (= 06 dez) INIT_FAILED 
16#07 (= 07 dez) DEVICE_BUSY 
16#08 (= 08 dez) TX_BUFFER_OVERRUN 
16#09 (= 09 dez) NO_FREE_CHANNEL 
16#0A (= 10 dez) COBID_ALREADY_REGISTERED 
16#0B (= 11 dez) POINTER_TYPE_NOT_SUPPORTED 
 
 
The data type "CANL2_BUS_STATUS" is used for marking the status, in which a CAN-Interface is 
arranged. Table 20 shows the allocation of used numerical constants to the respective status values.  
 

Table 20: Constants for Data Type "CANL2_BUS_STATUS" 

Constant Status value 
16#00 (= 00 dez) BUS_STATE_OK 
16#01 (= 01 dez) BUS_STATE_WARNING_LIMIT 
16#02 (= 02 dez) BUS_STATE_ERROR_PASSIVE 
16#03 (= 03 dez) BUS_STATE_BUS_OFF 
 
 
The data type "CANL2_CDRV_STATUS" is used for signalling error and status states within the CAN-
driver. Thereby, an own bit is assigned to each event within the status mask. Several events can 
occur parallel at a particular time. In this case, multiple bits are set simultaneously within the status 
mask (OR combination). Table 21 shows the allocation of used numeric constants to the respective 
status values.  
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 71 
 

Table 21: Constants for Data Type "CANL2_CDRV_STATUS" 

Konstante Statuswert 
16#0000 CDRV_STATE_OK 
16#0001 (Bit 0) CDRV_STATE_WARNING_LIMIT_SET 
16#0002 (Bit 1) CDRV_STATE_WARNING_LIMIT_RESET 
16#0004 (Bit 2) CDRV_STATE_ERROR_PASSIVE_SET 
16#0008 (Bit 3) CDRV_STATE_ERROR_PASSIVE_RESET 
16#0010 (Bit 4) CDRV_STATE_BUS_OFF 
16#0020 (Bit 5) CDRV_STATE_OVERRUN (=Hardware Overrun) 
16#0040 (Bit 6) CDRV_STATE_STUFF_ERROR 
16#0080 (Bit 7) CDRV_STATE_FORM_ERROR 
16#0100 (Bit 8) CDRV_STATE_ACK_ERROR 
16#0200 (Bit 9) CDRV_STATE_CRC_ERROR 
16#0400 (Bit 10) CDRV_STATE_RX_BUFF_HIGH_OVERRUN 
16#0800 (Bit 11) CDRV_STATE_RESERVE1 
16#1000 (Bit 12) CDRV_STATE_RX_BUFF_LOW_OVERRUN 
16#2000 (Bit 13) CDRV_STATE_RESERVE2 
16#4000 (Bit 14) CDRV_STATE_BUS_OFF_RESET 
16#8000 (Bit 15) CDRV_STATE_FIRST_BUS_CONTACT 
 
 
 

6.2 Function Blocks for CAN Layer 2 

The function blocks for access to the local CAN open-kernel of the own PLC allow for a query of the 
node address as well as the status of the network layer. These function blocks do not require any 
communication with other nodes.  
 
 
 
6.2.1 Function Block CANL2_INIT 

FB for Initialization of the CAN-Interface. 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |          CANL2_INIT           | 
                |                               | 
    UDINT    ---|BITRATE                        | 
    DWORD    ---|AMR                            | 
    DWORD    ---|ACR                            | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
BITRATE Bitrate in Bit/s, e.g.: 

BITRATE := 125000 125 kBit/s 
BITRATE := 250000 250 kBit/s 
BITRATE := 1000000 1 MBit/s 

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 72 
 

AMR Configuration value for Acceptance Mask Register (AMR) of the CAN-Controllers; 
allows for hardware filtration of CAN-Identifiers in the CAN-Controller 
(Standard value for processing of all CAN-Messages: AMR := 16#FFFFFFFF) 

 
ACR Configuration Value for Acceptance Code Register (ACR) of the CAN-Controllers, 

allows for a hardware filtration of CAN-identifiers in the CAN-Controller (Standard 
value for processing of all CAN-Messages: ACR := 16#00000000) 

 
NETNUMBER Network number 
 
ERROR Errorcode relates to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_INIT is used for initializing the CAN-Interface. This requires the 
deactivation of the CANopen functionality for this interface. The procedure herefor is described in 
the system manual of the respective control. If the PLC supports the configuration through a WEB-
Frontend, usually the “Enable State” of the interface concerned can be set to “Disabled”. Thereby, the 
interface is not initialized automatically for CANopen and is available for free use through the PLC-
program. 
 
At the input BITRATE, the value for the Bitrate has to be specified in Bit/s,e.g. 125000 for 125 kBit/s. 
The values of both inputs AMR (Acceptance Mask Register) and ACR (Acceptance Code Register) 
are immediately transferred to the AMR or ACR register of the CAN-Controller. The result of a 
combination of both values is a receive filter, which can only be passed by CAN-messages whose 
CAN-Identifiers observe the filter criteria. Through appropriate settings of AMR and ACR, all non-
relevant CAN-messages can be excluded from reception already in the CAN-Controller that, in turn, 
reduces the CPU-load of the control and can prevent an overflow of the receive buffer. The exact 
relevance of AMR and ACR as well as the realized filter values therewith can be taken from the data 
sheet of the respective CAN-Controller. Normally, the filters are set in a way the CAN-Controller 
receives all CAN-messages. For this purpose, AMR and ACR have to be reserved as follows: 
 

AMR := 16#FFFFFFFF; 
ACR := 16#00000000; 

 
 
 
6.2.2 Function Block CANL2_SHUTDOWN 

FB for Deactivation of the CAN-Interface 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |        CANL2_SHUTDOWN         | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
NETNUMBER Network number 
 
ERROR Errorcode relates to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 73 
 

ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_SHUTDOWN serves for the deactivation of the CAN-Interface. 
 
 
 
6.2.3 Function Block CANL2_RESET 

FB to reset the the CAN-Interface 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |         CANL2_RESET           | 
                |                               | 
    BOOL     ---|RESET_TX_BUFFER                | 
    BOOL     ---|RESET_RX_BUFFER                | 
    BOOL     ---|RESET_CONTROLLER               | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
RESET_TX_BUFFER TRUE = Reset send buffer (reject all messages) 

FALSE = Do not change send buffer  
 
RESET_RX_BUFFER TRUE = Reset receive buffer (reject all messages)  

FALSE = Do not change receive buffer  
 
RESET_CONTROLLER TRUE = Reset CAN-Controller and initialize again 

FALSE= Do not change CAN-Controller 
 
NETNUMBER Network number 
 
ERROR Errorcode relates to data type "CANL2_ERROR" (see Table 19, section 

6.1.3) 
 
ENABLE Input for enabling or disabling of the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_RESET serves for reset of the CAN-Interface. Through the inputs 
RESET_TX_BUFFER, RESET_RX_BUFFER and RESET_CONTROLLER, the PLC program is able 
to control which parts of the interface are to reset. If the inputs RESET_TX_BUFFER, 
RESET_RX_BUFFER are set to TRUE, the respective bufferis reset and thereby, all messages still in 
the buffer are rejected. If the input RESET_CONTROLLER is set to TRUE, this results in the reset of 
the CAN-Controllers with a subsequent reinitialization. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 74 
 

6.2.4 Function Block CANL2_GET_STATUS 

FB for status request of the CAN-Interface 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |       CANL2_GET_STATUS        | 
                |                               | 
                |                     BUS_STATUS|--- USINT 
                |                    ERROR_FIELD|--- WORD 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
BUS_STATUS Bus-Status according to data type "CANL2_BUS_STATUS" (see Table 20, section 

6.1.3)  
 
ERROR_FIELD CAN-Driver-Status according to data type "CANL2_CDRV_STATUS" (see Table 

21, section 6.1.3) 
 
NETNUMBER Network number 
 
ERROR Errorcode according to data type “CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_GET_STATUS serves for querying the status of the CAN-Interface. The 
output BUS_STATUS provides information on the Bus-Status of the control.The output 
ERROR_FIELD informs about current status events within the CAN-driver. Thereby, an own bit is 
assigned to each event within the status mask at the output ERROR_FIELD. Several events can 
occur in parallel in one point in time; in this case, several bits are set simultaneously within the status 
mask (or-linking). 
 
 
 
6.2.5 Function Block CANL2_DEFINE_CANID 

FB for the definition of a CAN-Object for data exchange  
 
Prototype of the function block 
 
                +-------------------------------+ 
                |      CANL2_DEFINE_CANID       | 
                |                               | 
    UDINT    ---|CANID                   CHANNEL|--- USINT 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RX_FRAME                       | 
    BOOL     ---|RTR_FRAME                      | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 75 
 

Definition of Operands 
 
CANID CAN-Identifier, the CAN-object has to be defined for 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 
RX_FRAME TRUE = the CAN-Object is used for receiving  

FALSE = the CAN-Object is used for sending  
 
RTR_FRAME TRUE = CAN-Object is used for RTR 

FALSE = CAN-Object is not used for RTR 
 
CHANNEL Returns the channel number for the CAN-Object assigned by the CAN-driver  
 
NETNUMBER Network number 
 
ERROR Error code according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_DEFINE_CANID serves for the definition of a CAN-Object for data 
exchange. The input EXT_FRAME indicates, if the CAN-Identifier, which has been passed at the input 
CANID, can be construed as an 11-Bit Identifier of a standard-message (CAN 2.0A) or as 29-Bit 
Identifier of an extended-message (CAN 2.0B). The input RX_FRAME defines, whether the object is 
used for either sending or receiving of data. 
 
Through the input RTR_FRAME, a CAN-object can be marked as an RTR-object (Remote 
Transmission Request). Remote-Frames are only sent by a node if this node has been requested by 
another node. 
 
The output CHANNEL delivers the channel number for the CAN-Object, which has been assigned by 
the CAN-driver. Especially for RTR-Objects, the channel number is of high meaning as principally 
each message has to be managed within an own channel of the CAN-Controller. 
 
 
 
6.2.6 Function Block CANL2_DEFINE_CANID_RANGE 

FB for defining CAN-Objects for data transfer 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |   CANL2_DEFINE_CANID_RANGE    | 
                |                               | 
    UDINT    ---|CANID_START                    | 
    UDINT    ---|CANID_END                      | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RX_FRAME                       | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 76 
 

Definition of Operands 
 
CANID_START first (lowest) CAN-Identifier for the range of CAN-objects to be defined 
CANID_END      last (largest) CAN-Identifier for the range of CAN-objects to be defined 
 
EXT_FRAME TRUE = the CAN-Identifier-Range marks Extended-Frames (29 Bit) 

FALSE = the CAN-Identifier-Range marks Standard-Frames (11 Bit) 
 
RX_FRAME TRUE = the CAN-Objects are used for receiving 

FALSE = the CAN-Objects are used for sending 
 
NETNUMBER Network number 
 
ERROR Errorcode relates to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_DEFINE_CANID_RANGE serves for the definition of a range of CAN-
objects for data exchange. The input EXT_FRAME indicates, whether the CAN-Identifier range that 
has been defined through the inputs CANID_START and CANID_END, can be construed as 11-Bit 
Identifier for standard-messages (CAN 2.0A) or as 29-Bit Identifier for extended-messages (CAN 
2.0B). The input RX_FRAME defines, whether the objects are used for either sending or receiving of 
data.  
 
By means of function block CANL2_DEFINE_CANID_RANGE, no RTR-objects (Remote 
Transmission Request) can be designed. Therefor, function block CANL2_DEFINE_CANID has to be 
used and selected several times if needed. 
 
 
 
6.2.7 Function Block CANL2_UNDEFINE_CANID 

FB to reject a previously defined CAN-Object. 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |      CANL2_UNDEFINE_CANID     | 
                |                               | 
    UDINT    ---|CANID                          | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RX_FRAME                       | 
    BOOL     ---|RTR_FRAME                      | 
    USINT    ---|CHANNEL                        | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID Here, the same parameters that have been used previously are to specify 
EXT_FRAME for the definition of the CAN-object by means of function block 
RX_FRAME CANL2_DEFINE_CANID 
RTR_FRAME  
 
CHANNEL The channel number returned by function block CANL2_DEFINE_CANID 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 77 
 

NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_UNDEFINE_CANID serves for the rejection of a CAN-object defined 
previously by means of function block CANL2_DEFINE_CANID. To clearly identify the CAN-object to 
be rejected, the same parameters used previously for the definition of the CAN-object by means of 
function block CANL2_DEFINE_CANID have to be specified at the inputs CANID, EXT_FRAME, 
RX_FRAME und RTR_FRAME. 
 
 
 
6.2.8 Function Block CANL2_UNDEFINE_CANID_RANGE 

FB for rejection of a previously defined range of CAN-objects  
 
Prototype of the function block 
 
                +-------------------------------+ 
                |  CANL2_UNDEFINE_CANID_RANGE   | 
                |                               | 
    UDINT    ---|CANID_START                    | 
    UDINT    ---|CANID_END                      | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RX_FRAME                       | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID_START Here, the same parameters used previously have to be specified 
CANID_END to define the range of CAN-objects by means of the function blocks 
EXT_FRAME CANL2_DEFINE_CANID_RANGE  
RX_FRAME  
 
NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_UNDEFINE_CANID_RANGE serves for rejection of a previously defined 
range of CAN-objects by means of function block CANL2_DEFINE_CANID RANGE. 
 
To identify the range of CAN-objects to reject, the same parameters used for the definition of the 
CAN-object by means of function block CANL2_DEFINE_CANID_RANGE CANID_START, 
CANID_END, EXT_FRAME and RX_FRAME are to specify. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 78 
 

6.2.9 Function Block CANL2_MESSAGE_READ8 

FB to read received CAN-messages (transfer of data at FB-outputs).  
 
Prototype of the function block 
 
                +-------------------------------+ 
                |      CANL2_MESSAGE_READ8      | 
                |                               | 
                |                          CANID|--- UDINT 
                |                      EXT_FRAME|--- BOOL 
                |                      RTR_FRAME|--- BOOL 
                |                               | 
                |                          DATA0|--- BYTE 
                |                          DATA1|--- BYTE 
                |                          DATA2|--- BYTE 
                |                          DATA3|--- BYTE 
                |                          DATA4|--- BYTE 
                |                          DATA5|--- BYTE 
                |                          DATA6|--- BYTE 
                |                          DATA7|--- BYTE 
                |                     DATALENGTH|--- USINT 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID CAN-Identifier of the received CAN-Message 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 
RTR_FRAME TRUE = CAN-Object has been passed as RTR-Frame 

FALSE = CAN-Object has not been passed as RTR-Frame  
 
DATA0 - DATA7 Data bytes of the received CAN-Message 
DATALENGTH Length of the received CAN-Message 
 
NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling of the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_MESSAGE_READ8 serves for reading a received CAN-Message from the 
receive buffer of the CAN-Interface. Transfer of data occurs byte-by-byte at the outputs of the function 
block (alternatively: FB CANL2_MESSAGE_READ_BIN, see section 6.2.10). Only CAN-messages 
can be received for which appropriate CAN-objects have been specified previously by means of the 
function blocks CANL2_DEFINE_CANID or CANL2_DEFINE_CANID_RANGE respectively. 
 
If the Output CONFIRM is set to TRUE during the return of the function block, the elements DATA0 to 
DATA7 contain the single bytes of the message. The output DATALENGTH shows the number of 
valid data bytes (from DATA0). Though the output CONFIRM is set to FALSE, the receive buffer of the 
CAN-Interface does not contain a message. With the help of CONFIRM it can be distinguished 
whether a valid message with a length of 0 bytes or no message has been received. If there is no 
message available, it is indicated through the error code NO_MESSAGE at the output ERROR (see 
Table 19, section 6.1.3). 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 79 
 

 
6.2.10 Function Block CANL2_MESSAGE_READ_BIN 

FB for reading a received CAN-message (transfer of data within the object addressed by pointer)  
 
Prototype of the function block 
 
                +-------------------------------+ 
                |    CANL2_MESSAGE_READ_BIN     | 
                |                               | 
                |                          CANID|--- UDINT 
                |                      EXT_FRAME|--- BOOL 
                |                      RTR_FRAME|--- BOOL 
                |                               | 
    POINTER  ---|PTR_RXDATA                     | 
    USINT    ---|MAXLENGTH            DATALENGTH|--- USINT 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
PTR_RXDATA Address of an object the data of the received CAN-message are stored in 
 
MAX_LENGTH Limitation of the number of stored bytes; at 0, the size of the object addressed via 

PTR_RXDATA is determined and as a limitation, the number of stored bytes is 
used (the number of stored bytes does not exceed the number of bytes the object 
is able to store).  

 
DATALENGTH Number of stored bytes 
 
CANID CAN-Identifier of the received CAN-Message 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 
RTR_FRAME TRUE = CAN-Object has been passed as RTR-Frame 

FALSE = CAN-Object has not been passed as RTR-Frame 
 
NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_MESSAGE_READ_BIN serves for reading a received CAN-message from 
the receive buffer of the CAN-interface. The data of the received message are stored within the object 
addressed via PTR_RXDATA (alternatively: FB CANL2_MESSAGE_READ8, see section 6.2.9). Only 
CAN-messages can be received, for which appropriate CAN-objects have been specified by means of 
the function blocks CANL2_DEFINE_CANID or CANL2_DEFINE_CANID_RANGE respectively.  
 
By means of input MAX_LENGTH, the number of stored bytes can be limited. If MAX_LENGTH is set 
to 0, the size of the addressed object via PTR_RXDATA is determined internally and the number of 
bytes to be stored is used. The number of stored bytes does not exceed the number of bytes the 
object is able to store. Therewith, an overwriting of memory areas of other objects or variables is 
prevented. 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 80 
 

If the output CONFIRM is set to TRUE during the return of the function block, the object addressed via 
PTR_RXDATA contains the data of the received message. The output DATALENGTH specifies the 
number of valid data bytes. Is the output CONFIRM set to FALSE, however, the receive buffer does 
not contain a message. With the help of CONFIRM it can be distinguished, whether a valid message 
with a length of 0 bytes or no message has been received. If there is no message available, it is 
indicated through the error code NO_MESSAGE at the output ERROR (see Table 19, section 6.1.3). 
 
 
 
6.2.11 Function Block CANL2_MESSAGE_WRITE8 

FB for sending a CAN-message (transfer of data on FB-inputs). 
 
Prototype of the function block  
 
                +-------------------------------+ 
                |     CANL2_MESSAGE_WRITE8      | 
                |                               | 
    UDINT    ---|CANID                          | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RTR_FRAME                      | 
    USINT    ---|CHANNEL                        | 
                |                               | 
    BYTE     ---|DATA0                          | 
    BYTE     ---|DATA1                          | 
    BYTE     ---|DATA2                          | 
    BYTE     ---|DATA3                          | 
    BYTE     ---|DATA4                          | 
    BYTE     ---|DATA5                          | 
    BYTE     ---|DATA6                          | 
    BYTE     ---|DATA7                          | 
    USINT    ---|DATALENGTH                     | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID CAN-Identifier of the CAN-message to be sent 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 
RTR_FRAME TRUE = CAN-Object is passed as RTR-Frame 

FALSE = CAN-Object is not passed as RTR-Frame 
 
CHANNEL If the CAN-object has been defined by means of function block 

CANL2_DEFINE_CANID, then the channel number returned by this FB is to be 
passed for the CAN-object. If the CAN-object has been defined by means of 
function block CANL2_DEFINE_CANID_RANGE, then 0 has to be passed (Note: 
an object defined through CANL2_DEFINE_CANID_RANGE cannot be used for 
RTR-messages). 

 
DATA0 - DATA7 Data bytes of the CAN-message to be sent 
DATALENGTH Length of the CAN-message to be sent 
 
NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 81 
 

Description 
 
The function block CANL2_MESSAGE_WRITE8 serves for sending a CAN-Message. The transfer of 
data occurs byte-by-byte at the inputs of the function block (alternatively: FB 
CANL2_MESSAGE_WRITE_BIN, see section 6.2.12). Only CAN-messages can be sent for which 
appropriate CAN-objects have been designed by means of function blocks CANL2_DEFINE_CANID 
or CANL2_DEFINE_CANID_RANGE. 
 
At the elements DATA0 to DATA7, the single bytes of the message to be sent are to pass. The input 
DATALENGTH thereby specifies the number of valid data bytes (from DATA0). 
 
When calling function block CANL2_MESSAGE_WRITE8, the message to be sent is stored in the 
send buffer of the CAN-Interface. In case no error occurs (message could be stored properly in the 
send buffer), the module returns with the output CONFIRM, which is set to TRUE. However, there is 
no feedback signal to the PLC program, whether the message could be sent successfully. 
 
 
 
6.2.12 Function Block CANL2_MESSAGE_WRITE_BIN 

FB for sending a CAN-Message (transfer of data within the object addressed by pointer) 
 
Prototype of the function block  
 
                +-------------------------------+ 
                |    CANL2_MESSAGE_WRITE_BIN    | 
                |                               | 
    UDINT    ---|CANID                          | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RTR_FRAME                      | 
    USINT    ---|CHANNEL                        | 
                |                               | 
    POINTER  ---|PTR_TXDATA                     | 
    USINT    ---|DATALENGTH                     | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID CAN-Identifier of the CAN-message to be sent 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 
RTR_FRAME TRUE = CAN-Object is passed as RTR-Frame  

FALSE = CAN-Object is not passed as RTR-Frame  
 
CHANNEL If the CAN-Object has been defined by means of function block 

CANL2_DEFINE_CANID, then the channel number returned from this function 
block for the CAN-object has to be passed. If the CAN-object has been defined by 
means of function block CANL2_DEFINE_CANID_RANGE, then 0 has to be 
passed (Note: a CAN-object defined through CANL2_DEFINE_CANID_RANGE 
cannot be used for RTR-messages). 

 
PTR_TXDATA Address of an object containing the data to be sent with the CAN-message 
 
DATALENGTH Number of bytes to be sent through the CAN-message; at 0, the size of the object 

addressed via PTR_TXDATA is determined and the number of bytes that have to 
be sent is used.  

 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 82 
 

NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_MESSAGE_WRITE_BIN serves for sending a CAN-message. The data of 
the message to be sent are expected in the object addressed via PTR_TXDATA (alternatively: FB 
CANL2_MESSAGE_WRITE8, see section 6.2.11). Only CAN-messages can be sent, for which 
appropriate CAN-objects have been designed by means of function blocks CANL2_DEFINE_CANID 
or CANL2_DEFINE_CANID_RANGE respectively.  
 
The data of the message to be sent are taken from the object addressed via PTR_TXDATA By means 
of the input DATALENGTH, the number of bytes to be sent can be limited. If DATALENGTH is set to 
0, the size of the object addressed via PTR_TXDATA is determined internally and used as the number 
of bytes to be sent.  
 
When calling function block CANL2_MESSAGE_WRITE_BIN, the message to be sent is stored in the 
send buffer of the CAN-interface. If no error occurs here (message could be stored properly in the 
send buffer), the module returns with the output CONFIRM, which is set to TRUE. However, there is 
no feedback signal to the PLC program, whether the message could be sent successfully. 
 
 
 
6.2.13 Function Block CANL2_MESSAGE_UPDATE8 

FB to update data of a RTR-Message (transfer of data on FB-inputs) 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |     CANL2_MESSAGE_UPDATE8     | 
                |                               | 
    UDINT    ---|CANID                          | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RTR_FRAME                      | 
    USINT    ---|CHANNEL                        | 
                |                               | 
    BYTE     ---|DATA0                          | 
    BYTE     ---|DATA1                          | 
    BYTE     ---|DATA2                          | 
    BYTE     ---|DATA3                          | 
    BYTE     ---|DATA4                          | 
    BYTE     ---|DATA5                          | 
    BYTE     ---|DATA6                          | 
    BYTE     ---|DATA7                          | 
    USINT    ---|DATALENGTH                     | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID CAN-Identifier of the CAN-Message to be updated 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 83 
 

RTR_FRAME TRUE = CAN-Object is passed as RTR-Frame  
FALSE = CAN-Object is not passed as RTR-Frame  

 
CHANNEL Channel number that has been returned during the definition of the CAN-Object 

from function block CANL2_DEFINE_CANID (Note: CAN-objects defined with 
CANL2_DEFINE_CANID_RANGE cannot be used for RTR-Messages) 

 
DATA0 - DATA7 Data bytes of the CAN-message to be updated 
DATALENGTH Length of the CAN-message to be updated 
 
NETNUMBER Network number 
 
ERROR Errorcode relates to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_MESSAGE_UPDATE8 serves for updating data of a RTR-message. The 
transfer of data occurs byte-by-byte at the inputs of the function block (alternatively: FB 
CANL2_MESSAGE_UPDATE_BIN, see section 6.2.14). Only CAN-objects can be updated that have 
been designed previously by means of the function block CANL2_DEFINE_CANID. 
 
On the elements DATA0 to DATA7, the single bytes have to be passed for the message to be 
updated. The input DATALENGTH thereby specifies the number of valid data bytes (from DATA0). 
 
When calling function block CANL2_MESSAGE_UPDATE8, only the data of messages in the send 
buffer of the CAN-controller are updated. To transfer the message on the CAN-bus, this has to be 
requested explicitely by another node through RTR-Frame. 
 
 
 
6.2.14 Function Block CANL2_MESSAGE_UPDATE_BIN 

FB for the update of data of an RTR-Message (transfer of data within the object addressed through 
pointer) 
 
Prototype of the function block 
 
                +-------------------------------+ 
                |   CANL2_MESSAGE_UPDATE_BIN    | 
                |                               | 
    UDINT    ---|CANID                          | 
    BOOL     ---|EXT_FRAME                      | 
    BOOL     ---|RTR_FRAME                      | 
    USINT    ---|CHANNEL                        | 
                |                               | 
    POINTER  ---|PTR_TXDATA                     | 
    USINT    ---|DATALENGTH                     | 
                |                               | 
    USINT    ---|NETNUMBER               CONFIRM|--- BOOL 
    BOOL     ---|ENABLE                    ERROR|--- USINT 
                |                               | 
                +-------------------------------+ 
 
Definition of Operands 
 
CANID CAN-Identifier of the CAN-message to be updated 
 
EXT_FRAME TRUE = the CAN-Identifier marks an Extended-Frame (29 Bit) 

FALSE = the CAN-Identifier marks a Standard-Frame (11 Bit) 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 84 
 

RTR_FRAME TRUE = CAN-Object is passes as RTR-Frame 
FALSE = CAN-Object is not passed as RTR-Frame  

 
CHANNEL Channel number, which has been returned from function block 

CANL2_DEFINE_CANID during the definition of the CAN-Objects (Note: CAN-
objects defined through CANL2_DEFINE_CANID_RANGE cannot be used for 
RTR-messages) 

 
PTR_TXDATA Address of an object that contains the data of the CAN-message to be updated  
 
DATALENGTH Number of bytes in the CAN-message to be updated; at 0, the size of the object 

addressed via PTR_TXDATA is determined internally and used as number of bytes 
to be updated 

 
NETNUMBER Network number 
 
ERROR Errorcode according to data type "CANL2_ERROR" (see Table 19, section 6.1.3) 
 
ENABLE Input for enabling or disabling of the FB (see section 6.1.2) 
CONFIRM Output for message completed through the FB (see section 6.1.2) 
 
 
Description 
 
The function block CANL2_MESSAGE_UPDATE_BIN serves for updating data of an RTR-message. 
The data to be updated are expected in the object addressed via PTR_TXDATA (alternatively: FB 
CANL2_MESSAGE_UPDATE8, see section 6.2.13). Only CAN-objects can be updated that have 
been desgined previously with the help of function block CANL2_DEFINE_CANID. 
 
The data of the message to be updated are taken from the object addressed via PTR_TXDATA. By 
means of input DATALENGTH, the number of bytes that have to be updated can be limited. If 
DATALENGTH is set to 0, the size of the object addressed via PTR_TXDATA is determined internally 
and the number of bytes to be updated is used. 
 
When calling function block CANL2_MESSAGE_UPDATE_BIN, only the data of the message in the 
send buffer of the CAN-controller are updated. To transfer the message on the CAN-bus, this has to 
be requested explicitely by another node via RTR-Frame. 
 
 
 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 85 
 

7 Index 

 
Assignment table  27 
CAN_ENABLE_CYCLIC_SYNC  59 
CAN_GET_CANOPEN_KERNEL_STATE  40 
CAN_GET_LOCAL_NODE_ID  39 
CAN_GET_STATE  52 
CAN_NMT  53 
CAN_PDO_READ8  42 
CAN_PDO_WRITE8  43 
CAN_RECV_BOOTUP  58 
CAN_RECV_BOOTUP_DEV  57 
CAN_RECV_EMCY  55 
CAN_RECV_EMCY_DEV  54 
CAN_REGISTER_COBID  41 
CAN_SDO_READ_BIN  49 
CAN_SDO_READ_STR  47 
CAN_SDO_READ8  44 
CAN_SDO_WRITE_BIN  51 
CAN_SDO_WRITE_STR  48 
CAN_SDO_WRITE8  45 
CAN_SEND_SYNC  60 
CAN_WRITE_EMCY  56 
CANL2_DEFINE_CANID  74 
CANL2_DEFINE_CANID_RANGE  75 
CANL2_GET_STATUS  74 
CANL2_INIT  71 
CANL2_MESSAGE_READ_BIN  79 
CANL2_MESSAGE_READ8  78 
CANL2_MESSAGE_UPDATE_BIN  83 
CANL2_MESSAGE_UPDATE8  82 
CANL2_MESSAGE_WRITE_BIN  81 
CANL2_MESSAGE_WRITE8  80 
CANL2_RESET  73 
CANL2_SHUTDOWN  72 
CANL2_UNDEFINE_CANID  76 
CANopen Configurator  19 
CANopen Master  11 
DCF file 

Integration into the PLC project  21 
Predefined variables  20 

DCF file for SYSTEC devices  20 
DCF file predefined  19 
EDS file for SYSTEC devices  18 
Error codes 

CANopen  36 
Errorcodes 

CAN Layer 2  70 
Function blocks 

Availability  34 
Example project  60 
Local kernel  39 
Overview 

CAN Layer 2  69 
CANopen  33 

PDO and CAN Layer 2  40 
SDO  44 

Function Blocks 
CAN Layer 2  71 
Master Services  52 

Heartbeat 
Configuration  65 

Lifeguarding 
Configuration  66 

Master Configurator  63 
Network Configuration  17 
Network Scan  11 
Network variables 

Assignment table  27 
Declaration on the PLC program  27 
Example project  31 
General  16 
Initial initialization  14 
Summary  31 

Node Configuration  11 
Node list 

Definition  63 
Node Monitoring  11 
Node state messages 

COBID  64 
PLC Types  10 
PLC with Master  10 
PLC without Master  10 
State values 

CANopen  37 
Statuswerte 

CAN Layer 2  70, 74 
Synchronization CANopen/PLC  35 
VAR_EXTERNAL  27 
Waiting periods 

Definition  64 



 CAN / CANopen Extension for IEC 61131-3  

 

  

 © SYSTEC electronic GmbH 2011 L-1008-07 86 

 

Document: CAN / CANopen Extenstion for IEC 61131 
Document number: L-1008-07, May 2011 
  
 
Do you have any suggestions for improving this manual? 
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
Have you discovered any errors in this manual? Page 
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
  
 
Sent by: 
 
Customer number:   
 
Name:   
 
Company:   
 
Address:   
 
   
 
Please send the filled out form to: 
 
 SYS TEC electronic GmbH 
 August-Bebel-Str. 29 
 D-07973 Greiz, Germany 
 Fax :  +49 (3661) 6279-99 


	1 Introduction
	2 Basics of CANopen Integration of a PLC
	2.1 Differences between a PLC with and without CANopen Master
	2.2 Node Configuration via PLC with CANopen Master
	2.3 Initial Initialization of the Network Variables

	3 IEC61131 Network Variables for CANopen
	3.1 Basic Information for Network Variables
	3.2 Configuration Process
	3.2.1 Network Configuration
	3.2.2 CANopen Configurator
	3.2.3 Predefined DCF Files

	3.3 Integrating DCF Files into the PLC Project
	3.3.1 Integrating Complete Network Projects
	3.3.2 Manual Integration of Individual DCF Files

	3.4 Using Network Variables in the PLC Program
	3.5 Summary of Required Steps
	3.6 Example Project for Network Variables

	4 IEC61131 Function Blocks for CANopen
	4.1 Basics of CANopen Function Blocks
	4.1.1 Overview of the CANopen Function Blocks
	4.1.2 Availability of the Function Blocks on Controls with and without CANopen Master
	4.1.3 Synchronization between the CANopen Function Block and PLC Program
	4.1.4 Input/Output Parameters of the CANopen Function Blocks
	4.1.5 CANopen-Specific Constants

	4.2 Function Blocks for Accessing the Local CANopen Kernel
	4.2.1 Function Block CAN_GET_LOCAL_NODE_ID
	4.2.2 Function Block CAN_GET_CANOPEN_KERNEL_STATE

	4.3 Function Blocks for PDOs and CAN Layer 2
	4.3.1 Function Block CAN_REGISTER_COBID
	4.3.2 Function Block CAN_PDO_READ8
	4.3.3 Function Block CAN_PDO_WRITE8

	4.4 Function Blocks for SDOs
	4.4.1 Function Block CAN_SDO_READ8
	4.4.2 Function Block CAN_SDO_WRITE8
	4.4.3 Function Block CAN_SDO_READ_STR
	4.4.4 Function Block CAN_SDO_WRITE_STR
	4.4.5 Function Block CAN_SDO_READ_BIN
	4.4.6 Function Block CAN_SDO_WRITE_BIN

	4.5 Function Blocks for Master Services
	4.5.1 Function Block CAN_GET_STATE
	4.5.2 Function Block CAN_NMT
	4.5.3 Function Block CAN_RECV_EMCY_DEV
	4.5.4 Function Block CAN_RECV_EMCY
	4.5.5 Function Block CAN_WRITE_EMCY
	4.5.6 Function Block CAN_RECV_BOOTUP_DEV
	4.5.7 Function Block CAN_RECV_BOOTUP
	4.5.8 Function Block CAN_ENABLE_CYCLIC_SYNC
	4.5.9 Function Block CAN_SEND_SYNC

	4.6 Example Project for CANopen Function Blocks

	5 Configuration of a PLC with CANopen Master
	5.1 Basic Information for the Master Configuration
	5.2 Definition of the Node List
	5.3 Configuration of the COBID for Node State Messages
	5.4 Definition of Waiting Periods
	5.5 Configuration of Heartbeat/Lifeguarding of the CANopen Devices

	6 IEC61131 Function Blocks for CAN Layer 2
	6.1 Basic Information on CAN Layer 2 Function Blocks
	6.1.1 Overview of CAN Layer 2 Funtion Blocks
	6.1.2 Synchronisation Between CAN Layer 2 Function Block and PLC Program
	6.1.3 CAN Layer 2-specific Constants

	6.2 Function Blocks for CAN Layer 2
	6.2.1 Function Block CANL2_INIT
	6.2.2 Function Block CANL2_SHUTDOWN
	6.2.3 Function Block CANL2_RESET
	6.2.4 Function Block CANL2_GET_STATUS
	6.2.5 Function Block CANL2_DEFINE_CANID
	6.2.6 Function Block CANL2_DEFINE_CANID_RANGE
	6.2.7 Function Block CANL2_UNDEFINE_CANID
	6.2.8 Function Block CANL2_UNDEFINE_CANID_RANGE
	6.2.9 Function Block CANL2_MESSAGE_READ8
	6.2.10 Function Block CANL2_MESSAGE_READ_BIN
	6.2.11 Function Block CANL2_MESSAGE_WRITE8
	6.2.12 Function Block CANL2_MESSAGE_WRITE_BIN
	6.2.13 Function Block CANL2_MESSAGE_UPDATE8
	6.2.14 Function Block CANL2_MESSAGE_UPDATE_BIN


	7 Index

