
TCP/IP User’s Manual
Volume 1

019-0143_J

The latest revision of this manual is available on the Rabbit Web site,
 www.rabbit.com, for free, unregistered download.
TCP/IP Manual, Vol 1 rabbit.com i

http://www.rabbit.com
http://www.rabbit.com/

Dynamic C TCP/IP User’s Manual
Volume 1

Part Number 019-0143 • Printed in the U.S.A

Digi International Inc. © 2007-2009 • All rights reserved.

Digi International Inc. reserves the right to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit and Dynamic C® are registered trademarks of Digi International Inc.

Windows® is a registered trademark of Microsoft Corporation
ii rabbit.com

http://www.rabbit.com

Table of Contents

1 Introduction.. 1

2 TCP/IP Initialization 3
2.1 TCP/IP Stack Configuration.......................... 3

2.1.1 Multiple Interface Support3
2.1.2 Interface Selection Macros5

2.1.2.1 Link Layer Drivers6
2.1.3 Single Interface Support7

2.1.3.1 Configuration Macros for Link
Layer Driver - Single Interface7

2.1.4 TCP/IP Stack Initialization7

2.2 Interface Configuration 8
2.2.1 Configuration Overview8
2.2.2 Sources of Configuration Information

9
2.2.2.1 Predefined Configurations9
2.2.2.2 Static Configuration10
2.2.2.3 Dynamic Configuration via the
Network11
2.2.2.4 Runtime Configuration Using if-
config()12
2.2.2.5 Directed Ping13
2.2.2.6 Remote Configuration via Ad-
vanced Device Discovery Protocol (AD-
DP)14
2.2.2.7 Console Configuration Via
Zconsole.lib14

2.2.3 Media Access Control (MAC) Address
14

2.3 Dynamically Starting and Stopping Interfaces.
15
2.3.1 Testing Interface Status15
2.3.2 Bringing an Interface Up15
2.3.3 Bringing an Interface Down16

2.4 Setting Up Wi-Fi Interfaces......................... 16
2.4.1 Wi-Fi Compile Time Configuration 17

2.4.1.1 Infrastructure, Open (No En-
cryption) Configuration17
2.4.1.2 Ad-hoc, Open (No Encryption)
Configuration18
2.4.1.3 Infrastructure, WEP Encryption
Configuration19
2.4.1.4 Infrastructure, WPA/TKIP En-
cryption Configuration, Pre-Shared Key
20
2.4.1.5 Infrastructure, WPA2/CCMP
Encryption Configuration, Pre-Shared
Key21
2.4.1.6 Infrastructure, WPA Enterprise
using EAP-TLS and CCMP Encryption

22
2.4.1.7 Infrastructure, WPA Enterprise
using PEAP and TKIP Encryption ..24
2.4.1.8 Specifying a Pre-Shared Key 25
2.4.1.9 Ad-hoc, WPA/TKIP or
WPA2/CCMP Encryption Configura-
tion25

2.4.2 Wi-Fi Runtime Configuration25
2.4.2.1 Runtime Configuration Starting
with Dynamic C 10.4025

2.5 Setting Up PPP Interfaces 25
2.5.1 PPP over Asynchronous Serial25
2.5.2 PPP over Ethernet26

2.6 Configuration Macro Reference.................. 26
2.6.1 Removing Unnecessary Functions 26
2.6.2 Including Additional Functions27
2.6.3 BOOTP/DHCP Control Macros27
2.6.4 Buffer and Resource Sizing28
2.6.5 Network Configuration Prior to

Dynamic C 7.3031
2.6.6 Network Configuration Starting with

Dynamic C 7.3031
2.6.7 Time-Outs and Retry Counters33
2.6.8 Program Debugging34
2.6.9 Miscellaneous Macros35

2.6.9.1 TOS and TTL35
2.6.10 Wi-Fi Configuration Macros36

3 TCP and UDP Socket Interface 41
3.1 What is a Socket? .. 42

3.1.1 Port Numbers42

3.2 Allocating TCP and UDP Sockets 43
3.2.1 Allocating Socket Buffers43
3.2.2 Socket Buffer Sizes44

3.2.2.1 User-Supplied Buffers44

3.3 Opening TCP Sockets 44
3.3.1 Passive Open44
3.3.2 Active Open45
3.3.3 Waiting for Connection Establishment

45
3.3.4 Specifying a Listen Queue46

3.4 TCP Socket Functions................................. 46
3.4.1 Control Functions for TCP Sockets 46
3.4.2 Status Functions for TCP Sockets .47
3.4.3 I/O Functions for TCP Sockets48

3.5 UDP Socket Overview 49

3.6 UDP Socket Functions (7.05 and later)....... 50
3.6.1 Control Functions for UDP Sockets .

50
3.6.2 Status Function for UDP Sockets ..50
TCP/IP User’s Manual iii

3.6.3 I/O Functions for UDP Sockets 50

3.7 UDP Socket Functions (pre 7.05) 51
3.7.1 I/O Functions for UDP Sockets 51
3.7.2 Opening and Closing a UDP Socket 51
3.7.3 Writing to a UDP Socket 51
3.7.4 Reading From a UDP Socket 52
3.7.5 Porting Programs from the older UDP

API to the new UDP API 52

3.8 Skeleton Program.. 53
3.8.1 TCP/IP Stack Initialization 53
3.8.2 Packet Processing 54

3.9 TCP/IP Daemon: tcp_tick() 54
3.9.1 tcp_tick() for Robust Applications 54
3.9.2 Global Timer Variables 55

3.10 State-Based Program Design 55
3.10.1 Blocking vs. Non-Blocking 56

3.10.1.1 Non-Blocking Functions .. 56
3.10.1.2 Blocking Functions 56

3.11 TCP and UDP Data Handlers.................... 57
3.11.1 UDP Data Handler 59
3.11.2 TCP Data Handler 59

3.12 Multitasking and TCP/IP 61
3.12.1 µC/OS-II 61

3.12.1.1 Interrupt-Driven or DMA-
Driven Network Interface(s) 61
3.12.1.2 Polled-Mode Only Network In-
terface(s) 61

3.12.2 Cooperative Multitasking 62

4 Optimizing TCP/IP Performance......... 65
4.1 DBP and Sizing of TCP Buffers 66

4.2 TCP Performance Tuning 68
4.2.1 The Nagle Algorithm 68
4.2.2 Time-Out Settings 69

4.2.2.1 Time-Out Setting Constants 70
4.2.3 Reserved Ports 72
4.2.4 Type of Service (TOS) 73
4.2.5 ARP Cache Considerations 73

4.3 Writing a Fast UDP Request/Response Server
74

4.4 Tips and Tricks for TCP Applications 74
4.4.1 Bulk Loader Applications 75
4.4.2 Casual Server Applications 76
4.4.3 Master Controller Applications 76
4.4.4 Web Server Applications 76
4.4.5 Protocol Translator Applications .. 76

5 Network Addressing: ARP & DNS 77
5.1 ARP Functions .. 77

5.2 Configuration Macros for ARP................... 77

5.3 DNS Functions.. 79

5.4 Configuration Macros for DNS Lookups ... 79

6 IGMP and Multicasting 81

6.1 Multicasting .. 81
6.1.1 Multicast Addresses 81
6.1.2 Host Group Membership 81

6.2 IGMP .. 82

6.3 Multicast Macros .. 82

7 PPP Driver ... 83
7.1 PPP Libraries .. 83

7.2 External Modem Library 84

7.3 Operation Details for PPP over Serial 84
7.3.1 The Modem Interface 84

7.3.1.1 Rabbit Pin Connections to Mo-
dem 85

7.3.2 Flow Control 85

7.4 Operation Details for PPPoE 86

7.5 Link Control Protocol Options 86

7.6 Configuring PPP ... 87
7.6.1 Serial Port Selection 87
7.6.2 PPPoE Port Selection 87
7.6.3 ifconfig() Options for PPP 88
7.6.4 ifconfig() Options for Serial PPP . 89

7.6.4.1 Additional Rules for Send/Ex-
pect Scripts 90

7.6.5 Starting and Stopping PPP Interfaces
91

8 Function Reference 93
_abort_socks .. 95

arpcache_create...................................... 96

arpcache_flush 97

arpcache_hwa... 98

arpcache_iface 99

arpcache_ipaddr 100

arpcache_load 101

arpcache_search 103

arp_getArpData.................................... 104

arp_getArpGateData 104

_arp_resolve... 105

arpresolve_check 106

arpresolve_ipaddr................................. 107

arpresolve_start 108

arpresolve_start_iface 109

_arp_send_gratuitous 110

aton... 111

_chk_ping... 112

dhcp_acquire .. 113

dhcp_get_timezone 114

dhcp_release... 115

getdomainname.................................... 116

gethostid... 117
iv TCP/IP User’s Manual

gethostname .. 118

getpeername.. 119

getsockname ... 120

htonl .. 121

htons.. 122

ifconfig.. 123

ifdown... 146

ifpending ... 147

ifstatus... 148

ifup.. 149

inet_addr ... 151

inet_ntoa ... 152

ip_iface ... 153

ip_print_ifs.. 154

ip_timer_expired................................... 155

ip_timer_init ... 156

is_valid_iface.. 157

ModemClose... 158

ModemConnected................................. 158

ModemExpect....................................... 159

 ModemHangup 159

ModemInit .. 160

ModemOpen ... 160

ModemReady.. 161

ModemRinging 161

ModemSend.. 162

ModemStartPPP.................................... 162

multicast_joingroup 163

multicast_leavegroup............................ 164

 ntohl ... 165

ntohs.. 166

pd_getaddress 167

pd_havelink .. 168

pd_powerdown 169

pd_powerup .. 170

_ping ... 171

PPPactive .. 172

PPPnegotiateIP 172

PPPsetAuthenticatee 173

PPPsetAuthenticator 173

PPPshutdown .. 174

psocket .. 174

resolve... 175

resolve_cancel 176

resolve_name_check............................. 177

resolve_name_start 178

rip.. 179

router_add... 180

router_del_all.. 181

router_delete ... 181

router_for.. 182

router_for_iface 183

router_print ... 185

router_printall 186

_send_ping.. 187

setdomainname..................................... 188

sethostid.. 189

sethostname .. 190

sock_abort .. 191

sock_alive... 192

sock_aread .. 193

sock_awrite... 194

sock_axread .. 195

sock_axwrite... 196

sock_bytesready 197

sock_close .. 198

sock_dataready 199

sockerr .. 200

sock_error ... 201

sock_established................................... 202

sock_fastread .. 203

sock_fastwrite....................................... 204

sock_flush... 205

sock_flushnext...................................... 206

sock_getc .. 207

sock_gets .. 208

sock_iface ... 209

sock_init ... 210

sock_init_or_exit 211

sock_mode.. 212

sock_noflush... 214

sock_perror ... 215

sock_preread... 216

sock_putc.. 217

sock_puts .. 218

sock_rbleft .. 219

sock_rbsize ... 220

sock_rbused .. 221

sock_read.. 222

sock_readable 223

sock_recv.. 224

sock_recv_from 226

sock_recv_init 227

sock_resolved 228
TCP/IP User’s Manual v

sock_set_tos ... 229

sock_set_ttl... 230

sockstate ... 231

sock_tbleft .. 232

sock_tbsize ... 233

sock_tbused.. 234

sock_tick .. 235

sock_wait_closed 236

sock_wait_established.......................... 237

sock_waiting .. 238

sock_wait_input 239

sock_writable 240

sock_write .. 241

sock_xfastread...................................... 242

sock_xfastwrite 243

sock_yield .. 244

tcp_clearreserve 245

tcp_config... 246

tcp_extlisten ... 247

tcp_extopen .. 248

tcp_keepalive 249

tcp_listen .. 250

tcp_open ... 252

tcp_reserveport..................................... 254

tcp_tick... 255

udp_bypass_arp.................................... 256

udp_close ... 257

udp_extopen ... 258

udp_open.. 260

udp_peek .. 262

udp_recv... 263

udp_recvfrom 264

udp_send .. 265

udp_sendto ... 266

udp_waitopen 267

udp_waitsend 268

udp_xsendto ... 269

virtual_eth .. 270

wifi_ssid_to_str 271

Index .. 273
vi TCP/IP User’s Manual

1. Introduction

This manual is intended for embedded system designers and support professionals who are using a Rabbit-
based controller board. Most of the information contained here is meant for use with Ethernet- or WiFi-
enabled boards, but using only serial communication is also an option. Knowledge of networks and
TCP/IP (Transmission Control Protocol/Internet Protocol) is assumed. For an overview of these two topics
a separate manual is provided, An Introduction to TCP/IP. A basic understanding of HTML (HyperText
Markup Language) is also assumed. For information on this subject, there are numerous sources on the
Web and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. As of Dynamic C 7.05, this library is a light wrapper around DNS.LIB, IP.LIB,
NET.LIB, TCP.LIB and UDP.LIB. These libraries implement DNS (Domain Name Server), IP, TCP,
and UDP (User Datagram Protocol). This, along with the libraries ARP.LIB, ICMP.LIB, IGMP.LIB
and PPP.LIB are the transport and network layers of the TCP/IP protocol stack.

The Dynamic C libraries that implement application-layer protocols are:

• BOOTP.LIB
• FTP_SERVER.LIB
• FTP_CLIENT.LIB
• HTTP.LIB
• HTTP_CLIENT.LIB
• POP3.LIB
• SMNP.LIB
• SMTP.LIB
• TFTP.LIB
• VSERIAL.LIB

Except for BOOTP (which is described in this manual) the application-layer protocols are described in
Dynamic C TCP/IP, User’s Manual, Vol. 2.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout the manual illustrate the use of all the different protocols. The sample code also provides tem-
plates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic C’s
implementation of TCP/IP. There are step-by-step instructions on how to create HTML forms, allowing
remote access and manipulation of information. There is also a serial-based console that can be used with
TCP/IP to open up legacy systems for additional control and monitoring. The console may also be used for
configuration when a serial port is available. The console and HTML forms are discussed in the
Dynamic C TCP/IP User’s Manual, Vol. 2.

Multiple interfaces are supported starting with Dynamic C version 7.30.
TCP/IP Manual, Vol 1 rabbit.com 1

http://www.rabbit.com

2 rabbit.com Introduction

http://www.rabbit.com

2. TCP/IP Initialization

This chapter describes the configuration macros, data structures and functions used to configure and
initialize the Dynamic C TCP/IP stack. Starting with Dynamic C version 7.30, the stack supports multiple
interfaces. Interface configuration is described in “Interface Configuration” on page 8.

The Dynamic C TCP/IP stack supports IP version 4. Although multiple interfaces are supported, the
TCP/IP stack does not support packet routing at the IP level.

2.1 TCP/IP Stack Configuration
You need to know certain things to configure the stack. You need to know which interfaces will be used
and how many. You also need to determine the necessary software functionality. For example, will there be
DNS lookups? Are TCP and UDP protocols both necessary? Will DHCP be used? The ability to remove
unneeded features via conditional compilation has been enhanced starting with Dynamic C 7.30. This is
accomplished with the configuration macros described in “Removing Unnecessary Functions” on page 26
and “Including Additional Functions” on page 27.

2.1.1 Multiple Interface Support
The supported interfaces are:

• Ethernet
• PPP (Point-to-Point Protocol) over a serial link
• PPP over Ethernet
• Wi-Fi (802.11b, 802.11g)

The interfaces must be on distinct, non-overlapping subnets. In particular, each interface must be assigned
a unique IP address, known as the “home IP address” for that interface.

The interfaces available to your application will depend on the hardware configuration of the target board.
All Rabbit-based boards have at least four asynchronous serial ports, so PPP over serial is always
available. Many boards have an Ethernet port. If an Ethernet port is available, then it may be used for
normal Ethernet or PPP over Ethernet (PPPoE). No Rabbit-based board has more than one Ethernet port,
however Dynamic C 7.30 contains support for a second Ethernet interface if and when such a board
becomes available.
TCP/IP Manual, Vol 1 rabbit.com 3

http://www.rabbit.com

Your application uses configuration macros to select the interface(s) to use for TCP/IP. Each hardware
interface will have an interface number assigned. The interface number is not used directly; instead, your
application should use the macros defined for this purpose. If you are writing general-purpose routines,
then you should include #ifdef tests for the interface macro if you need to refer to it. This is because the
macros are not necessarily defined for non-existent interfaces. The macros are:

IF_ETH0, IF_ETH1
These macros represent Ethernet ports that are not using PPP. IF_ETH0 refers to the first Ethernet port
and IF_ETH1 to the second.

IF_PPPOE0, IF_PPPOE1
These macros represent Ethernet ports used for PPP over Ethernet. IF_PPPOE0 refers to the first (and
currently only) Ethernet port.

PPPoE and regular Ethernet can co-exist on the same Ethernet hardware. PPPoE effectively sets up a
virtual point-to-point link between two devices on the same Ethernet LAN segment.

IF_PPP0, IF_PPP1, IF_PPP2, IF_PPP3, IF_PPP4, IF_PPP5
These macros represent asynchronous serial ports used for PPP. IF_PPP0 always refers to serial port A,
IF_PPP1 refers to serial port B, etc. Most boards will avoid using serial port A, since it is most often
used for Dynamic C debugging and program download.

IF_PPPX
This is an alias for the “first” PPP interface. The first PPP interface is selected as the first valid interface in
the following order: IF_PPPOE0, IF_PPPOE1, IF_PPP0, IF_PPP1, etc. through to IF_PPP5.

IF_WIFI0, IF_WIFI1
These macros represent Wi-Fi interfaces. Only IF_WIFI0 is supported at this time.

IF_DEFAULT
This is an alias for the “default” interface. You can explicitly define this macro prior to including
dcrtcp.lib to select a default interface. The Dynamic C TCP/IP libraries do not make use of
IF_DEFAULT with the important exception of DHCP. DHCP only works on the default interface.

If you do not explicitly define IF_DEFAULT, it is chosen as the first valid interface in the following
order: IF_PPPX (see above), IF_WIFI0, IF_ETH0.

If you explicitly define IF_DEFAULT, then you must define it to a hard-coded integer value, not one of
the IF_* macros, since the IF_* macros are not defined until dcrtcp.lib is included. Since the
actual numbers assigned to each interface depend on the values of the USE_* macros, you must be careful
when doing this. The only time you may want to explicitly define IF_DEFAULT is when you are using
both PPP and non-PPPoE Ethernet, and you want to use DHCP on the Ethernet interface.

IF_ANY
This is not an interface as such. It is a special value used to denote “any” or “all” interfaces, where
applicable. This macro should be used only where a function documents that its use is acceptable. For
example, the tcp_extlisten() function accepts IF_ANY as an interface parameter, which tells it to
listen for incoming connections on any available interface.
4 rabbit.com TCP/IP Initialization

http://www.rabbit.com

2.1.2 Interface Selection Macros
As each physical interface has its own macro, each type of interface has a corresponding macro. The
macro value determines which physical interfaces of the same type will be supported by the stack. Setting
the macro to zero disables support for that type of interface, i.e., no physical interfaces of that type will be
supported. If the macros are not defined in the application program, they will be set to zero internally.

USE_ETHERNET
This macro allows support of non-PPPoE Ethernet. It can be set to 0x01, 0x02 or 0x03. Most boards only
support 0x01, meaning the first non-PPPoE Ethernet device. Boards with two Ethernet devices can set this
macro to 0x02, referring to the second Ethernet device, or 0x03 to allow use of both devices.

USE_PPP_SERIAL
This macro allows support of PPP over asynchronous serial. It can be set to:

• 0x01 (serial port A)
• 0x02 (serial port B)
• 0x04 (serial port C)
• 0x08 (serial port D)
• 0x10 (serial port E, available on Rabbit 3000 and above)
• 0x20 (serial port F, available on Rabbit 3000 and above)

Or any bitwise combination of these values.

Serial port C is the default, but you may use any of the others. Please note that if you use serial port A (the
programming port) Dynamic C will not be able to communicate with the target. You may also need to
define other macros to allow correct functioning of the serial port hardware, e.g., hardware flow control.

USE_PPPOE
This macro allows support of PPP over Ethernet. It is set in the same way as USE_ETHERNET. The
bitmask indicates which Ethernet devices are to be used for PPP over Ethernet.

USE_WIFI
This macro allows support of Wi-Fi. It can be set to 0x01 or 0x02.
TCP/IP Manual, Vol 1 rabbit.com 5

http://www.rabbit.com

 2.1.2.1 Link Layer Drivers
The USE_* configuration macros described in “Interface Selection Macros” on page 5 cause the
appropriate link layer drivers to be included. If none of the USE_* macros are defined and the macro
PKTDRV is also not defined, realtek.lib will be used. Some board types cause a driver other than
realtek.lib to be used, e.g., if the board is the RCM3200 or the RCM3210, the packet driver library
asix.lib will replace realtek.lib.

The following table tells which link layer drivers will be used when a USE_* macro is defined to a value
greater than zero.

As the table reveals, using PPP over Ethernet causes realtek.lib, ppp.lib and pppoe.lib to be
included. Multiple drivers may also be included by defining multiple interfaces.

The following macros are defined for applications to perform conditional compilation that depends on the
drivers actually included:

• USING_ETHERNET
• USING_PPP_SERIAL
• USING_PPPOE
• USING_WIFI
• USING_WIFIG

These macros are always defined, but will have a zero value if the driver was not included. Thus, the
conditional compilation should use the #if operator, not #ifdef. For example,

#if USING_PPP_SERIAL
// Do something special for PPP over serial

#endif

The value assigned to the USING_* macro is the number of hardware interfaces of that type that are
available. On a Rabbit 2000 board, USING_PPP_SERIAL will be defined to 4 or 0. On a Rabbit 3000
board, the value will be 6 or 0.

An additional macro, USING_PPP, is also defined if any of the PPP-type interfaces are in use. Unlike the
above macros, this macro is either defined or not defined, so the correct test is #ifdef.

Table 2.1 Libraries Included When USE_* Macro Value > Zero

Configuration Macro Realtek.lib*

* or a substitute packet driver library based on board type

Ppp.lib Ppplink.lib Pppoe.lib WiFiG.lib

USE_ETHERNET yes no no no no

USE_PPP_SERIAL no yes yes no no

USE_PPPOE yes yes no yes no

USE_WIFI no no no no yes
6 rabbit.com TCP/IP Initialization

http://www.rabbit.com

2.1.3 Single Interface Support
Backwards compatibility exists for applications compiled with earlier versions of Dynamic C. If none of
the USE_* macros are defined, then the old behavior (pre-Dynamic C 7.30) is used, which is to include
one, and only one, link layer driver.

 2.1.3.1 Configuration Macros for Link Layer Driver - Single Interface
Do not define either of these macros if any of the USE_* macros are defined.

PKTDRV
This macro specifies the packet driver to use. Include one of the following statements in your application.

#define PKTDRV “realtek.lib” // To use Ethernet
#define PKTDRV “ppp.lib” // To use PPP (serial or Ethernet)

PPPOE
This macro is defined to use PPP over Ethernet when PKTDRV is set to ppp.lib. For other packet
drivers, this define has no effect (but should not be defined in order to avoid problems with future
Dynamic C releases).

#define PPPOE

2.1.4 TCP/IP Stack Initialization
The function sock_init() must be called near the start of your main() function in order to initialize
the TCP/IP stack. The return value from sock_init() must indicate success before calling any other
TCP/IP functions, with the possible exception of ifconfig().

IMPORTANT: If you are using µC/OS-II, then you must ensure that OSInit() is called before
calling sock_init().

The function sock_init() performs the following actions, and does not return until complete (or an
error was encountered):

• Calls subsystem initialization for ARP, TCP, UDP and DNS (if applicable).

• Tests to see whether sock_init() was run previously. If so, then it returns OK. Otherwise, the fol-
lowing steps are executed.

• Initialize the packet driver; basically this resets the hardware and clears out the packet receive buffer
pool.

• Clears the router and other server tables.

• Interfaces are initialized using the settings specified in the IFCONFIG_* macros or predefined config-
urations.

WiFi takes longer to initialize than the other supported interfaces, and potentially much longer if there is
no AP within range (which is analogous to not plugging in the Ethernet cable). If all of the above
completed successfully, the return code is set to 0. Otherwise, the return code will be non-zero, however
you can still proceed if the return code is 2 since this indicates that DHCP failed but fallbacks were used.
Other return codes indicate that the network is not usable.
TCP/IP Manual, Vol 1 rabbit.com 7

http://www.rabbit.com

After sock_init() returns OK, the non-PPPoE Ethernet interface should be ready for traffic if it is
intended to be up initially. PPP interfaces may not be fully started even if requested to be up initially. PPP
interfaces can take a substantial amount of time to come up, especially if modem dial-out is in use. You
can wait for a particular interface to come up by polling the interface status using ifstatus() or,
preferably, ifpending().

2.2 Interface Configuration
Prior to Dynamic C version 7.30, only a single network interface was supported. Configuration of the

interface was performed by defining a set of macros, such as MY_IP_ADDRESS1, as well as by calling
various configuration functions such as sethostid().

With Dynamic C 7.30’s support of multiple interfaces, the macro-style configuration becomes impractical,
and the configuration functions generally would require an additional parameter, the interface number.
Version 7.30 implements a slightly different method of configuration, but maintains compatibility with the
old style of configuration for simple applications that require only a single interface.

It is recommended that new applications use the new style of configuration, even if multiple interface
support is not required. This will ease the integration of future Dynamic C upgrades.

2.2.1 Configuration Overview
To run the TCP/IP stack, a host (i.e., the controller board) needs to know its unique home IP address for
each interface. Interfaces that connect to broadcast networks (e.g., Ethernet or Wi-Fi) must also have a
netmask assigned. The combination of IP address and netmask describes the so-called subnet which is
addressable on that interface. The subnet basically describes the community of host addresses that can talk
directly to this host, without requiring data to pass through a packet router. Point-to-point links only need
an IP address, since there is only one other host by definition.

IP address and netmask are the most important configuration items; however, many other items are needed
for successful networking. For anything but strictly local communication, a router or gateway host must be
known. The router has the important task of forwarding messages between the local host and the outside
world (i.e., hosts that are not on the local subnet). Routers are associated with particular interfaces. Each
interface will generally require a different router; however, in the majority of cases only one interface will
actually be used to talk to non-local hosts so only one router will be required to service all requests for
non-local host addresses.

Some of the configuration items are not specific to any particular interface. For example, DNS (Domain
Name System) servers are known by their IP address. DNS servers are used to translate human-readable
domain names (e.g., www.rabbit.com) into machine-readable IP addresses.

1. The configuration macros MY_IP_ADDRESS and MY_NETMASK have been deprecated in
favor of _PRIMARY_STATIC_IP and _PRIMARY_NETMASK, respectively.
8 rabbit.com TCP/IP Initialization

http://www.rabbit.com

2.2.2 Sources of Configuration Information
The Dynamic C TCP/IP stack obtains configuration information from one or more of the following
sources:

• Use one of the predefined configurations in tcp_config.lib; static or dynamic.

• Macro definitions before #use “dcrtcp.lib”; static configuration.

• Bootstrap network protocols such as BOOTP and DHCP; dynamic configuration.

• Runtime function calls such as ifconfig() (version 7.30) and sethostid() (previous versions).

• “Directed ping” IP address assignment (new in version 7.30).

• Console-based configuration, e.g., zconsole.lib.

As application designer, you have to decide which of these configuration techniques is right for your
project. Entirely static configuration is typically used for initial application development and testing. Most
of the TCP/IP sample programs use static configuration for simplicity in getting started. Applications
which are intended for real-world use should allow at least one form of dynamic configuration. The
particular form of configuration that is supported will depend on the complexity of the application, as well
as the expected network or operational environment in which the application will run.

 2.2.2.1 Predefined Configurations
Since networking configuration can be fairly complicated, Dynamic C version 7.30 has the concept of
“canned” or predefined configurations. This has the advantage of reducing the number of macro
definitions at the top of each TCP/IP program, as well as eliminating the need for copy/paste of a lot of
settings from one program to the next.

Using the predefined configurations is very easy: simply #define a single macro (called TCPCONFIG)
at the top of each program. The macro is defined to an integer, which selects one of the predefined
configurations in tcp_config.lib. For example:

#define TCPCONFIG 1
#use “dcrtcp.lib”

causes the first predefined configuration to be used.

Most of the sample TCP/IP programs refer to one of the predefined configurations. It is fairly likely
(unfortunately) that none of the configurations will work with your network. For example, the default IP
address of “10.10.6.100” may not be allowed on your LAN. If this is the case, you can define the default
IP address in your application or in the “Defines” tab of the Project Options dialog box.

To configure within your program, copy and paste the following into your code and modify as necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
TCP/IP Manual, Vol 1 rabbit.com 9

http://www.rabbit.com

To configure within the Project Options dialog box, copy and paste the following into the Defines window
and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";

Another way to change the default configuration is to create a library called custom_config.lib. In
this library, you can place your own custom configurations which will not be overwritten by Dynamic C
(since this is not a released library).

To create custom_config.lib, you can use tcp_config.lib as a template. Modify the
definitions to suit your network environment. You must change the configuration numbers (i.e., the value
of TCPCONFIG) to be greater than or equal to 100. Numbers less than 100 are expected to be in
tcp_config.lib; numbers over 99 cause custom_config.lib to be included.

If you are using a Dynamic C version prior to 9.30, then the other thing you must do before using your
own custom configurations is to add the library name (custom_config.lib) to the lib.dir file in the
base Dynamic C installation directory. This is just a text file, which you can edit with the Dynamic C text
editor. Locate the line that contains “tcp_config.lib.” Repeat this line, and modify one of the line copies to
point to your custom_config.lib file. You will not have to restart Dynamic C for this change to take effect.
A new release of Dynamic C will overwrite the lib.dir file, so you will need to perform this edit for each
release.

Starting with Dynamic C 9.30, lib.dir references entire directories automatically, so it is not necessary to
edit it for the addition of the custom library.

To use custom configurations that you define, the only thing necessary in each sample program is to
change the definition of the TCPCONFIG macro to indicate the appropriate configuration e.g.,

#define TCPCONFIG 100
#use “dcrtcp.lib”

 2.2.2.2 Static Configuration
This is conceptually the easiest means of configuration; however it is primarily suitable for testing
purposes (or possibly as a fallback in case other configuration techniques do not yield a result in a
reasonable amount of time).

Prior to version 7.30, the (only) interface was configured by defining a fixed set of macros before
including dcrtcp.lib. The most common definitions were limited to: MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY and MY_NAMESERVER.

At runtime, the functions, tcp_config(), sethostid() and sethostname() override the
configuration macros.

Version 7.30 still allows use of these macros for backwards compatibility; however, it is recommended
that the new style of static configuration be used for new applications. The new configuration style uses
macros called IFCONFIG_*, where ‘*’ is replaced by the interface name e.g., IFCONFIG_ETH0 for the
10 rabbit.com TCP/IP Initialization

http://www.rabbit.com

first Ethernet port. IFCONFIG_ALL contains configuration items that are not specific to any particular
interface.

The value of the IFCONFIG_* macro is actually a list of items in the syntactic form of a C parameter list.
For example, if the old style configuration (for Ethernet) was

#define MY_IP_ADDRESS “10.10.6.100”
#define MY_NETMASK “255.255.255.0”
#define MY_GATEWAY “10.10.6.1”

then the new replacement would be

#define IFCONFIG_ETH0 \
 IFS_IPADDR, aton(“10.10.6.100”), \
 IFS_NETMASK, aton(“255.255.255.0”), \
 IFS_ROUTER_SET, aton(“10.10.6.1”), \
 IFS_UP

The replacement looks more complex, but this is because the macro value must be valid C syntax for a
parameter list. The IFS_UP parameter at the end of the above example is a new feature for interfaces:
they can be dynamically brought up and down. The default state for an interface is “down,” which is why
an explicit IFS_UP is required. The backslashes at the end of each line are used to continue the macro
definition over more than one line.

The format of the static initialization macros will make more sense if you examine the documentation for
the ifconfig() function. You will see that the macro definition is merely “plugged in” to the
parameter list for an ifconfig() call.

 2.2.2.3 Dynamic Configuration via the Network
The Dynamic C TCP/IP stack supports DHCP (Dynamic Host Configuration Protocol) or BOOTP
(Bootstrap Protocol) for dynamic configuration. DHCP is a more modern replacement for BOOTP, which
was originally designed to support bootstrap of diskless workstations. Use of these protocols can
completely eliminate the need for static configuration.

The library BOOTP.LIB allows a target board to be a BOOTP or DHCP client. The protocol used
depends on what type of server is installed on the local network. BOOTP and DHCP servers are usually
centrally located on a local network and operated by the network administrator. Note that initialization
may take longer when using DHCP as opposed to static configuration, but this depends on your server.
Also note that if the interface goes down for any reason, the application will need to bring the interface
back up and redo any changes to the default configuration, such as setting IFS_DHCP_TIMEOUT. This
behavior differs from the behavior of a PC, which will automatically bring the interface back up.

Both protocols allow a number of configuration parameters to be sent to the client, including:

• client’s IP address
• net mask
• list of gateways
• host and default domain names
• list of name servers

BOOTP assigns permanent IP addresses. DHCP can “lease” an IP address to a host, i.e., assign the IP
address for a limited amount of time. There are two user-callable functions regarding IP address leases
TCP/IP Manual, Vol 1 rabbit.com 11

http://www.rabbit.com

dhcp_release() and dhcp_acquire() (described in “Function Reference” on page 93). In
addition, there are a number of macros and global variables available for modifying behavior and
obtaining information. Please see “BOOTP/DHCP Control Macros” on page 27 for details.

As of Dynamic C 7.30, DHCP or BOOTP can be used only on the default interface i.e., the interface that
is specified by the value of IF_DEFAULT. If you are using more than one interface then you should
ensure that IF_DEFAULT is set correctly.

To successfully use DHCP configuration, ensure all of the following conditions are met. (Only the first
condition applies prior to 7.30.)

• #define USE_DHCP before including dcrtcp.lib.

• Ensure IF_DEFAULT is indicating the desired interface.

• Define an IFCONFIG_* macro to include the IFS_DHCP parameter ID.

For example, if the Ethernet interface is to be used for DHCP, the following code is required for DHCP:

#define USE_DHCP

#define IF_DEFAULT 0 // not necessary unless also using PPP

#define IFCONFIG_ETH0 IFS_DHCP, 1, IFS_UP

#use “dcrtcp.lib”

You may also use the predefined configuration number 3, which is DHCP:

#define TCPCONFIG 3
#use “dcrtcp.lib”

This configuration sets all required macros for DHCP (or BOOTP) to work. Naturally, there must be a
DHCP server available on the interface. The DHCP server must be set up to contain all the required
configuration options, however setting up the DHCP server is outside the scope of this document, since
there are many different DHCP servers in use.

The sample program Samples\tcpip\dhcp.c uses dynamic configuration in a basic TCP/IP
program that will initialize the TCP/IP interface, and allow the device to be “pinged” from another
computer on the network. It demonstrates DHCP features, such as releasing and re-acquiring IP addresses
and downloading a configuration file.

 2.2.2.4 Runtime Configuration Using ifconfig()
ifconfig() is a function introduced in version 7.30. This function does many things, and is the
recommended replacement for some of the functions marked as “deprecated” (including
tcp_config()). ifconfig() performs most of the work for all the other configuration techniques.
For example, static configuration (via the IFCONFIG_* macros) basically calls ifconfig() with the
specified parameters substituted in.
12 rabbit.com TCP/IP Initialization

http://www.rabbit.com

ifconfig() takes a variable number of parameters, like printf(), however the parameter list is
terminated with the special IFS_END symbol. For example, to use ifconfig() to set the same
parameters as described above for the static configuration:

ifconfig(IF_ETH0, IFS_IPADDR, aton(“10.10.6.100”),
IFS_NETMASK, aton(“255.255.255.0”),
IFS_ROUTER_SET, aton(“10.10.6.1”),
IFS_UP,
IFS_END);

Note that this is the same as substitution of the IFCONFIG_* macro e.g.,

ifconfig(IF_ETH0, IFCONFIG_ETH0, IFS_END);

ifconfig() is also used to obtain current configuration items at runtime. For example,

longword ipaddr;
ifconfig(IF_ETH0, IFG_IPADDR, &ipaddr, IFS_END);

gets the current IP address of the first Ethernet interface into the variable ipaddr.

The first parameter of ifconfig() is the interface number. For certain settings, this can also be
IF_ANY, which means apply the settings to all applicable interfaces. The parameters following the first
are an arbitrary number of tuples consisting of a parameter identifier followed by the value(s) for that
parameter (if any). The list of parameters must be terminated by a special identifier, IFS_END. See the
documentation for ifconfig() for a complete list of parameter identifiers with their expected values.

 2.2.2.5 Directed Ping
This style of configuration, also known as ICMP configuration, is limited to setting the IP address of the
interface. It only works on non-PPPoE Ethernet interfaces. To specify directed ping configuration, use the
IFS_ICMP_CONFIG parameter ID in a call to ifconfig() or in the definition of the IFCONFIG_*
macro for the interface. For example

#define IFCONFIG_ETH0 IFS_ICMP_PING, 1

for a static configuration, or

ifconfig(IF_ETH0, IFS_ICMP_CONFIG, 1, IFS_END);

at runtime. Note that you can use both directed ping and DHCP on the same interface, but directed ping is
not limited to just the default interface. If both directed ping and DHCP are allowed on a particular
interface, the first one “wins.”

Directed ping works as follows. The interface is brought up, but has no assigned IP address so it cannot be
used for normal traffic. If the interface receives an ICMP echo request (i.e., ping) which is directed to the
interface’s MAC address, then the destination IP address in the ICMP packet is assigned to the interface as
its home IP address. After that point, the interface is configured and is available for normal traffic.

The weakness of directed ping is that only the IP address is provided. The netmask must be pre-configured
or obtained by other means. Technically, directed ping violates some tenets of the Internet standards,
however, it can be useful in controlled environments.
TCP/IP Manual, Vol 1 rabbit.com 13

http://www.rabbit.com

The MAC address of the board must be known (see below) for directed ping to work. The host which
initiates the ICMP echo request must have its ARP table statically configured with the target MAC
address. On Unix and Windows hosts, the appropriate command sequence is

arp -s <IP address> <MAC address>

followed by

ping <IP address>

The actual format of the MAC address depends on the operating system. Most hosts will recognize a
format like “00-09-A0-20-00-99”. The IP address is in dotted decimal notation.

Once the interface is configured by directed ping (or DHCP), then further directed ping or DHCP
configurations for that interface are not allowed. If desired, at runtime you can issue

ifconfig(IF_ETH0, IFS_ICMP_CONFIG_RESET, IFS_END);

to allow another directed ping configure.

 2.2.2.6 Remote Configuration via Advanced Device Discovery Protocol (ADDP)
The ADDP.lib library contains a UDP-based daemon that will listen for requests from an ADDP client
such as the Digi Device Discovery utility included in the Utilities\ADDP directory of your Dynamic C
installation. The Discovery utility runs on a Windows PC and can discover ADDP-enabled devices on the
local network and modify their network configuration (with the appropriate password).

The sample program Samples\tcpip\addp.c demonstrates using the Discovery utility to remotely configure
a device that can store its network configuration in the UserBlock (non-volatile storage), and then use that
stored configuration at startup to configure the network interface.

 2.2.2.7 Console Configuration Via Zconsole.lib
The zconsole.lib library contains routines for allowing an external (serial or telnet) terminal to issue
configuration commands. Basically, the commands call ifconfig() to perform the actual requests or
obtain information.

Using a “dumb terminal” connection over a serial port presents no special difficulties for network
configuration. Using telnet over the internet obviously requires a working TCP stack to begin with. This is
still useful in the case that one of the other configuration techniques can at least get to a working state. For
example, directed ping can assign an IP address. You could then use the same host to telnet into the new IP
address in order to set other items like the netmask and router.

2.2.3 Media Access Control (MAC) Address
Rarely, ISPs require that the user provide them with a MAC address for their device. Run the utility
program, Samples\tcpip\display_mac.c, to display the MAC address of your controller board.

The MAC address is also required for directed PING configure, as well as some other bootstrap
techniques. MAC addresses are often written as a sequence of six two-digit hexadecimal numbers,
separated by colons e.g., 00:90:20:33:00:A3. This distinguishes them from IP addresses, which are written
with dotted decimal numbers.

MAC addresses are completely unrelated to IP addresses. IP addresses uniquely identify each host on the
global Internet. MAC addresses uniquely identify Ethernet hardware on a particular Ethernet LAN
14 rabbit.com TCP/IP Initialization

http://www.rabbit.com

segment. Although only technically required to be unique on a LAN segment, in practice MAC addresses
are globally unique and can thus be used to uniquely identify a particular Ethernet adapter.

The usual reason for an ISP requiring a MAC address is if the ISP uses DHCP to dynamically assign IP
addresses. Most ISPs use PPP (Point to Point Protocol) which does not care about MAC addresses. DHCP
can use the MAC address to determine that the same device is connecting, and assign it the same IP
address as before.

2.3 Dynamically Starting and Stopping Interfaces
Starting with version 7.30, Dynamic C allows interfaces to be individually brought up and down by calling
the ifup(), ifdown() or ifconfig() functions. The initial desired state of the interface is
specified using the IFCONFIG_* macros. By default, interfaces are not brought up when
sock_init() is called at boot time. Only if the IFCONFIG_* macro contains an IFS_UP directive
will the interface be brought up at boot time.

Most applications should not need to dynamically change the interface status. The exception to this may be
PPP over serial interfaces, where a modem is used to dial out to an ISP on demand.

2.3.1 Testing Interface Status
There are two functions for testing the current status of an interface: ifstatus() and ifpending().
The function ifstatus() merely returns a boolean value indicating whether the interface is up. If the
return value is true (non-zero), then the interface is ready for normal TCP/IP communications. Otherwise,
the interface is not yet available; it may either be down, or in the process of coming up.

ifpending() gives more information: its return value indicates not only the current state, but also if the
state is in the process of changing. This function is very handy when using WiFi; in particular, it can be
used to make sure it is okay to call the wifi_ioctl() function for most commands.

If your application needs to check the interface status, which is recommended for PPP over serial or
PPPoE, then it can either poll the status using the above functions, or it can register a callback function
which is automatically called whenever the interface changes status.

To register a callback function, you call ifconfig() with the IFS_IF_CALLBACK as the parameter
identifier, and the address of your callback function as the parameter value.

2.3.2 Bringing an Interface Up
You can call ifup(), or ifconfig() with the IFS_UP parameter identifier. The advantage of using
ifconfig() is that you can specify an interface number of IF_ANY, which brings all interfaces up
together.

When the ifup() call returns, the interface may not have completed coming up. This is notably the case
for PPP interfaces, which require a number of protocol negotiation packets to be sent and received. In
addition, PPP over serial may require additional time to reset a modem, dial out to an ISP, and possibly
respond to the ISP’s login procedure. All this could take considerable time, so the ifup() function does
not wait around for the process to complete, to allow the application to proceed with other work.

On return from the ifup() call, an application must test for completion using the functions described in
the previous section.
TCP/IP Manual, Vol 1 rabbit.com 15

http://www.rabbit.com

For the interface to come up completely, your application must call tcp_tick() regularly while waiting
for it. If you can afford to block until the interface is up, then use code similar to the following:

ifup(IF_PPP2);

// Wait for the interface to have any status other than “down coming up.”
while (ifpending(IF_PPP2) == 1) tcp_tick();

if (ifstatus(IF_PPP2))
printf(“PPP2 is up now.\n”);

else
printf(“PPP2 failed to come up.\n”);

2.3.3 Bringing an Interface Down
You can call ifdown(), or ifconfig() with the IFS_DOWN parameter identifier. The advantage of
using ifconfig() is that you can specify an interface number of IF_ANY, which brings all interfaces
down together.

As for ifup(), ifdown() does not necessarily complete immediately on return. PPP requires link tear-
down messages to be sent to the peer and acknowledged. Thus, similar considerations apply to bringing an
interface down as they do for bringing it up.

ifdown() will always succeed eventually. Unlike ifup(), which can possibly fail to bring the
interface up, ifdown() will always eventually return success i.e., it is not possible for an interface to be
left “hanging up.” If the PPP link tear-down does not get an acknowledgment from the peer, then the
process times out and the link is forced down.

2.4 Setting Up Wi-Fi Interfaces
Wi-Fi has some specific configuration macros in addition to the basic TCP/IP macros that define the IP
address, netmask, gateway and nameserver. This section will describe the setup of Wi-Fi, both at compile
time and runtime. The configuration macros used in the code in this section are described in “Wi-Fi
Configuration Macros” on page 36.

The Wi-Fi interface is considered “up” (ifpending() returns that the interface is up and the link LED
is on) in the following conditions:

• If connecting to an AP using no encryption, then the link is “up” when 802.11 association has
completed.

• If connecting to an AP with TKIP/WPA or CCMP/WPA2 encryption, the link is “up” after the 802.11i
handshake has completed successfully. This means that the pre-shared key must be correct before the
link is considered up.

• If connecting to an AP with WEP encryption, then the link is “up” when 802.11 association has
completed, whether or not the WEP key is correct. This means that a WEP connection can show as
being “up” even though the key is wrong. This is because, unlike TKIP or CCMP, WEP does not
provide a way of knowing whether or not the key used is correct.
16 rabbit.com TCP/IP Initialization

http://www.rabbit.com

2.4.1 Wi-Fi Compile Time Configuration
The examples given here cover both Wi-Fi modes: ad-hoc and infrastructure. Note that a Wi-Fi interface
can be configured for DHCP support but the examples in this section will show only static configuration.

 2.4.1.1 Infrastructure, Open (No Encryption) Configuration
The simplest way to configure a Wi-Fi network interface is to use an open configuration. This means that
no encryption or authentication is used. This example is configured for infrastructure mode, which means
that you will also need a Wi-Fi access point or Wi-Fi router. Note that your wireless access point will need
to match these settings (in particular, the SSID must be the same, and the AP must not have encryption
enabled).

To configure within your program, copy and paste the following into your sample program and modify as
necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCT
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_NONE

Alternatively, you can configure within the Defines window. Here is an example to copy and paste into the
Defines window and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_MODE = IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_NONE;
TCP/IP Manual, Vol 1 rabbit.com 17

http://www.rabbit.com

 2.4.1.2 Ad-hoc, Open (No Encryption) Configuration
Another simple way to configure a Wi-Fi network interface is to use an open configuration in ad-hoc
mode. An ad-hoc Wi-Fi network does not require an access point or Wi-Fi router to operate. Instead, the
Wi-Fi devices communicate directly with each other. This is useful for an isolated Wi-Fi network, but it is
not typically used when devices need to communicate outside of their own network. Note that all Wi-Fi
devices on an ad-hoc network need to match these settings (in particular, the SSID and the channel number
must be the same).

To configure within your program, copy and paste the following into your sample program and modify as
necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define _WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_CHANNEL 1
#define IFC_WIFI_MODE IFPARAM_WIFI_ADHOC
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_NONE

Alternatively, you can configure within the Defines window. Here is an example to copy and paste into the
Defines window and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_CHANNEL = 1;
IFC_WIFI_MODE = IFPARAM_WIFI_ADHOC;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_NONE;
18 rabbit.com TCP/IP Initialization

http://www.rabbit.com

 2.4.1.3 Infrastructure, WEP Encryption Configuration
WEP is an encryption method for Wi-Fi networks. It is now considered insecure, but it is commonly
supported by Wi-Fi devices. To use WEP, all devices including the access point or Wi-Fi router will need
to be configured with the same WEP keys (as well as the same SSID). WEP allows multiple keys to be
defined; all devices will need to be configured to use the same key number.

WEP keys are used for WEP shared key authentication and for WEP encryption. The Wi-Fi driver stores
up to 4 different WEP keys (0 to 3) of either 5 or 13 bytes.

To configure within your program, copy and paste the following into your sample program and modify as
necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_WEP
#define IFC_WIFI_WEP_KEYNUM 0
#define IFC_WIFI_WEP_KEY0_HEXSTR "0123456789abcdef0123456789"

// alternate method to define a WEP key
#define IFC_WIFI_WEP_KEY0_BIN \
0x01, 0x23, 0x45, 0x67, 0x89, 0xab,0xcd, 0xef,\
0x01, 0x23, 0x45, 0x67, 0x89

Alternatively, you can configure within the Defines window. Here is an example to copy and paste into the
Defines window and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_MODE = IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_WEP;
IFC_WIFI_WEP_KEYNUM = 0;
IFC_WIFI_WEP_KEY0_HEXSTR = "0123456789abcdef0123456789";
TCP/IP Manual, Vol 1 rabbit.com 19

http://www.rabbit.com

 2.4.1.4 Infrastructure, WPA/TKIP Encryption Configuration, Pre-Shared Key
Wi-Fi Protected Access (WPA) along with Temporal Key Integrity Protocol (TKIP) replaces the less

secure WEP encryption method. The Rabbit Wi-Fi driver supports WPA encryption1 in pre-shared key
(PSK) mode. This key can be specified as a 256-bit key or as a passphrase that is expanded into a key. The
code for WPA/TKIP is compiled when you define the macro WIFI_USE_WPA.

To configure within your program, copy and paste the following into your sample program and modify as
necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define WIFI_USE_WPA
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_TKIP

You will also need to define WPA’s pre-shared key mode. This can be done by specifying a passphrase
that the driver will expand to a 256-bit key or by specifying the 256-bit key itself. Note that expanding a
passphrase takes a significant amount of time at startup, up to about 20 seconds. Define
WIFI_VERBOSE_PASSPHRASE to see status messages when the key is generated from the passphrase.

To specify the WPA passphrase, you will need something like the following:

#define IFC_WIFI_WPA_PSK_PASSPHRASE "myPassphrase"

To specify the WPA Pre-Shared Key itself, use the following:

#define IFC_WIFI_WPA_PSK_HEXSTR \
"1122334455667788990011223344556677889900112233445566778899001122"

Alternatively, you can configure within the Defines window:
TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
WIFI_USE_WPA;
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_MODE = IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_TKIP;

1. In general usage the term “WPA encryption” sometimes refers to WPA using TKIP.
20 rabbit.com TCP/IP Initialization

http://www.rabbit.com

To specify a WPA passphrase or Pre-Shared Key:

IFC_WIFI_WPA_PSK_PASSPHRASE = "myPassphrase";

To specify the WPA Pre-Shared Key itself:

IFC_WIFI_WPA_PSK_HEXSTR =
"1122334455667788990011223344556677889900112233445566778899001122";

 2.4.1.5 Infrastructure, WPA2/CCMP Encryption Configuration, Pre-Shared Key
WPA2 is a more secure replacement for WEP. This implementation uses the Advanced Encryption
Standard (AES) based algorithm, also known as CCMP (Counter Mode with Cipher Block Chaining
Message Authentication Code Protocol) cipher suite. The Rabbit Wi-Fi driver supports CCMP/WPA2
encryption with Pre-Shared Keys (PSK). These keys can be specified as a 256-bit key or as a passphrase
that is expanded into a key. Note that the code for this encryption method is not compiled unless you
define the macros WIFI_USE_WPA and WIFI_AES_ENABLED.

To configure within your program, copy and paste the following into your sample program and modify as
necessary for your situation:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define WIFI_USE_WPA
#define WIFI_AES_ENABLED
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_CCMP

You will also need to define WPA2’s pre-shared key mode. This can be done by specifying a passphrase
that the driver will expand to a 256-bit key or by specifying the 256-bit key itself. Note that expanding a
passphrase takes a significant amount of time at startup, up to about 20 seconds. Define
WIFI_VERBOSE_PASSPHRASE to see status messages when the key is generated from the passphrase.

To specify the WPA2 passphrase, you will need something like the following:

#define IFC_WIFI_WPA_PSK_PASSPHRASE "myPassphrase"

To specify the WPA2 Pre-Shared Key itself, use the following:

#define IFC_WIFI_WPA_PSK_HEXSTR \
"1122334455667788990011223344556677889900112233445566778899001122"
TCP/IP Manual, Vol 1 rabbit.com 21

http://www.rabbit.com

Alternatively, you can configure within the Defines window:
TCPCONFIG 1;
_PRIMARY_STATIC_IP "10.10.6.100";
_PRIMARY_NETMASK "255.255.255.0";
MY_GATEWAY "10.10.6.1";
MY_NAMESERVER "10.10.6.1";
WIFI_USE_WPA;
WIFI_AES_ENABLED;
IFC_WIFI_SSID "rabbitTest";
IFC_WIFI_ROAM_ENABLE 1;
IFC_WIFI_ROAM_BEACON_MISS 20;
IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_CCMP;

Again, you will need to specify a WPA2 passphrase or Pre-Shared Key. To specify the WPA2 passphrase,
use the following:

IFC_WIFI_WPA_PSK_PASSPHRASE = "myPassphrase";

To specify the WPA Pre-Shared Key itself, use the following:

IFC_WIFI_WPA_PSK_HEXSTR = \
"1122334455667788990011223344556677889900112233445566778899001122";

 2.4.1.6 Infrastructure, WPA Enterprise using EAP-TLS and CCMP Encryption
To configure within your program, copy and paste the following into your sample program and modify as
necessary:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define WIFI_USE_WPA
#define WIFI_AES_ENABLED
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_CCMP
// The above defines are identical to using CCMP with PSK
22 rabbit.com TCP/IP Initialization

http://www.rabbit.com

#define WPA_USE_EAP WPA_USE_EAP_TLS
#define IFC_WIFI_WPA_PROTOCOL IFPARAM_WIFI_WPA_PROTOCOL_WPA2
#ximport "certs/root.pem" root_ca_cert
#ximport "certs/my_client.pem" my_client_cert
#define IFC_WIFI_CLIENT_CERT_XIM my_client_cert, my_client_cert
#define IFC_WIFI_CA_CERT_XIM root_ca_cert
#define IFC_WIFI_IDENTITY "MyClientIdent"
#define SSL_USE_AES

Because it is necessary to ximport SSL certificates for use with this encryption method, it is not possible to
completely configure WPA Enterprise with EAP/TLS and CCMP using the Project Defines. However, as
long as you include something like these two #ximport statements in your program:

#ximport "certs/root.pem" root_ca_cert
#ximport "certs/my_client.pem" my_client_cert

you can provide the rest of the configuration in the Project Defines. Here is an example—copy and paste
into the Defines window and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
WIFI_USE_WPA;
WIFI_AES_ENABLED;
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_MODE = IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_CCMP;
WPA_USE_EAP = WPA_USE_EAP_TLS;
IFC_WIFI_WPA_PROTOCOL = IFPARAM_WIFI_WPA_PROTOCOL_WPA2;
IFC_WIFI_CLIENT_CERT_XIM = my_client_cert, my_client_cert;
IFC_WIFI_CA_CERT_XIM = root_ca_cert;
IFC_WIFI_IDENTITY = "MyClientIdent";
SSL_USE_AES;
TCP/IP Manual, Vol 1 rabbit.com 23

http://www.rabbit.com

 2.4.1.7 Infrastructure, WPA Enterprise using PEAP and TKIP Encryption
To configure within your program, copy and paste the following into your sample program and modify as
necessary for your situation:

#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "10.10.6.100"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"
#define WIFI_USE_WPA
#define IFC_WIFI_SSID "rabbitTest"
#define IFC_WIFI_ROAM_ENABLE 1
#define IFC_WIFI_ROAM_BEACON_MISS 20
#define IFC_WIFI_MODE IFPARAM_WIFI_INFRASTRUCTURE
#define IFC_WIFI_REGION IFPARAM_WIFI_REGION_AMERICAS
#define IFC_WIFI_ENCRYPTION IFPARAM_WIFI_ENCR_TKIP
// The above defines are identical to using TKIP with PSK

#define WPA_USE_EAP WPA_USE_EAP_PEAP
#ximport "certs/root.pem" root_ca_cert
#define IFC_WIFI_CA_CERT_XIM root_ca_cert
#define IFC_WIFI_IDENTITY "my_user1d"
#define IFC_WIFI_PASSWORD "my_passw0rd"

Because it is necessary to ximport SSL certificates for use with this encryption method, it is not possible to
completely configure WPA Enterprise with PEAP using the Project Defines. However, as long as you
include something similar to this #ximport statement in your program:

#ximport "certs/root.pem" root_ca_cert

you can provide the rest of the configuration in the Project Defines. Here is an example—copy and paste
into the Defines window and modify as necessary:

TCPCONFIG = 1;
_PRIMARY_STATIC_IP = "10.10.6.100";
_PRIMARY_NETMASK = "255.255.255.0";
MY_GATEWAY = "10.10.6.1";
MY_NAMESERVER = "10.10.6.1";
WIFI_USE_WPA;
IFC_WIFI_SSID = "rabbitTest";
IFC_WIFI_ROAM_ENABLE = 1;
IFC_WIFI_ROAM_BEACON_MISS = 20;
IFC_WIFI_MODE = IFPARAM_WIFI_INFRASTRUCTURE;
IFC_WIFI_REGION = IFPARAM_WIFI_REGION_AMERICAS;
IFC_WIFI_ENCRYPTION = IFPARAM_WIFI_ENCR_TKIP;
WPA_USE_EAP = WPA_USE_EAP_PEAP;
IFC_WIFI_IDENTITY = "my_user1d";
IFC_WIFI_PASSWORD = "my_passw0rd";
IFC_WIFI_CA_CERT_XIM = root_ca_cert;
24 rabbit.com TCP/IP Initialization

http://www.rabbit.com

 2.4.1.8 Specifying a Pre-Shared Key
There are two ways to specify a pre-shared key—either by specifying the 256-bit pre-shared key directly
in hex format, or by entering a passphrase. A passphrase is the most common method. All Wi-Fi devices
that accept a passphrase use a standard algorithm to generate the pre-shared key from the passphrase and
the SSID. That is, all Wi-Fi devices (including Access Points) that are configured with the same
passphrase and the same SSID will generate the same pre-shared key.

IMPORTANT: When statically configuring a Rabbit Wi-Fi device, you should specify either the
pre-shared key with _WIFI_PSK_HEX or the passphrase with _WIFI_PSK_PASSPHRASE, but
NOT BOTH! If you do specify both, then _WIFI_PSK_HEX will take precedence; that is, if you
have a correct passphrase but an incorrect pre-shared key, then the incorrect pre-shared key will be
used.

 2.4.1.9 Ad-hoc, WPA/TKIP or WPA2/CCMP Encryption Configuration
The Wi-Fi driver does not support the use of ad-hoc mode with WPA/TKIP or WPA2/CCMP encryption.
Ad-hoc mode with encryption is not well supported by Wi-Fi devices in general. There are multiple
standards for supporting encryption on ad-hoc mode, but none of them are widely implemented. If you
desire encryption for your Wi-Fi network, then we strongly recommend using infrastructure mode with
one or more access points.

2.4.2 Wi-Fi Runtime Configuration
There are two runtime functions for Wi-Fi configuration.

 2.4.2.1 Runtime Configuration Starting with Dynamic C 10.40
Dynamic C 10.40 introduces an expanded ifconfig() function that includes Wi-Fi configuration
parameters. All Wi-Fi programs should switch to using ifconfig() for configuring Wi-Fi at runtime.

Dynamic C 10.54 introduces ifconfig() parameter identifiers for Wi-Fi Enterprise mode
authentication.

2.5 Setting Up PPP Interfaces
PPP interfaces are slightly more complicated to configure than non-PPPoE Ethernet. They also generally
take more time to become established. The advantage of PPP is that it can be made to run over a wide
variety of physical layer hardware: on Rabbit-based boards this includes the asynchronous serial ports, as
well as Ethernet (using PPPoE). Use of PPP over asynchronous serial allows boards with no Ethernet
hardware to communicate using TCP/IP protocols.

Starting with Dynamic C version 7.30, the process of establishing a PPP link has been more tightly
integrated into the library (using the ifup/ifdown/ifconfig functions). Prior to 7.30, your
application had to be hard-coded to use either Ethernet, PPP or PPPoE.

“PPP Driver” on page 83 explains the details of establishing PPP interfaces. The following sections
provide an overview.

2.5.1 PPP over Asynchronous Serial
There are two basic scenarios for use of PPP over asynchronous serial (shortened here to just PPP). The
first is a direct, hard-wired, connection to another machine. The second is a connection to an ISP (Internet
TCP/IP Manual, Vol 1 rabbit.com 25

http://www.rabbit.com

Service Provider) via a modem. Modem connections introduce another layer of complexity in that the
modem itself must be instructed to connect to the desired peer’s modem, most often via the PSTN (Public
Switched Telephone Network). Most often, ISPs also have special requirements for establishing PPP links
which are often unrelated to PPP itself. For example, many ISPs require navigation of “login scripts”
which are basically intended for human users.

With hard-wired connections, e.g., RS232 cables with “null modems” or “crossed-over connections,” the
process of establishing a PPP link is relatively simple and reliable. Bringing such a PPP link up involves
opening the serial port, sending and receiving PPP link negotiation messages (known as LCP; Link
Control Protocol), sending and receiving authentication messages (PAP; Password Authentication
Protocol) then finally sending and receiving Internet Protocol Control Messages (IPCP). If all negotiations
are successful, the link is then ready for TCP/IP traffic.

If the link is established via a modem, then an extra layer of activity must precede the initial PPP
negotiation. This is outside the scope of PPP, since it is really related to the establishment of a physical
layer. The TCP/IP library gives you the option of incorporating the modem connection phase into the
process of bringing the interface up and down. If preferred, the modem phase can be performed entirely
separately from the ifup()/ifdown() process. This may be necessary if there are special requirements
for connecting to the ISP.

2.5.2 PPP over Ethernet
PPPoE is often considered a hack. It seems superfluous to define a protocol that establishes a logical
“connection” between two peers on what is otherwise a broadcast (i.e., any-to-any) medium. Nevertheless,
the existence of PPPoE was largely dictated by the needs of ISPs who wished to continue using their
existing infrastructure, based on the earlier generation of dial-in connections. The advent of high speed
(ADSL etc.) modems, that had an Ethernet connection to the user’s network, made PPPoE an attractive
proposition. If your application requires connection to an ISP via an ADSL modem, then you will most
likely need to support PPPoE.

PPPoE also requires a physical layer negotiation to precede the normal PPP negotiations. This is known as
the “access concentrator discovery” phase (“discovery” for short). PPPoE makes a distinction between
PPPoE servers and PPPoE clients, however, PPP makes no distinction; you can think of PPP as also
standing for Peer to Peer Protocol. The PPPoE server is known as the access concentrator. The Dynamic C
TCP/IP libraries do not support acting as the access concentrator; only the PPPoE client mode is
supported. This is the most common case, since the DSL modem is always configured as an access
concentrator.

2.6 Configuration Macro Reference
This section arranges the configuration macros according to the function they perform.

2.6.1 Removing Unnecessary Functions
The following macros default to being undefined (i.e., the functionality is included by default). You can
define one or more of these macros to free up code and data memory space.

DISABLE_DNS
This macro disables DNS lookup. This prevents a UDP socket for DNS from being allocated,
26 rabbit.com TCP/IP Initialization

http://www.rabbit.com

thus saving memory. Users may still call resolve() with an IP address, provided that the ad-
dress is in dotted decimal form i.e., does not require a real DNS lookup.

DISABLE_UDP
This macro disables all UDP functionality, including DNS, SNMP, TFTP and DHCP/BOOTP.
You can define this to save a small amount of code if your application only needs to be a TCP
server, or a TCP client that does not need to do name lookups. This macro is available starting
with Dynamic C 7.30.

DISABLE_TCP
This macro disables all TCP functionality, including HTTP (web server), SMTP (mail) and oth-
er TCP-based protocols. You can define this to save a substantial amount of code if your appli-
cation only needs UDP. This macro is available starting with Dynamic C 7.30.

2.6.2 Including Additional Functions
The following macros default to being undefined i.e., the functionality is not included by default.

USE_DHCP
This macro is required when DHCP or BOOTP functionality is desired.

USE_SNMP
Define this to be the version number of SNMP (Simple Network Management Protocol) to be supported.
Currently, the only allowable value is ‘1’.

USE_MULTICAST
This macro will enable multicast support. In particular, the extra checks necessary for accepting multicast
datagrams will be enabled and joining and leaving multicast groups (and informing the Ethernet hardware
about it) will be added.

USE_IGMP
If this macro is defined, the USE_MULTICAST macro is automatically defined. This macro enables
sending reports on joining multicast addresses and responding to IGMP queries by multicast routers.
Unlike USE_MULTICAST, this macro must be defined to be 1 or 2. This indicates which version of IGMP
will be supported. Note, however, that both version 1 and 2 IGMP clients will work with both version 1
and 2 IGMP routers. Most users should just choose version 2.

USE_LINKLOCAL
This macro enables the use of link-local addresses (169.254.1.0 to 169.254.254.255) for zero-
configuration networking. With USE_LINKLOCAL defined, any time you set an Ethernet or Wi-Fi
interface’s IP address to something on the link-local subnet (169.254.x.x), the TCP/IP stack will
automatically select an available address and handle address conflicts with other devices on the network.
Link-local addressing can be used with a static IP configuration, or as the fallback address when a DHCP
server is unavailable.

2.6.3 BOOTP/DHCP Control Macros
Various macros control the use of DHCP. Apart from setting these macros before '#use dcrtcp.lib', there is
typically very little additional work that needs to be done to use DHCP/BOOTP services. Most of the work
is done automatically when you call sock_init() to initialize TCP/IP. There are more control macros
TCP/IP Manual, Vol 1 rabbit.com 27

http://www.rabbit.com

available than what are listed here. Please look at the beginning of the file lib\tcpip\bootp.lib
for more information.

USE_DHCP
If this macro is defined, the target uses BOOTP and/or DHCP to configure the required parameters. This
macro must be defined to use DHCP services.

DHCP_CHECK
If defined, and USE_DHCP is defined, then the target will check for the existence of another host already
using an offered IP address, using ARP. If the host exists, then the offer will be declined. If this happened
most DHCP servers would log a message to the administrator, since it may represent a misconfiguration. If
not defined, then the target will request the first offered address without checking.

DHCP_CLASS_ID “Rabbit2000-TCPIP:Rabbit:Test:1.0.0”
This macro defines a class identifier by which the OEM can identify the type of configuration parameters
expected. DHCP servers can use this information to direct the target to the appropriate configuration file.
The standard format: “hardware:vendor:product code:firmware version” is recommended.

DHCP_CLIENT_ID clientid_char_ptr
DHCP_CLIENT_ID_LEN clientid_length
Define a client identifier string. Since the client ID can contain binary data, the length of this string must
be specified as well. This string MUST be unique amongst all clients in an administrative domain, thus in
practice the client ID must be individually set for each client e.g., via front-panel configuration. It is NOT
recommended to program a hard-coded string (as for class ID). Note that RFC2132 recommends that the
first byte of the string should be zero if the client ID is not actually the hardware type and address of the
client (see next).

DHCP_CLIENT_ID_MAC
If defined, this overrides DHCP_CLIENT_ID, and automatically sets the client ID string to be the
hardware type (1 for Ethernet) and MAC address, as suggested by RFC2132.

2.6.4 Buffer and Resource Sizing

MAX_SOCKETS (deprecated)
This macro defines the number of sockets that will be allocated, not including the socket for DNS lookups.
It defaults to 4. If libraries such as HTTP.LIB or FTP_SERVER.LIB are used, you must provide
enough sockets in MAX_SOCKETS for them also. This macro has been replaced by
MAX_TCP_SOCKET_BUFFERS and MAX_UDP_SOCKET_BUFFERS.

MAX_SOCKET_LOCKS
For µC/OS-II support. This macro defines the number of socket locks to allocate. It defaults to
MAX_TCP_SOCKET_BUFFERS + MAX_UDP_SOCKET_BUFFERS.

This macro is necessary because we can no longer calculate the number of socket locks needed based on
the number of socket buffers, now that the user can manage their own socket buffers.

MAX_TCP_SOCKET_BUFFERS
Starting with Dynamic C version 7.05, this macro determines the maximum number of TCP sockets with
preallocated buffers. If MAX_SOCKETS is defined, then MAX_TCP_SOCKET_BUFFERS will be
28 rabbit.com TCP/IP Initialization

http://www.rabbit.com

assigned the value of MAX_SOCKETS for backwards compatibility. If neither macro is defined,
MAX_TCP_SOCKET_BUFFERS defaults to 4.

MAX_UDP_SOCKET_BUFFERS
Starting with Dynamic C version 7.05, this macro determines the maximum number of UDP sockets with
preallocated buffers. It defaults to 0.

SOCK_BUF_SIZE (deprecated)
This macro determines the size of the socket buffers. A TCP socket will have two buffers of size
SOCK_BUF_SIZE/2 for send and receive. A UDP socket will have a single buffer of size
SOCK_BUF_SIZE. Both types of sockets take the same total amount of buffer space. This macro has
been replaced by TCP_BUF_SIZE and UDP_BUF_SIZE.

TCP_BUF_SIZE
Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately. TCP_BUF_SIZE
defines the buffer sizes for TCP sockets. It defaults to 4096 bytes. Backwards compatibility exists with
earlier version of Dynamic C: if SOCK_BUF_SIZE is defined, TCP_BUF_SIZE is assigned the value of
SOCK_BUF_SIZE. If SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then
TCP_BUF_SIZE will be assigned the value of tcp_MaxBufSize*2.

tcp_MaxBufSize (deprecated)
This use of this macro is deprecated in Dynamic C version 6.57 and higher; it has been replaced by
SOCK_BUF_SIZE.

In Dynamic C versions 6.56 and earlier, tcp_MaxBufSize determines the size of the input and output
buffers for TCP and UDP sockets. The sizeof(tcp_Socket) will be about 200 bytes more than
double tcp_MaxBufSize. The optimum value for local Ethernet connections is greater than the
Maximum Segment Size (MSS). The MSS is 1460 bytes. You may want to lower tcp_MaxBufSize,
which defaults to 2048 bytes, to reduce RAM usage. It can be reduced to as little as 600 bytes.

tcp_MaxBufSize will work slightly differently in Dynamic C versions 6.57 and higher. In these later
versions the buffer for the UDP socket will be tcp_MaxBufSize*2, which is twice as large as before.

UDP_BUF_SIZE
Starting with Dynamic C 7.05, TCP and UDP socket buffers are sized separately. UDP_BUF_SIZE
defines the buffer sizes for UDP sockets. It defaults to 4096 bytes. Backwards compatibility exists with
earlier version of Dynamic C: if SOCK_BUF_SIZE is defined, UDP_BUF_SIZE is assigned the value of
SOCK_BUF_SIZE. If SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then
UDP_BUF_SIZE will be assigned the value of tcp_MaxBufSize*2.

ETH_MTU
Define the Maximum Transmission Unit for Ethernet and PPPoE interfaces. The default is 600, but may be
increased to a maximum of 1500 subject to root data memory limitations. PPPoE always uses a value that
is 8 less than this figure. For maximum throughput on an Ethernet link, use the largest value (1500).

Note that, in DC version 7.30, a macro will be defined which is set to the larger of ETH_MTU and
PPP_MTU. This macro is called MAX_MTU, and is used for sizing the receive buffer for incoming packets
from all interfaces.
TCP/IP Manual, Vol 1 rabbit.com 29

http://www.rabbit.com

PPP_MTU
Define the maximum transmission/receive unit for PPP over serial links. This defaults to the same as
ETH_MTU if it is defined, or 600. This macro is new for 7.30.

ETH_MAXBUFS
Define the maximum number of incoming packets that may be buffered. Defaults to 10. The buffers are
shared between all interfaces (in spite of the name). The total amount of root data storage for incoming
packets depends on the configured mix of interface types, but is (MAX_MTU+22)*ETH_MAXBUFS for just
Ethernet without PPPoE. This will default to 6220 bytes if the defaults are selected.

ARP_TABLE_SIZE
Define to the number of ARP table entries. The default is set to the number of interfaces, plus 5 entries for
every Ethernet interface (excluding PPPoE). The maximum allowable value is 200.

ARP_ROUTER_TABLE_SIZE
Define the maximum number of routers. Defaults to the number of interfaces, plus an extra entry for each
Ethernet (excluding PPPoE) .

MAX_STRING
Define the maximum number of characters for a hostname or for a mail server when using the function
smtp_setserver(). Defaults to 50.

MAX_NAMESERVERS
Define the maximum number of DNS servers. Defaults to 2.

MAX_COOKIES
Define the maximum number of cookies that a server can send to or receive from a client. Defaults to 1.

TCP_MAXPENDING
Define the maximum number of pending TCP connections allowed in the active list. Defaults to 20.

MAX_RESERVEPORTS
Defines the maximum number of TCP port numbers that may be reserved. Defaults to 5 if
USE_RESERVEDPORTS is defined (which is defined by default). For more information about
USE_RESERVEDPORTS and setting up a listen queue, please see “Specifying a Listen Queue” on
page 46.

DNS_MAX_RESOLVES
4 by default. This is the maximum number of concurrent DNS queries. It specifies the size of an internal
table that is allocated in xmem.

DNS_MAX_NAME
64 by default. Specifies the maximum size in bytes of a host name that can be resolved. This number
includes any appended default domain and the NULL-terminator. Backwards compatibility exists for the
MAX_DOMAIN_LENGTH macro. Its value will be overridden with the value DNS_MAX_NAME if it is
defined.
30 rabbit.com TCP/IP Initialization

http://www.rabbit.com

For temporary storage, a variable of this size must be placed on the stack in DNS processing. Normally,
this is not a problem. However, for µC/OS-II with a small stack and a large value for DNS_MAX_NAME,
this could be an issue.

DNS_MAX_DATAGRAM_SIZE
512 by default. Specifies the maximum length in bytes of a DNS datagram that can be sent or received. A
root data buffer of this size is allocated for DNS support.

DNS_SOCK_BUF_SIZE
1024 by default. Specifies the size in bytes of an xmem buffer for the DNS socket. Note that this means
that the DNS socket does not use a buffer from the socket buffer pool.

2.6.5 Network Configuration Prior to Dynamic C 7.30
These macros should only be used for releases of Dynamic C prior to version 7.30. They are supported in
newer releases of Dynamic C for backward compatibility; however, new applications should use the new
style of configuration outlined in “Network Configuration Starting with Dynamic C 7.30” on page 31. Use
of the runtime functions mentioned in this section is deprecated in favor of ifconfig().

MY_DOMAIN
This macro is the initial value for the domain portion of the controller’s address. At runtime, it can be
overwritten by tcp_config() and setdomainname().

MAX_DOMAIN_LENGTH
Specify the maximum domain name length, including any concatenated host name. Defaults to 128.

MY_GATEWAY
This macro gives the default value for the controllers default gateway. At runtime, it can be overwritten by
tcp_config().

MY_IP_ADDRESS
This macro is the default IP address for the controller. At runtime, it can be overwritten by
tcp_config() and sethostid().

MY_NAMESERVER
This macro is the default value for the primary name server. At runtime, it can be overwritten by
tcp_config().

MY_NETMASK
This macro is the default netmask for the controller. At runtime, it can be overwritten by
tcp_config().

2.6.6 Network Configuration Starting with Dynamic C 7.30
These macros should only be used with Dynamic C 7.30 or later.

TCPCONFIG
Define to the number of a predefined configuration in tcp_config.lib (numbers less than 100) or
custom_config.lib (numbers greater or equal to 100). Defaults to 0, which means no predefined
configuration.
TCP/IP Manual, Vol 1 rabbit.com 31

http://www.rabbit.com

USE_ETHERNET
Define to 0 (or leave undefined) if Ethernet is not required. Define to 1 if the first Ethernet port is to be
used. Defaults to 0. This macro does not include PPPoE interfaces.

USE_PPP_SERIAL
Define to a bitwise-OR combination of:

• SERA (0x01) - Serial port A (IF_PPP0)
• SERB (0x02) - Serial port B (IF_PPP1)
• SERC (0x04) - Serial port C (IF_PPP2)
• SERD (0x08) - Serial port D (IF_PPP3)
• SERE (0x10) - Serial port E (IF_PPP4)
• SERF (0x20) - Serial port F (IF_PPP5)

Defaults to 0, i.e., no PPP over serial.

USE_PPPOE
Define in the same way as USE_ETHERNET, except that PPPoE is used on the specified Ethernet port.
Defaults to 0 i.e., no PPPoE interfaces.

USE_WIFI
Define to 1 if Wi-Fi is required. Defaults to 0.

IFCONFIG_ALL
IFCONFIG_DEFAULT
IFCONFIG_ETH0
IFCONFIG_PPP0..5
IFCONFIG_PPPOE0
IFCONFIG_WIFI0
All the above IFCONFIG_* macros are defined in a similar manner. IFCONFIG_ALL is reserved for
configuration items that are not specific to any particular interface number. IFCONFIG_DEFAULT is
applied to the default interface (IF_DEFAULT) if there is no specific IFCONFIG_* for the default
interface.

These macros must be defined as a C parameter list fragment. This is because the macro value is
substituted into a call to ifconfig() at initialization time (sock_init()). For example, the
fragment of code that initializes the non-PPPoE Ethernet interface looks somewhat like the following:

#ifdef IF_ETH0

#ifdef IFCONFIG_ETH0
ifconfig(IF_ETH0, IFCONFIG_ETH0, IFS_END);

#else
#if IF_DEFAULT == IF_ETH0

ifconfig(IF_DEFAULT, IFCONFIG_DEFAULT, IFS_END);
#endif

#endif
#endif

The entire fragment is processed only if IF_ETH0 is defined, i.e., you have specified that the non-PPPoE
Ethernet interface is to be used. Inside this, if the IFCONFIG_ETH0 macro has been defined, then it is
32 rabbit.com TCP/IP Initialization

http://www.rabbit.com

substituted into an ifconfig() call for IF_ETH0. Otherwise, if IF_ETH0 is the default (i.e., equal to
IF_DEFAULT) then the IFCONFIG_DEFAULT macro is substituted into the ifconfig() call.

Note that for backwards compatibility, IFCONFIG_DEFAULT is always defined to something if it was
not explicitly defined prior to inclusion of dcrtcp.lib. It is defined using the given values of the pre
version 7.30 macros: MY_IP_ADDRESS, MY_GATEWAY etc.

The IFCONFIG_* macros can be defined to be an arbitrary number of ifconfig() parameters. For
example,

#define IFCONFIG_ETH0\
IFS_IPADDR,aton("10.10.6.100"), \
IFS_NETMASK,0xFFFFFF00uL, \
IFS_ROUTER_ADD,aton("10.10.6.1"), \
IFS_ROUTER_ADD_STATIC,aton("10.10.6.111"), \
aton("10.10.6.0"),0xFFFFFF00uL, \

IFS_DEBUG, 5, \
IFS_ICMP_CONFIG, 1, \
IFS_UP

sets up local IP address and netmask, two routers, turns the verbose level all the way up, allows ping
configure, and finally specifies that the interface be brought up at boot time.

The final IFS_UP is important: if it is omitted, then the interface will not be brought up at boot time; you
will need to call ifup() explicitly after sock_init().

For a full list of the parameters that you can specify in an IFCONFIG_* macro, please see the
documentation for ifconfig().

2.6.7 Time-Outs and Retry Counters

RETRAN_STRAT_TIME
This is used for several purposes. It is the minimum time granularity (in milliseconds) of the retransmit
process. No time-out is set less than this value. It defaults to 10 ms.

TCP_OPENTIMEOUT
Defines the time-out value (in milliseconds) for active open processing. Defaults to 31000 ms.

TCP_CONNTIMEOUT
Defines the time-out value in milliseconds during open or close negotiation. Defaults to 13000 ms.

TCP_SYNQTIMEOUT
Defines the time-out value (in milliseconds) for pending connection. Defaults to 90000 ms.

TCP_TWTIMEOUT
Define time to linger in TIMEWAIT state (milliseconds). It should be from .5 to 4 minutes (2MSL) but it's
not really practical for us. Two seconds will hopefully handle the case where ACK must be retransmitted,
but can't protect future connections on the same port from old packets. Defaults to 2000 ms.

KEEPALIVE_NUMRETRYS
Number of times to retry the TCP keepalive. Defaults to 4.
TCP/IP Manual, Vol 1 rabbit.com 33

http://www.rabbit.com

KEEPALIVE_WAITTIME
Time (in seconds) to wait for the response to a TCP keepalive. Defaults to 60 seconds.

TCP_MAXRTO
Set an overall upper bound for the retransmit timeout, in milliseconds. Defaults to 50,000 ms.

TCP_MINRTO
Set a lower bound for the retransmit timeout, in units of milliseconds. Prior to Dynamic C 9.01, the default
value for this macro was 250 ms (¼ second). Starting with Dynamic C 9.01, stack improvements allowed
the default value to be reduced to 10 ms. In either case, beware of reducing this value, since modern hosts
try to ack only every second segment. If our RTO is too small, we will unnecessarily retransmit if we don't
get the ack for the first of the two segments (especially on a fast LAN, where the RTT measurement will
want to make us set a small time-out).

TCP_LAZYUPD
Set a delay time for "lazy update" (ms). This is used to slightly delay window updates and empty
acknowledgments to the peer, in the hope of being able to tag extra data along with otherwise empty
segments. This improves performance by allowing better interleaving of application processing with TCP
activity, and sending fewer empty segments. This delay interval is also used when we need to retransmit
owing to a temporary shortage of Ethernet transmit buffers. Defaults to 5 ms.

DNS_RETRY_TIMEOUT
2000 by default. Specifies the number of milliseconds to wait before retrying a DNS request. If a request
to a nameserver times out, then the next nameserver is tried. If that times out, then the next one is tried, in
order, until it wraps around to the first nameserver again (or runs out of retries).

DNS_NUMBER_RETRIES
2 by default. Specifies the number of times a request will be retried after an error or a timeout. The first
attempt does not constitute a retry. A retry only occurs when a request has timed out, or when a
nameserver returns an unintelligible response. That is, if a host name is looked up and the nameserver
reports that it does not exist and then the DNS resolver tries the same host name with or without the default
domain, that does not constitute a retry.

DNS_MIN_KEEP_COMPLETED
10000 by default. Specifies the number of milliseconds a completed request is guaranteed to be valid for
resolve_name_check(). After this time, the entry in the internal table corresponding to this request
can be reused for a subsequent request.

2.6.8 Program Debugging

TCP_STATS
Enable TCP socket statistics collection. This causes some additional fields to be defined in the TCP socket
structure, which are updated with various counters. This is mainly for internal debugging.

DCRTCP_DEBUG
If defined, allow Dynamic C debugging in all TCP/IP libraries. This allows you to trace into library
functions in case you are finding difficulty in solving a TCP/IP problem. Remember to remove this
definition when compiling for a production environment.
34 rabbit.com TCP/IP Initialization

http://www.rabbit.com

DCRTCP_VERBOSE
If defined, enable debugging messages to be printed by the library to the Dynamic C stdout window. This
can be very informative when you are trying to see how the TCP/IP libraries work. Unfortunately, the
string messages take up a lot of root code space, so you may need to increase the DATAORG value in the
BIOS. Otherwise, you can be more selective about which messages are printed by defining *_VERBOSE
macros for individual libraries (DCRTCP_VERBOSE merely turns on all the individual library verbose
definitions). See dcrtcp.lib source for a listing of the available debug and verbose macros.

Note that the number of messages printed depends on the value of a global variable, debug_on. If this
variable is 0, only a few messages are printed. If set to higher numbers (up to 5), then successively more
detailed messages are printed. You can set this variable directly at the start of your main() function, or
preferably use

ifconfig(IF_ANY, IFS_DEBUG, 5, IFS_END);

2.6.9 Miscellaneous Macros

TCP_FASTSOCKETS
Define to ‘1’ if sockets connected to “reserved” ports can be closed without the usual 2MSL delay. The
default is set to ‘1’, define to ‘0’ to override this.

NET_ADD_ENTROPY
Define this macro to allow network packet arrival times (from any interface) to be a source of random
number seeds. See RAND.LIB for further information.

NET_COARSELOCK
This macro is only used when µC/OS-II is active. It affects the definition of 2 other macros:
LOCK_SOCK(s) and UNLOCK_SOCK(s).

If NET_COARSELOCK is not defined, the lock/unlock macros are individual socket locks for use on
socket transmit/receive buffers and the socket structure itself. If it is defined, the lock/unlock macros are
global locks.

TCP_NO_CLOSE_ON_LAST_READ
If defined, then support half-close; i.e., sock_close() only closes the transmit side of the socket, but
allows indefinite receives until the peer closes. This prevents the normal close timeout from being set.
Also, when reading, if the socket is half-closed by the peer, then the socket will be automatically closed
from this side if this define is not set.

 2.6.9.1 TOS and TTL
TOS and TTL are fields in the IP header. TOS, short for “Type of Service,” uses 4 bits to specify different
types of service. For normal service all 4 bits are zero. Different applications will want different types of
service. For example, SNMP might set the maximize reliability bit, whereas FTP would want maximize
throughput.

• IPTOS_DEFAULT is normal service.
• IPTOS_CHEAP minimizes monetary cost.
• IPTOS_RELIABLE maximizes reliability.
• IPTOS_CAPACIOUS maximizes throughput
TCP/IP Manual, Vol 1 rabbit.com 35

http://www.rabbit.com

• IPTOS_FAST minimizes delay.
• IPTOS_SECURE maximizes security.

Note that you may not OR these values together. You must pick one only!

TTL (Time to Live) specifies how many routers a packet may visit before it is discarded, or how many
seconds it can remain in the network, whichever comes first.

TCP_TTL
Default TTL of TCP segments. This value is from Internet STD0002. Defaults to 64.

TCP_TOS
Default type of service for TCP. Defaults to IPTOS_DEFAULT.

UDP_TTL
Default TTL of UDP datagrams. This value is from Internet STD0002. Defaults to 64.

UDP_TOS
Default type of service for UDP. Defaults to IPTOS_DEFAULT.

ICMP_TOS
Default type of service for ICMP. Defaults to IPTOS_DEFAULT.

2.6.10 Wi-Fi Configuration Macros
To configure a Rabbit device for a Wi-Fi network connection, you will need to define a number of macros.
As shown in “Wi-Fi Compile Time Configuration” on page 17, these can be defined in either the C
program or the Defines window.

An important point to remember is that the configuration of TCP/IP applies equally well to Wi-Fi devices
as it does to Ethernet devices.

TCPCONFIG
This macro works the same for a Wi-Fi interface as it does for an Ethernet interface. Use the value 1 for a
static TCP/IP network configuration, or 5 for a DHCP (dynamic) configuration.

IFC_WIFI_SSID (default "rabbitTest")
This is the SSID (Service Set Identifier) or name of the wireless network that you want your Rabbit device
to connect to. All other devices on your wireless network (including your access point or wireless router)
must have this same name.

(The macro _WIFI_SSID was deprecated in Dynamic C 10.40.)

IFC_WIFI_ROAM_ENABLE (default 1)
This turns roaming on or off.

IFC_WIFI_ROAM_BEACON_MISS (default 20)
This sets the number of beacons that are missed continuously in order for scanning for a better access point
and subsequent association to take place.
36 rabbit.com TCP/IP Initialization

http://www.rabbit.com

IFC_WIFI_MODE (default IFPARAM_WIFI_INFRASTRUCTURE)
Specifies the network architecture mode for your wireless network. This macro has two possible values.
IFPARAM_WIFI_INFR means that the device will attach to an infrastructure network. An infrastructure
network includes at least one access point that coordinates communication on the wireless network.
IFPARAM_WIFI_ADHOC means that the device will use an ad-hoc mode network. An ad-hoc network
does not have an access point; all devices on the wireless network simply communicate directly with each
other.

(The macro _WIFI_MODE was deprecated in Dynamic C 10.40.)

IFC_WIFI_CHANNEL
Sets the channel (1-14) to use for an ad-hoc network.

(The macro _WIFI_OWNCHANNEL was deprecated in Dynamic C 10.40.)

IFC_WIFI_REGION (default IFPARAM_WIFI_REGION_AMERICAS)
This macro sets the channel range and maximum power limit for the region selected. Different regions
have different regulations on Wi-Fi communication. This macro can have the value:

• IFPARAM_WIFI_REGION_AMERICAS - Americas, including the US (ch. 1-11)
• IFPARAM_WIFI_REGION_AUSTRALIA - Australia (ch. 1-11)
• IFPARAM_WIFI_REGION_CANADA - Canada (ch. 1-11)
• IFPARAM_WIFI_REGION_CHINA - China (ch. 1-11)
• IFPARAM_WIFI_REGION_EMEA - Europe, Middle East, Africa (ch. 1-13)
• IFPARAM_WIFI_REGION_FRANCE - France (ch. 10-13)
• IFPARAM_WIFI_REGION_ISRAEL - Israel (ch. 3-11)
• IFPARAM_WIFI_REGION_JAPAN - Japan (ch. 1-13)
• IFPARAM_WIFI_REGION_MEXICO_INDOORS - Mexico indoors (ch. 1-11)
• IFPARAM_WIFI_REGION_MEXICO_OUTDOORS - Mexico outdoors (ch. 9-11)
(The macro _WIFI_REGION_REQ was deprecated in Dynamic C 10.40.)

IFC_WIFI_ENCRYPTION (default IFPARAM_WIFI_ENCR_NONE)
This parameter controls the type of encryption used. Select one of the following:

• IFPARAM_WIFI_ENCR_ANY - Use any type of encryption.
• IFPARAM_WIFI_ENCR_NONE - No encryption used.
• IFPARAM_WIFI_ENCR_WEP - Use WEP encryption.
• IFPARAM_WIFI_ENCR_TKIP - Use WPA encryption; the macro WIFI_USE_WPA must be defined

to use this parameter.
• IFPARAM_WIFI_ENCR_CCMP - Use WPA2 encryption; both WIFI_USE_WPA and

WIFI_AES_ENABLED must be defined to use this parameter.
(The macro _WIFI_WEP_FLAG was deprecated in Dynamic C 10.40.)

IFC_WIFI_WEP_KEYNUM (default 0)
Select the WEP key to use when using WEP encryption. This macro can have the value 0, 1, 2, or 3,
which corresponds to the WEP key macros (IFC_WIFI_WEP_KEY#_*) described next.

(The macro _WIFI_USEKEY was deprecated in Dynamic C 10.40.)

IFC_WIFI_WEP_KEY0_BIN
TCP/IP Manual, Vol 1 rabbit.com 37

http://www.rabbit.com

IFC_WIFI_WEP_KEY1_BIN
IFC_WIFI_WEP_KEY2_BIN
IFC_WIFI_WEP_KEY3_BIN
Specifies the possible WEP keys to use for WEP encryption. They default to undefined.

These keys can be either 40-bit or 104-bit (i.e., 5 bytes or 13 bytes) and must be a comma-separated list of
byte values. The IFC_WIFI_WEP_KEY#_BIN macro that is used depends on the value of
IFC_WIFI_WEP_KEYNUM.

(The _WIFI_KEY# macros were deprecated in Dynamic C 10.40.)

IFC_WIFI_WEP_KEY0_HEXSTR
IFC_WIFI_WEP_KEY1_HEXSTR
IFC_WIFI_WEP_KEY2_HEXSTR
IFC_WIFI_WEP_KEY3_HEXSTR
Specifies the possible WEP keys to use for WEP encryption. They default to undefined.

These keys can be either 40-bit or 104-bit (i.e., a string of either 10 or 26 hex characters). Note that you do
not necessarily need to define all four WEP keys. You can typically just define one key, make sure it
matches the key used on all other devices, and set IFC_WIFI_WEP_KEYNUM to point to the correct key.

If both IFC_WIFI_WEP_KEY#_HEXSTR and IFC_WIFI_WEP_KEY#_BIN are defined for a
particular key, the HEX version will be used.

IFC_WIFI_WPA_PSK_PASSPHRASE
TKIP encryption requires a passphrase or a key. This macro allows you to define a passphrase with an
ASCII string. The Wi-Fi driver will expand the passphrase into a key using a standard algorithm. This
process takes up to 20 seconds. The same passphrase must be configured on all devices on the same Wi-Fi
network.

(The macro _WIFI_PSK_PASSPHRASE was deprecated in Dynamic C 10.40.)

IFC_WIFI_WPA_PSK_HEXSTR
Instead of a passphrase, you can specify a key directly for TKIP encryption The key must be given as a
series of hex digits within an ASCII string. The key must be 256 bits, or 64 hex digits. Specifying the key
directly means that a passphrase does not need to be expanded, thus speeding startup time.

IMPORTANT: When statically configuring a Rabbit Wi-Fi device, specify either the pre-shared
key with IFC_WIFI_WPA_PSK_HEXSTR or the passphrase with
IFC_WIFI_WPA_PSK_PASSPHRASE, but NOT BOTH! If you do specify both, then
IFC_WIFI_WPA_PSK_HEXSTR will take precedence; that is, if you have a correct passphrase
but an incorrect pre-shared key, then the incorrect pre-shared key will be used.

(The macro _WIFI_PSK_HEX was deprecated in Dynamic C 10.40.)

IFC_WIFI_WPA_PROTOCOL
Set to bitwise OR of the following:

• IFPARAM_WIFI_WPA_PROTOCOL_WPA2
• IFPARAM_WIFI_WPA_PROTOCOL_WPA
38 rabbit.com TCP/IP Initialization

http://www.rabbit.com

to support WPA2 (RSN (Robust Security Network) with CCMP) or WPA (the original TKIP-based WiFi
Protected Access).

IFC_WIFI_CLIENT_CERT_XIM
Set to two parameters: first parameter is public certificate of this (client) machine for EAP/TLS. Second
parameter is for the corresponding private key. These are generally #ximported files, which are the .der or
.pem certificate/private key files. Currently, the private key file must not itself be encrypted. This is only
used for EAP-TLS.

Note: if certificates have been generated by the Rabbit Certificate Utility, then you should #ximport the
<basename>s.pem and <basename>key.pem files, where <basename> is the file name you selected for the
client certificate. For example, if the file name was “client” then

#ximport "certs/clients.pem" my_client_cert
#ximport "certs/clientkey.pem" my_client_key
#define IFC_WIFI_CLIENT_CERT_XIM my_client_cert, my_client_key

IFC_WIFI_CA_CERT_XIM root_ca_cert
Set to the #ximported file containing the trusted certificate authority for validating the Authentication
Server's public certificate. This may be a .pem or .der format file.

This is used for EAP-TLS, and should also be used for PEAP since PEAP uses TLS “under the covers.” In
either case, it is important to be able to verify the authenticity of the Authentication Server itself. This is
done by having the trusted CA certificate available.

Note: if you generated your own Certificate Authority (CA) using the Rabbit Certificate Utility, then you
should #ximport the <basename>.der or <basename>.pem file for the CA. For example, if the file name
was “my_ca” then:

#ximport "private/my_ca.der" root_ca_cert
#define IFC_WIFI_CA_CERT_XIM root_ca_cert

IFC_WIFI_IDENTITY
Define an identity for PEAP. Using this macro sets both the inner and outer identity to the same value.

#define IFC_WIFI_IDENTITY "MyClientIdent"

If your application requires a different outer “plaintext” identity, then your application will need to use the
ifconfig() function directly.

This macro is also required for EAP-TLS. The userID may be set to a dummy value, depending on the
requirements of the Authentication Server.

IFC_WIFI_PASSWORD
Define a password for PEAP. This is not used for EAP-TLS.

#define IFC_WIFI_PASSWORD "my_passw0rd"

IFC_WIFI_AUTHENTICATION (default IFPARAM_WIFI_AUTH_ANY)
Specifies the authentication mode to use for this Wi-Fi network. It accepts a combination (with multiple
values ORed together) of the following values:

• IFPARAM_WIFI_AUTH_ANY - Use any method.
TCP/IP Manual, Vol 1 rabbit.com 39

http://www.rabbit.com

• IFPARAM_WIFI_AUTH_OPEN - Use open authentication.
• IFPARAM_WIFI_AUTH_SHAREDKEY - Use WEP shared-key authentication.
• IFPARAM_WIFI_AUTH_WPA_PSK - Use WPA pre-shared key (TKIP, CCMP); the macro

WIFI_USE_WPA must be defined to use this parameter. This implies the IEEE 802.11i “Personal”
operating mode.

• IFPARAM_WIFI_AUTH_WPA_8021X - Use IEEE 802.1X/EAP authentication. This implies the
IEEE 802.11i Enterprise operating mode. For more information on Wi-Fi Enterprise, refer to:
An Introduction to Wi-Fi, available online and with the Dynamic C distribution.

(The macro _WIFI_AUTH_MODE was deprecated in Dynamic C 10.40.)

IFC_WIFI_FRAG_THRESHOLD (default 0)
Set the fragmentation threshold. Frames (or packets) that are larger than this threshold are split into
multiple fragments. This can be useful on busy or noisy networks. The range is 256-2346, or 0 which
means no fragmentation.

(The macro _WIFI_FRAG_THRESH was deprecated in Dynamic C 10.40.)

IFC_WIFI_RTS_THRESHOLD (default 0)
Set the RTS threshold, the frame size at which the RTS/CTS mechanism is used. This is sometimes useful
on busy or noisy networks. Its range is 0-2347, where 0 is the default (i.e., no RTS/CTS).

(The macro _WIFI_RTS_THRESH was deprecated in Dynamic C 10.40.)

SSL_USE_AES
This is required for EAP/TLS, since it uses SSL internally.

WIFI_USE_WPA
Define this macro to use the WPA functionality in the Wi-Fi driver. This is necessary to enable TKIP
encryption. Because the WPA code has a significant size, it is not compiled by default.

WPA_USE_EAP
Set to a bitwise OR combination of the following:

• WPA_USE_EAP_TLS
• WPA_USE_EAP_PEAP

which specifies the Wi-Fi Enterprise authentication method to use, currently either EAP-TLS or PEAP.
Use of this macro will bring in a lot of library code to support Enterprise level authentication and key
management. This will require configuration of the access point as well as a separate machine to be used
as an Authentication Server (e.g., a RADIUS server).
40 rabbit.com TCP/IP Initialization

http://www.rabbit.com
http://www.rabbit.com/documentation/docs/manuals/WiFi/Introduction/WiFiIntro.pdf

3. TCP and UDP Socket Interface

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are both transport layer proto-
cols. TCP is used when a reliable, stream-oriented, transport is required for data flowing between two
hosts on a network. UDP is a record-oriented protocol which is used when lower overhead is more impor-
tant than reliability. The acronym UDP is sometimes expanded as “unreliable datagram protocol”
although, in practice, UDP is quite reliable especially over a local Ethernet LAN segment.

The Dynamic C TCP/IP libraries implement TCP and UDP over IP (Internet Protocol). IP is a network
layer protocol, that in turn uses lower levels known as “link layer” protocols, such as Ethernet and PPP
(Point-to-Point Protocol). The link-layer protocols depend on a physical layer, such as 10BaseT for Ether-
net, or asynchronous RS232 for PPP over serial.

In the other direction, various protocols use TCP. This includes the familiar protocols HTTP, SMTP (mail)
and FTP. Other protocols use UDP: DNS and SNMP to name a couple. TCP handles a lot of messy details
which are necessary to ensure reliable data flow in spite of possible deficiencies in the network, such as
lost or re-ordered packets. For example, TCP will automatically retransmit data that was not acknowl-
edged by the peer within a reasonable time. TCP also paces data transmission so that it does not overflow
the peer’s receive buffers (which are always finite) and does not overload intermediate nodes (routers) in
the network. UDP leaves all of these details to the application, however UDP has some benefits that TCP
cannot provide: one benefit is that UDP can “broadcast” to more than one peer, and another is that UDP
preserves the concept of “record boundaries” which can be useful for some applications.

TCP is a connection-oriented protocol. Two peers establish a TCP connection, which persists for the
exclusive use of the two parties until it is mutually closed (in the usual case). UDP is connectionless. There
is no special start-up or tear-down required for UDP communications. You can send a UDP packet at any
time to any destination. Of course, the destination may not be ready to receive UDP packets, so the appli-
cation has to handle this possibility. (In spite of being “connectionless,” we still sometimes refer to UDP
“connections” or “sessions” with the understanding that the connection is a figment of your application’s
imagination.)

This chapter describes how to implement your own application level protocols on top of TCP or UDP. The
Dynamic C TCP/IP libraries can also be examined for further hints as to how to code your application. For
example, HTTP.LIB contains the source for an HTTP web server.
TCP/IP Manual, Vol 1 rabbit.com 41

http://www.rabbit.com

3.1 What is a Socket?
Both TCP and UDP make extensive use of the term “socket.” A TCP socket represents the connection
state between the local host and the remote peer. When talking about TCP connections that traverse the
Internet, a socket is globally unique because it is described by 4 numbers: the local and remote IP
addresses (32 bits each), and the local and remote port numbers (16 bits each).

Connections that do not traverse the Internet (e.g., between two hosts on an isolated LAN) are still unique
within the attached network.

UDP sockets do not have the global uniqueness property, since they are not connection-oriented. For UDP,
a socket really refers to just the local side.

For practical purposes, a socket is a structure in RAM that contains all the necessary state information.
TCP sockets are considerably larger than UDP sockets since there is more connection state information to
maintain. TCP sockets also require both a receive and a transmit buffer, whereas UDP sockets require only
a receive buffer.

With Dynamic C version 6.57, each socket must have an associated tcp_Socket structure of 145 bytes
or a udp_Socket structure of 62 bytes. The I/O buffers are in extended memory. For Dynamic C 7.30
these sizes are 136 bytes and 44 bytes, respectively.

For earlier versions of Dynamic C (than 6.57), each socket must have a tcp_Socket data structure that
holds the socket state and I/O buffers. These structures are, by default, around 4200 bytes each. The major-
ity of this space is used by the input and output buffers.

3.1.1 Port Numbers
Both TCP and UDP sockets make use of port numbers. Port numbers are a convenient method of allowing
several simultaneous connections to exist between the same two hosts. Port numbers are also used to pro-
vide “well-known” starting points for common protocols. For example, TCP port number 23 is used for
standard telnet connections. In general, port numbers below 1024 are used for standard services. Numbers
between 1024 and 65535 are used for connections of a temporary nature. Often, the originator of a connec-
tion will select one of the temporary port numbers for its end of the connection, with the well-known num-
ber for the other end (which is often some sort of “server”).

TCP and UDP port numbers are not related and operate in an independent “space.” However, the well-
known port numbers for TCP and UDP services often match if the same sort of protocol can be made to
run over TCP or UDP.

When you open a socket using the TCP/IP libraries, you can specify a particular port number to use, or you
can allow the library to pick a temporary port number for an “ephemeral” connection.
42 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.2 Allocating TCP and UDP Sockets
In all versions of Dynamic C, TCP and UDP socket structures must be allocated in static data storage. This
is simply accomplished by declaring a static variable of type tcp_Socket or udp_Socket:

static tcp_Socket my_sock;
static udp_Socket my_udp_sock_array[20];

3.2.1 Allocating Socket Buffers
Starting with Dynamic C version 7.05, there are two macros that define the number of sockets available.
These macros do not determine how many sockets you can allocate, but they do limit how many sockets
you can successfully use. Each socket requires some resources which are not automatically available just
because you declare a tcp_Socket structure. The additional resources are receive/transmit buffers (which
are allocated in extended memory), and also socket semaphores if you are using µC-OS/II. The relevant
macros are:

MAX_TCP_SOCKET_BUFFERS
Determines the maximum number of TCP sockets with preallocated buffers. The default is 4. A
buffer is tied to a socket with the first call to tcp_open() or tcp_listen(). If you use
tcp_extopen() or tcp_extlisten() then these buffer resources are not used up, but
only if you allocate your own buffers using xalloc().

MAX_UDP_SOCKET_BUFFERS
Determines the maximum number of UDP sockets with preallocated buffers. The default is 0.
A buffer is tied to a socket with the first call to udp_open(). If you use udp_extopen()
then these buffer resources are not used up, but only if you allocate your own buffers using
xalloc().

Note that DNS does not need a UDP socket buffer since it manages its own buffer. Prior to version 7.30,
DHCP and TFTP.LIB each need one UDP socket buffer. Starting with version 7.30, DHCP manages its
own socket buffers.

Prior to Dynamic C version 7.05, MAX_SOCKETS defined the number of sockets that could be allocated,
not including the socket for DNS lookups. If you use libraries such as HTTP.LIB or FTP_SERVER.LIB,
you must provide enough sockets in MAX_SOCKETS for them also.

In Dynamic C 7.05 (and later), if MAX_SOCKETS is defined in an application program,
MAX_TCP_SOCKET_BUFFERS will be assigned the value of MAX_SOCKETS.

If you are using µC-OS/II then there is a further macro which must be set to the correct value:
MAX_SOCKET_LOCKS. This must count every socket (TCP plus UDP), including those used internally
by the libraries. If you cannot calculate this exactly, then it is best to err on the side of caution by overesti-
mating. The actual socket semaphore structure is not all that big (less than 70 bytes).

The default value for MAX_SOCKET_LOCKS is the sum of MAX_TCP_SOCKET_BUFFERS and
MAX_UDP_SOCKET_BUFFERS (plus 1 if DNS is being used).
TCP/IP Manual, Vol 1 rabbit.com 43

http://www.rabbit.com

3.2.2 Socket Buffer Sizes
Starting with Dynamic C version 7.05, TCP and UDP I/O buffers are sized separately using:

TCP_BUF_SIZE
Determines the TCP buffer size. Defaults to 4096 bytes.

UDP_BUF_SIZE
Determines the UDP buffer size. Defaults to 4096 bytes.

Compatibility is maintained with earlier versions of Dynamic C. If SOCK_BUF_SIZE is defined,
TCP_BUF_SIZE and UDP_BUF_SIZE will be assigned the value of SOCK_BUF_SIZE. If
SOCK_BUF_SIZE is not defined, but tcp_MaxBufSize is, then TCP_BUF_SIZE and
UDP_BUF_SIZE will be assigned the value of tcp_MaxBufSize * 2.

 3.2.2.1 User-Supplied Buffers
Starting with Dynamic C version 7.05, a user can associate his own buffer with a TCP or UDP socket. The
memory for the buffer must be allocated by the user. This can be done with xalloc(), which returns a
pointer to the buffer. This buffer will be tied to a socket by a call to an extended open function:
tcp_extlisten(), tcp_extopen() or udp_extopen(). Each function requires a long pointer
to the buffer and its length be passed as parameters.

3.3 Opening TCP Sockets
There are two ways to open a TCP socket, passive and active. Passive open means that the socket is made
available for connections originated from another host. This type of open is commonly used for Internet
servers that listen on a well-known port, like 80 for HTTP (Hypertext Transfer Protocol) servers. Active
open is used when the controller board is establishing a connection with another host which is (hopefully)
listening on the specified port. This is typically used when the controller board is to be a “client” for some
other server.

The distinction between passive and active open is lost as soon as the connection is fully established.
When the connection is established, both hosts operate on a peer-to-peer basis. The distinction between
who is “client” and who is “server” is entirely up to the application. TCP itself does not make a distinction.

3.3.1 Passive Open
To passively open a socket, call tcp_listen() or tcp_extlisten(); then wait for someone to
contact your device. You supply the listen function with a pointer to a tcp_Socket data structure, the
local port number others will be contacting on your device, and possibly the IP address and port number
that will be acceptable for the peer. If you want to be able to accept connections from any IP address or any
port number, set one or both to zero.

To handle multiple simultaneous connections, each new connection will require its own tcp_Socket
and a separate call to one of the listen functions, but using the same local port number (lport value). The
listen function will immediately return, and you must poll for the incoming connection. You can manually
poll the socket using sock_established(). The proper procedure for fielding incoming connections
is described below.
44 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.3.2 Active Open
When your Web browser retrieves a page, it actively opens one or more connections to the server’s pas-
sively opened sockets. To actively open a connection, call tcp_open() or tcp_extopen(), which
use parameters that are similar to the ones used in the listen functions. Supply exact parameters for remip
and port, which are the IP address and port number you want to connect to; the lport parameter can be
zero, causing an unused local port between 1024 and 65535 to be selected.

If the open function returns zero, no connection was made. This could be due to routing difficulties, such
as an inability to resolve the remote computer’s hardware address with ARP. Even if non-zero is returned,
the connection will not be immediately established. You will need to check the socket status as described
in the next section.

3.3.3 Waiting for Connection Establishment
When you open a TCP socket either passively or actively, you must wait for a complete TCP connection to
be established. This is technically known as the “3-way handshake.” As the name implies, at least 3 pack-
ets must be exchanged between the peers. Only after completion of this process, which takes at least one
round-trip time, does the connection become fully established such that application data transfer can pro-
ceed.

Unfortunately, the 3-way handshake may not always succeed: the network may get disconnected; the peer
may cancel the connection; or the peer might even crash. The handshake may also complete, but the peer
could immediately close or cancel the connection. These possibilities need to be correctly handled in a
robust application. The consequences of not doing this right include locked-up sockets (i.e., inability to
accept further connections) or protocol failures.

The following code outlines the correct way to accept connections, and to recover in case of errors.

Notice the tcp_tick(&my_socket) call inside the while loop. This is necessary in order to test
whether the handshake was aborted by the peer, or timed out. At the end of the loop,
sock_established() tests whether the handshake did indeed complete. If so, then the socket is
ready for data flow. Otherwise, the socket should be re-opened. The same basic procedure applies for pas-
sively opened sockets (i.e., tcp_listen()).

if (!tcp_open(&my_socket, ...))
printf(“Failed to open\n”);

else while(!sock_established(&my_socket)) {
if (!tcp_tick(&my_socket)) {

printf(“Failed to establish\n”);
break;

}
}
if (sock_established(&my_socket)) {

printf(“Established OK!\n”);

// do whatever needs to be done...
}

TCP/IP Manual, Vol 1 rabbit.com 45

http://www.rabbit.com

3.3.4 Specifying a Listen Queue
A tcp_Socket structure can handle only a single connection at any one time. However, a passively
opened socket may be required to handle many incoming connection requests without undue delay. To
help smoothly process successive connection requests with a single listening socket, you can specify that
certain TCP port numbers have an associated “pending connection” queue. If there is no queue, then
incoming requests will be cancelled if the socket is in use. If there is a queue, then the new connections
will be queued until the current active connection is terminated.

To accept new connection requests when the passively opened socket is currently connected, use the func-
tion tcp_reserveport(). It takes one parameter, the port number where you want to accept connec-
tions. When a connection to that port number is requested, the 3-way handshaking is done even if there is
not yet a socket available. When replying to the connection request, the window parameter in the TCP
header is set to zero, meaning, “I can take no bytes of data at this time.” The other side of the connection
will wait until the value in the window parameter indicates that data can be sent. Using the companion
function, tcp_clearreserve(port number), causes TCP/IP to treat a connection request to the
port in the conventional way. The macro USE_RESERVEDPORTS is defined by default. It allows the use
of these two functions.

When using tcp_reserveport(), the 2MSL (maximum segment lifetime) waiting period for closing
a socket is avoided.

3.4 TCP Socket Functions
There are many functions that can be applied to an open TCP socket. They fall into three main categories:
Control, Status, and I/O.

3.4.1 Control Functions for TCP Sockets
These functions change the status of the socket or its I/O buffer.

The open and listen functions have been explained in previous sections.

Call sock_close() to end a connection. This call may not immediately close the connection because it
may take some time to send the request to end the connection and receive the acknowledgements. If you
want to be sure that the connection is completely closed before continuing, call tcp_tick() with the
socket structure’s address. When tcp_tick() returns zero, then the socket is completely closed. Please
note that if there is data left to be read on the socket, the socket will not completely close.

Call sock_abort() to cancel an open connection. This function will cause a TCP reset to be sent to the
other end, and all future packets received on this connection will be ignored.

For performance reasons, data may not be immediately sent from a socket to its destination. If your appli-
cation requires the data to be sent immediately, you can call sock_flush(). This function will try
sending any pending data immediately. If you know ahead of time that data needs to be sent immediately,

• sock_abort

• sock_close

• sock_flush

• sock_flushnext

• tcp_extlisten

• tcp_extopen

• tcp_listen

• tcp_open
46 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

call sock_flushnext() on the socket. This function will cause the next set of data written to the
socket to be sent immediately, and is more efficient than sock_flush().

3.4.2 Status Functions for TCP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

tcp_tick() is the daemon that drives the TCP/IP stack, but it also returns status information. When
you supply tcp_tick() with a pointer to a tcp_Socket (a structure that identifies a particular
socket), it will first process packets and then check the indicated socket for an established connection.
tcp_tick() returns zero when the socket is completely closed. You can use this return value after call-
ing sock_close() to determine if the socket is completely closed.

The status functions can be used to avoid blocking when using sock_write() and some of the other
I/O functions. As illustrated in the following code, you can make sure that there is enough room in the buf-
fer before adding data with a blocking function.

The following block of code ensures that there is a string terminated with a new line in the buffer, or that
the buffer is full before calling sock_gets():

• sock_alive

• sock_bytesready

• sock_dataready

• sock_established

• sock_iface

• sock_rbleft

• sock_rbsize

• sock_rbused

• sock_tbleft

• sock_tbsize

• sock_tbused

• tcp_tick

sock_close(&my_socket);

while(tcp_tick(&my_socket)) {

 // you can do other things here while waiting for the socket to be completely closed
}

if(sock_tbleft(&my_socket,size)) {
sock_write(&my_socket,buffer,size);

}

sock_mode(&my_socket,TCP_MODE_ASCII);

if(sock_bytesready(&my_socket) != -1) {
sock_gets(buffer,MAX_BUFFER);

}

TCP/IP Manual, Vol 1 rabbit.com 47

http://www.rabbit.com

3.4.3 I/O Functions for TCP Sockets
These functions handle all I/O for a TCP socket.

There are two modes of reading and writing to TCP sockets: ASCII and binary. By default, a socket is
opened in binary mode, but you can change the mode with a call to sock_mode().

When a socket is in ASCII mode, it is assumed that the data is an ASCII stream with record boundaries on
the newline characters for some of the functions. This behavior means sock_bytesready() will
return 0 only when a complete newline-terminated string is in the buffer or the buffer is full. The
sock_puts() function will automatically place a newline character at the end of a string, and the
sock_gets() function will strip the newline character.

Do not use sock_gets()in binary mode.

• sock_aread

• sock_awrite

• sock_axread

• sock_axwrite

• sock_fastread

• sock_fastwrite

• sock_getc

• sock_gets

• sock_preread

• sock_putc

• sock_puts

• sock_read

• sock_write

• sock_xfastread

• sock_xfastwrite
48 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.5 UDP Socket Overview
The UDP protocol is useful when sending messages where either a lost message does not cause a system
failure or is handled by the application. Since UDP is a simple protocol and you have control over the
retransmissions, you can decide if you can trade low latency for high reliability.

Broadcast Packets
UDP can send broadcast packets (i.e., to send a packet to a number of computers on the same network).
This is accomplished by setting the remote IP address to -1, in either a call to udp_open() or a call to
udp_sendto(). When used properly, broadcasts can reduce overall network traffic because information
does not have to be duplicated when there are multiple destinations.

Checksums
There is an optional checksum field inside the UDP header. This field verifies the header and the data. This
feature can be disabled on a reliable network where the application has the ability to detect transmission
errors. Disabling the UDP checksum can increase the performance of UDP packets moving through the
TCP/IP stack. This feature can be modified by:

sock_mode(s, UDP_MODE_CHK); // enable checksums
sock_mode(s, UDP_MODE_NOCHK); // disable checksums

The first parameter is a pointer to the socket’s data structure, either tcp_Socket or udp_Socket.

In Dynamic C version 7.20, some convenient macros offer a safer, faster alternative to using
sock_mode(). They are udp_set_chk(s) and udp_set_nochk(s).

Improved Interface
With Dynamic C version 7.05 there is a redesigned UDP API. The new interface is incompatible with the
previous one. “UDP Socket Functions (7.05 and later)” on page 50 covers the new interface and “UDP
Socket Functions (pre 7.05)” on page 51 covers the previous one. See “Porting Programs from the older
UDP API to the new UDP API” on page 52 for information on porting an older program to the new UDP
interface.
TCP/IP Manual, Vol 1 rabbit.com 49

http://www.rabbit.com

3.6 UDP Socket Functions (7.05 and later)
Starting with Dynamic C 7.05, the UDP implementation is a true record service. It receives distinct data-
grams and passes them as such to the user program. The socket I/O functions available for TCP sockets
will no longer work for UDP sockets.

3.6.1 Control Functions for UDP Sockets
These functions change the status of the socket or its I/O buffer.

• udp_close

• udp_extopen

• udp_open

3.6.2 Status Function for UDP Sockets
These functions return useful information about the status of either a socket or its I/O buffers.

• sock_bytesready

• sock_dataready

• sock_rbleft

• sock_rbsize

• sock_rbused

• udp_peek

For a UDP socket, sock_bytesready() returns the number of bytes in the next datagram in the
socket buffer, or -1 if no datagrams are waiting. Note that a return of 0 is valid, since a datagram can have
0 bytes of data.

3.6.3 I/O Functions for UDP Sockets
These functions handle datagram-at-a-time I/O:

• udp_recv

• udp_recvfrom

• udp_send

• udp_sendto

The write function, udp_sendto(), allows the remote IP address and port number to be specified. The
read function, udp_recvfrom(), identifies the IP address and port number of the host that sent the
datagram. There is no longer a UDP read function that blocks until data is ready.
50 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.7 UDP Socket Functions (pre 7.05)
This interface is basically the TCP socket interface with some additional functions for simulating a record
service. Some of the TCP socket functions work differently for UDP because of its connectionless state.
The descriptions for the applicable functions detail these differences.

3.7.1 I/O Functions for UDP Sockets
Prior to Dynamic C 7.05, the functions that handle UDP socket I/O are mostly the same functions that han-
dle TCP socket I/O.

Notice that there are three additional I/O functions that are only available for use with UDP sockets:
sock_recv(), sock_recv_from() and sock_recv_init(). The status and control functions
that are available for TCP sockets also work for UDP sockets, with the exception of the open functions,
tcp_listen() and tcp_open().

3.7.2 Opening and Closing a UDP Socket
udp_open() takes a remote IP address and a remote port number. If they are set to a specific value, all
incoming and outgoing packets are filtered on that value (i.e., you talk only to the one remote address).

If the remote IP address is set to -1, the UDP socket receives packets from any valid remote address, and
outgoing packets are broadcast. If the remote IP address is set to 0, no outgoing packets may be sent until a
packet has been received. This first packet completes the socket, filling in the remote IP address and port
number with the return address of the incoming packet. Multiple sockets can be opened on the same local
port, with the remote address set to 0, to accept multiple incoming connections from separate remote hosts.
When you are done communicating on a socket that was started with a 0 IP address, you can close it with
sock_close() and reopen to make it ready for another source.

3.7.3 Writing to a UDP Socket
Prior to Dynamic C 7.05, the normal socket functions used for writing to a TCP socket will work for a
UDP socket, but since UDP is a significantly different service, the result could be different. Each atomic
write—sock_putc(), sock_puts(), sock_write(), or sock_fastwrite()—places its data
into a single UDP packet. Since UDP does not guarantee delivery or ordering of packets, the data received
may be different either in order or content than the data sent. Packets may also be duplicated if they cross
any gateways. A duplicate packet may be received well after the original.

• sock_fastread

• sock_fastwrite

• sock_getc

• sock_gets

• sock_preread

• sock_putc

• sock_puts

• sock_read

• sock_recv

• sock_recv_from

• sock_recv_init

• sock_write

• udp_close

• udp_open
TCP/IP Manual, Vol 1 rabbit.com 51

http://www.rabbit.com

3.7.4 Reading From a UDP Socket
There are two ways to read UDP packets prior to Dynamic C 7.05. The first method uses the same read
functions that are used for TCP: sock_getc(), sock_gets(), sock_read(), and
sock_fastread(). These functions will read the data as it came into the socket, which is not necessar-
ily the data that was written to the socket.

The second mode of operation for reading uses the sock_recv_init(), sock_recv(), and
sock_recv_from() functions. The sock_recv_init() function installs a large buffer area that
gets divided into smaller buffers. Whenever a datagram arrives, it is stuffed into one of these new buffers.
The sock_recv() and sock_recv_from() functions scan these buffers. After calling
sock_recv_init on the socket, you should not use sock_getc(), sock_read(), or
sock_fastread().

The sock_recv() function scans the buffers for any datagrams received by that socket. If there is a
datagram, the length is returned and the user buffer is filled, otherwise sock_recv() returns zero.

The sock_recv_from() function works like sock_recv(), but it allows you to record the IP
address where the datagram originated. If you want to reply, you can open a new UDP socket with the IP
address modified by sock_recv_from().

3.7.5 Porting Programs from the older UDP API to the new UDP API
To update applications written with the older-style UDP API, use the mapping information in the follow-
ing table.

UDP API prior to Dynamic C 7.05 UDP API starting with Dynamic C 7.05

MAX_SOCKETS
MAX_UDP_SOCKET_BUFFERS and
MAX_TCP_SOCKET_BUFFERS

SOCK_BUF_SIZE UDP_BUF_SIZE and TCP_BUF_SIZE

udp_open() udp_open()

sock_write(), sock_fastwrite() udp_send() or udp_sendto()

sock_read()(blocking function)
udp_recv() or udp_recvfrom()
(nonblocking functions)

sock_fastread() udp_recv() or udp_recvfrom()

sock_recv_init()
udp_extopen() (to specify your own
buffer)

sock_recv() udp_recv()

sock_recv_from() udp_recvfrom()

sock_close() sock_close() or udp_close()

sock_bytesready() sock_bytesready()

sock_dataready() sock_dataready()
52 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.8 Skeleton Program
The following program is a general outline for a Dynamic C TCP/IP program. The first couple of defines
set up the default IP configuration information. The “memmap” line causes the program to compile as
much code as it can in the extended code window. The “use” line causes the compiler to compile in the
Dynamic C TCP/IP code using the configuration data provided above it.

Program Name: Samples\tcpip\icmp\pingme.c

To run this program, start Dynamic C and open the Samples\TCPIP\ICMP\PINGME.C file. If you
are using a Dynamic C version prior to 7.30, edit the MY_IP_ADDRESS, MY_NETMASK, and
MY_GATEWAY macros to reflect the appropriate values for your device. Otherwise, edit your
tcpconfig.lib (or custom_config.lib) file with appropriate network addresses for your device
and define TCPCONFIG to access the desired configuration information.

Run the program and try to run ping 10.10.6.101 from a command line on a computer on the same
physical network, replacing 10.10.6.101 with your value for MY_IP_ADDRESS.

3.8.1 TCP/IP Stack Initialization
The main() function first initializes the TCP/IP stack with a call to sock_init(). This call initializes
internal data structures and enables the Ethernet chip, which will take a couple of seconds with the
RealTek chip. At this point, the TCP/IP stack is ready to handle incoming packets.

/*
 * Starting with Dynamic C 7.30, the network addresses are initialized by defining the
 * following macro to identify the desired configuration in the file tcp_config.lib.
 */

#define TCPCONFIG 1 // static configuration of single Ethernet interface.

/*
 * Prior to Dynamic C 7.30, you must change the following values to whatever
 * your local IP address, netmask, and gateway are. Contact your network
 * administrator for these numbers.
 */
// #define MY_IP_ADDRESS "10.10.6.101"
// #define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.19"

#memmap xmem
#use dcrtcp.lib

main()
{

sock_init();

for (;;) {
tcp_tick(NULL);

}
}

TCP/IP Manual, Vol 1 rabbit.com 53

http://www.rabbit.com

3.8.2 Packet Processing
Incoming packets are processed whenever tcp_tick() is called. The user-callable functions that call
tcp_tick() are: tcp_open, udp_open, sock_read, sock_write, sock_close, and
sock_abort. Some of the higher-level protocols, e.g., HTTP.LIB will call tcp_tick() automati-
cally.

 Call tcp_tick()periodically in your program to ensure that the TCP/IP stack has had a chance to pro-
cess packets. A rule of thumb is to call tcp_tick() around 10 times per second, although slower or
faster call rates should also work. The Ethernet interface chip has a large buffer memory, and TCP/IP is
adaptive to the data rates that both ends of the connection can handle; thus the system will generally keep
working over a wide variety of tick rates.

3.9 TCP/IP Daemon: tcp_tick()
tcp_tick() is a fundamental function for the TCP/IP library. It has two uses: it drives the “back-
ground” processing necessary to maintain up-to-date information; and it may also be used to test TCP
socket state. The latter use is described in the next section.

Note that tcp_tick() does more than just TCP processing: it is also necessary for UDP and other inter-
nal protocols such as ARP and ICMP. It also (as of Dynamic C 7.30) controls interface status.

The computing time consumed by each call to tcp_tick() varies. Rough numbers are less than a milli-
second if there is nothing to do, tens of milliseconds for typical packet processing, and hundreds of milli-
seconds under exceptional circumstances. In general, the more active sockets that are in use
simultaneously, the longer it will take for tcp_tick() to complete, however there is not much increase
for reasonable numbers of sockets.

It is recommended that you call tcp_tick() at the head of the main application processing loop. If you
have any other busy-wait loops in your application, you should arrange for tcp_tick() to be called in
each such loop. TCP/IP library functions that are documented as “blocking” will always include calls to
tcp_tick(), so you do not have to worry about it. Library functions which are documented as “non-
blocking” (e.g., sock_fastread()) do not in general call tcp_tick(), so your application will
need to do it.

Some of the provided application protocols (such as HTTP and FTP) have their own “tick” functions (e.g.,
http_handler() and ftp_tick()). When you call such a function, there is no need to call
tcp_tick() since the other tick function will always do this for you.

3.9.1 tcp_tick() for Robust Applications
It goes without saying that your application should be designed to be robust. You should be aware that an
open TCP socket may become disconnected at any time. The disconnection can arise because of a time-out
(caused by network problems), or because the peer application sent a RST (reset) flag to abort the connec-
tion, the interface went down, or even because another part of your application called sock_abort().
Your application should check for this condition, preferably in the main socket processing loop, by calling
tcp_tick() with the socket address. Since tcp_tick() needs to be called regularly, this does not
add much overhead if you have a single socket. For applications which manage multiple sockets, you can
use the sock_alive() function (new for Dynamic C 7.30). If tcp_tick() or sock_alive()
returns zero for a socket, then the socket may be re-opened after your application recovers.
54 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

Regular checking of socket status is also convenient in that it can simplify the rest of your application. In
effect, checking socket status in your main application loop concentrates socket error handling at a single
point in the code. There is less need to perform error handling after other calls to TCP/IP functions. For
example, the sock_fastread() function normally returns a non-negative value, but it can return -1 if
there is a problem with the socket. An application function which calls sock_fastread() needs to
check for this code, however it can choose to merely return to the caller (the main loop) if this code is
detected, rather than handling the error at the point where it was first detected. This works because if
sock_fastread() returns -1, tcp_tick() will return zero for that socket.

3.9.2 Global Timer Variables
The TCP/IP stack depends on the values for MS_TIMER, and SEC_TIMER. Problems may be encoun-
tered if the application program changes these values during execution.

3.10 State-Based Program Design
An efficient design strategy is to create a state machine within a function and pass the socket’s data struc-
ture as a function parameter. This method allows you to handle multiple sockets without the services of a
multitasking kernel. This is the way the HTTP.LIB functions are organized. Many of the common Inter-
net protocols fit well into this state machine model.

The general states are:

• Waiting to be initialized.
• Waiting for a connection.
• Connected states that perform the real work.
• Waiting for the socket to be closed.

An example of state-based programming is SAMPLES\TCPIP\STATE.C. This program is a basic Web
server that should work with most browsers. It allows a single connection at a time, but can be extended to
allow multiple connections.

In general, when defining the set of states for a socket connection, you will need to define a state for each
point where the application needs to wait for some external event. At a minimum, this will include states
when waiting for:

• session establishment

• new received data

• space in the transmit buffer for write data

• session termination

For non-trivial application protocols, the states in-between session establishment and session termination
may need to be embellished into a set of sub-states which reflect the stage of processing of input or output.
Sometimes, input and output states may need to overlap. If they do not, then you typically have a step-by-
step protocol. Otherwise, you have an application that uses receive and transmit independently. Step-by-
step protocols are easier to implement, since there is no need to be able to overlap two (or more) sets of
state.
TCP/IP Manual, Vol 1 rabbit.com 55

http://www.rabbit.com

For read states, which are waiting for some data to come in from the peer, you will typically call one of the
non-blocking socket read functions to see if there is any data available. If you are expecting a fixed length
of data (e.g., a C structure encoded in the TCP data stream), then it is most convenient to use the
sock_aread() function which was introduced in Dynamic C 7.30. Otherwise, if you cannot tell how
much data will be required to go to the next state, then you will have to call sock_preread() to check
the current data, without prematurely extracting it from the socket receive buffer.

For write states, you can just keep calling sock_fastwrite() until all the data for this state is written.
If you have a fixed amount of data, sock_awrite() is more convenient since you do not have to keep
track of partially written data.

3.10.1 Blocking vs. Non-Blocking
There is a choice between blocking and non-blocking functions when doing socket I/O.

 3.10.1.1 Non-Blocking Functions
The sock_fastread() and sock_preread() functions read all available data in the buffers, and
return immediately. Similarly, the sock_fastwrite() function fills the buffers and returns the num-
ber of characters that were written. When using these functions, you must ensure that all of the data were
written completely.

 3.10.1.2 Blocking Functions
The other functions (sock_getc(), sock_gets(), sock_putc(), sock_puts(),
sock_read() and sock_write()) do not return until they have completed or there is an error. If it is
important to avoid blocking, you can check the conditions of an operation to ensure that it will not block.

In this case sock_gets() will not block because it will be called only when there is a complete new
line terminated record to read.

offset=0;

while(offset<len) {
bytes_written = sock_fastwrite(&s, buf+offset, len-offset);
if(bytes_written < 0) {

// error handling
}
offset += bytes_written;

}

sock_mode(socket,TCP_MODE_ASCII);
// ...
if (sock_bytesready(&my_socket) != -1){

sock_gets(buffer, MAX_BUFFER);
}

56 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.11 TCP and UDP Data Handlers

Starting with Dynamic C 7.301, your application can specify data handler callback functions for TCP and
UDP sockets. The data handler callback may be specified as a parameter to the tcp_open(),
tcp_extopen(), tcp_listen(), tcp_extlisten(), udp_open(), udp_extopen() and
udp_waitopen() functions.

The UDP data handler callback is always available. The TCP handler is only available if you #define
TCP_DATAHANDLER before including dcrtcp.lib. Both types of callback use the same function pro-
totype, however, the parameters are interpreted slightly differently.

The prototype for a suitable callback function is:

int my_data_handler(
int event,
void * socket,
ll_Gather * g,
void * info
);

“event” indicates the type of callback. It is one of a predefined set of constants specified in the table below.

“socket” is a pointer to the socket structure (TCP or UDP). “g” contains a number of fields which may be
accessed to find additional information, including the data stream or packet. “info” points to a structure
which depends on the type of socket: _udp_datagram_info if the socket is UDP, or NULL for TCP
sockets.

1. Data handler pointers were provided to the tcp_open etc. functions prior to this release, however the interface was not
documented, and does not work in the way described herein.
TCP/IP Manual, Vol 1 rabbit.com 57

http://www.rabbit.com

The ll_Gather structure is defined and documented in NET.LIB. It is printed here for reference:

typedef struct {
byte iface; // Destination interface
byte spare;
word len1; // Length of root data section
void * data1; // Root data (e.g., link, IP, transport headers)
word len2; // Length of first xmem section
long data2; // First xmem data extent (physical address)
word len3; // Length of second xmem section
long data3; // Second xmem data extent (physical address)

} ll_Gather;

The _udp_datagram_info is defined in UDP.LIB. It is documented with the udp_peek() func-
tion.

For UDP sockets, the callback is invoked for each packet received by the socket. For TCP sockets, the
callback is invoked whenever new data is available that could otherwise be returned by
sock_fastread().

The advantages of using the data handler callback are:

• Less application overhead calling sock_dataready() or sock_fastread()

• Data copy to root buffers can be avoided

• Ability to transform data in the socket buffer (e.g., decryption)

• For UDP, may avoid the need to copy incoming data into the socket receive buffer

• Minimizes latency between tcp_tick() receive processing, and application processing

• Allows event-driven programming style

The following table lists the parameters to the callback for each event type.

Table 3.1 Parameters for Each Type of Callback

event s g info notes

UDP_DH_INDATA udp_Socket pkt data UDI Normal received data

UDP_DH_ICMPMSG udp_Socket pkt data UDI
ICMP message received for this

socket

TCP_DH_LISTEN tcp_Socket NULL NULL
Passive open call (e.g.,
tcp_extlisten())

TCP_DH_OPEN tcp_Socket NULL NULL
Active open call (e.g.,
tcp_extopen())

TCP_DH_ESTAB tcp_Socket NULL NULL
3-way handshake complete, ready

for data transfer

TCP_DH_INDATA tcp_Socket seg data NULL Incoming stream data

TCP_DH_OUTBUF tcp_Socket NULL NULL
New space in transmit buffer (data

acknowledged by peer)
58 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.11.1 UDP Data Handler
For UDP sockets, the callback is invoked as soon as a new datagram is demultiplexed to the socket. For
event type UDP_DH_INDATA,the ll_Gather struct is set up with the interface number and pointers to
the data in the receive buffers (not the UDP socket receive buffer, since the data has not yet been copied
there). The info structure is a pointer to _udp_datagram_info (UDI), which is set up with the
usual udp_peek information such as the host IP address and port number, and whether the datagram is in
fact an ICMP error message. If an ICMP message is received, the event type is set to UDP_DH_ICMPMSG.
The callback should return 0 to continue with normal processing (i.e., add the datagram to the socket buf-
fer), or 1 to indicate that the datagram has been processed and should not be added to the socket buffer

The data pointers in the ll_Gather structure are the physical address (and length) of one or two
datagram fragments in the main network receive buffers. (Currently, only one address will be provided,
since datagrams are reassembled before passing to the UDP handler). There is also a root data pointer in
the ll_Gather structure, that is set to point to the IP and UDP headers of the datagram.

3.11.2 TCP Data Handler
The TCP data handler is only available if you #define TCP_DATAHANDLER. It is invoked with a large
number of different event types. Most of the events are for significant changes in the TCP socket state.
You can use these events to perform customized handling of socket open and close. Apart from
TCP_DH_INDATA and TCP_DH_ICMPMSG, the ll_Gather structure is not passed (g is set to NULL).
Currently, the info parameter is always null for TCP sockets.

If your callback function does not understand a particular event type, or is not interested, it should return
zero. This will allow for upward compatibility if new callback events are introduced.

For convenience in coding the callback, you can use the user_data field in the tcp_Socket structure to hold
some application-specific data which is to be associated with a socket instance. There is no API for access-
ing this field; just use s->user_data. This field is only available if you have defined
TCP_DATAHANDLER, and only for TCP sockets (not UDP).

TCP_DH_INCLOSE tcp_Socket NULL NULL
No further incoming data (peer sent
FIN)

TCP_DH_OUTCLOSE tcp_Socket NULL NULL
No further outgoing data (application
closed socket, sent FIN)

TCP_DH_CLOSED tcp_Socket NULL NULL Socket completely closed

TCP_DH_ABORT tcp_Socket NULL NULL Application called sock_abort

TCP_DH_RESET tcp_Socket NULL NULL Peer sent RST flag

TCP_DH_ICMPMSG tcp_Socket pkt data NULL
ICMP message associated with this
socket

Other ? ? ?
Reserved for future use. Callback
should always return zero.

Table 3.1 Parameters for Each Type of Callback

event s g info notes
TCP/IP Manual, Vol 1 rabbit.com 59

http://www.rabbit.com

There is no guarantee on the order in which events will arrive for a socket. The exceptions are that
TCP_DH_LISTEN or TCP_DH_OPEN will always be first, and TCP_DH_CLOSED will always be last.
There is no guarantee that the callback will be invoked with TCP_DH_INCLOSE or
TCP_DH_OUTCLOSE before TCP_DH_CLOSED.

TCP_DH_OUTBUF indicates that some previously transmitted data has been acknowleged by the peer.
Generally, this means that there is more space available in the transmit buffer. The callback can write data
to the socket using sock_fastwrite() and other non-blocking write functions. The available trans-
mit buffer space may be determined by sock_tbleft() function. When TCP_DH_ESTAB is invoked,
the transmit buffer is normally completely empty, so the callback can write a reasonable amount of data to
start with.

The TCP_DH_INDATA event callback is invoked after the incoming data has been stored in the socket
buffer. It is only invoked if there is new data available from the peer. The ll_Gather structure is set up
with one or two physical address pointers to the new data, and the logical pointer points to the IP header of
the most recent datagram which provided the new data. Usually there will be only one physical address,
however there may be two if the socket buffer happens to wrap around at that point. The callback will need
to be coded to handle this possibility if it is accessing the data directly out of the xmem buffer.

The TCP_DH_INDATA callback is allowed to modify the new data in-place, if desired. This may be used
to provide “transparent decryption” or similar services.

There are some restrictions which apply to callback code. Primarily, it is not allowed to invoke
tcp_tick() directly or indirectly, since that will cause recursion into tcp_tick(). It will be possible
to call sock_fastwrite() or udp_sendto() e.g., to generate some sort of response. Since
sock_fastwrite() needs to buffer data, there is a possibility that there may be insufficient room in
the transmit buffer for the generated response. Thus the callback will need to be carefully coded to avoid
getting into a buffer deadlock situation if it generates responses. It will also need to co-ordinate with the
rest of the application, since the application will otherwise have to contend with the possibility of arbitrary
data being inserted in the write stream by the callback.

NOTE: The application must call sock_fastread() or other read functions to actually
remove data from the TCP socket receive buffer unless the data handler callback is coded to
call sock_fastread() itself. If neither the data handler nor the rest of the application actu-
ally read the received data, then the TCP connection will become “blocked” in the read direc-
tion.
60 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

3.12 Multitasking and TCP/IP
Dynamic C’s TCP/IP implementation is compatible with both µC/OS-II and with the language constructs
that implement cooperative multitasking: costatements and cofunctions. Note that TCP/IP is not compati-
ble with the slice statement.

3.12.1 µC/OS-II
The TCP/IP stack may be used with the µC/OS-II real-time kernel. The line:

#use ucos2.lib

 must appear before the line

#use dcrtcp.lib

in the application program. Also be sure to call OSInit() before calling sock_init().

Dynamic C version 7.05 and later requires the macro MAX_SOCKET_LOCKS for µC/OS-II support. If it is
not defined, it will default to MAX_TCP_SOCKET_BUFFERS + TOTAL_UDP_SOCKET_BUFFERS
(which is MAX_UDP_SOCKET_BUFFERS + 1 if there are DNS lookups).

Buffers xalloc’d for socket I/O should be accounted for in MAX_SOCKET_LOCKS.

 3.12.1.1 Interrupt-Driven or DMA-Driven Network Interface(s)

The information in this section applies to TCP/IP applications, which use interrupt-driven or DMA-driven
network interfaces. Interrupt-driven and DMA-driven network interface(s) include Rabbit’s built-in
Ethernet as well as WiFi and serial PPP interfaces. Note that DMA-driven network interfaces are also
interrupt-driven because they generate an interrupt when block transfers are completed.
It is strongly recommended that all μC/OS2-II tasks, including idle and statistics tasks, should use 4K
stacks. This recommendation is made because a network related interrupt may occur when any task is
running and the network interface ISRs can be stack intensive. Note that in addition to saving the CPU’s
entire registers state, the potentially long running network ISRs may re-enable interrupts to reduce the
latency of other same-interrupt-priority-level ISRs.
Although not recommended, a severely memory constrained TCP/IP application that is otherwise not stack
intensive may be able to function adequately with 2K stacks for all tasks. Such memory constrained
TCP/IP applications’ use of 2K stacks should be thoroughly tested with heavy emphasis on stress loading
of the network interface(s).
Recall that the number of 2K and 4K stacks is defined by STACK_CNT_2K and STACK_CNT_4K,
respectively. The size of the idle and the statistics tasks stacks are defined by
OS_TASK_IDLE_STK_SIZE and OS_TASK_STAT_STK_SIZE, respectively. Of all the STACK_CNT_*
macros, only the STACK_CNT_4K (or for memory-constrained applications, the STACK_CNT_2K)
macro should be defined to have a non-zero value.

 3.12.1.2 Polled-Mode Only Network Interface(s)
The information in this section applies to TCP/IP applications, which use only polled-mode network inter-
faces. Polled-mode network interface(s) include external Ethernet devices such as the ASIX chip, which is
used in the RCM4200 and RCM4300 board families.

Use of the TCP/IP stack requires a μC/OS2-II task to have a minimum stack size of 2K. A particularly
stack intensive μC/OS-II application may require TCP/IP-using tasks to have a minimum stack size of 4K.
TCP/IP Manual, Vol 1 rabbit.com 61

http://www.rabbit.com

Recall that the number of 2K and 4K stacks is defined by STACK_CNT_2K and STACK_CNT_4K,
respectively.

3.12.2 Cooperative Multitasking
The following program demonstrates the use of multiple TCP sockets with costatements.

Program Name: costate_tcp.c

// #define MY_IP_ADDRESS "10.10.6.11"
// #define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.1"
#define TCPCONFIG 1
#define PORT1 8888
#define PORT2 8889
#define SOCK_BUF_SIZE 2048
#define MAX_SOCKETS 2
#memmap xmem
#use "dcrtcp.lib"
tcp_Socket Socket_1;
tcp_Socket Socket_2;
#define MAX_BUFSIZE 512
char buf1[MAX_BUFSIZE], buf2[MAX_BUFSIZE];

// The function that actually does the TCP work
cofunc int basic_tcp[2](tcp_Socket *s, int port, char *buf){

auto int length, space_avaliable;
tcp_listen(s, port, 0, 0, NULL, 0);
// wait for a connection
while((-1 == sock_bytesready(s)) && (0 == sock_established(s)))

// give other tasks time to do things while we are waiting
yield;

while(sock_established(s)) {
space_avaliable = sock_tbleft(s);
// limit transfer size to MAX_BUFSIZE, leave room for '\0'
if(space_avaliable > (MAX_BUFSIZE-1))

space_avaliable = (MAX_BUFSIZE-1);
// get some data
length = sock_fastread(s, buf, space_avaliable);
if(length > 0) { // did we receive any data?

buf[length] = '\0'; // print it to the Stdio window
printf("%s",buf);
// send it back out to the user's telnet session
// sock_fastwrite will work-we verified the space beforehand
sock_fastwrite(s, buf, length);

}
yield; // give other tasks time to run

}
sock_close(s);
return 1;

}

62 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

Program Name: costate_tcp.c (continued)

main() {
sock_init();
while (1) {

costate {
// Go do the TCP/IP part, on the first socket
wfd basic_tcp[0](&Socket_1, PORT1, buf1);

}
costate {

// Go do the TCP/IP part, on the second socket
wfd basic_tcp[1](&Socket_2, PORT2, buf2);

}
costate {

// drive the tcp stack
tcp_tick(NULL);

}
costate {

// Can insert application code here!
waitfor(DelayMs(100));

}
}

}

TCP/IP Manual, Vol 1 rabbit.com 63

http://www.rabbit.com

64 rabbit.com TCP and UDP Socket Interface

http://www.rabbit.com

4. Optimizing TCP/IP Performance

Once you have a TCP/IP application coded and working, it is worthwhile to tune the application to get the
best possible performance. There is usually a trade-off between performance and memory usage. If more
memory is available, you can specify larger data buffers to improve overall performance. Conversely, if
performance is already adequate, you can reduce buffer sizes to make room for more application function-
ality.

Some performance improvements can be made without large increases in memory usage. To make these
improvements, you will need to understand how TCP, IP and the properties of the network work and inter-
act. This is a complex subject, which is well covered in various texts. This section concentrates on the
characteristics of the Dynamic C TCP/IP stack. Most of the discussion is centered around Dynamic C ver-
sion 7.30, but many of the principles apply to earlier releases. The discussion also concentrates on TCP.
UDP is also mentioned where appropriate, however UDP performance is mainly determined by the appli-
cation so there are not as many tuning controls available in the Dynamic C libraries for tuning UDP perfor-
mance.

The type of application has a large bearing on the performance tuning options which will be most appro-
priate. Here are some basic types of application which have different performance requirements:

• Bulk Loader: an application which periodically uploads large amounts of data (such as a log) to a server

• Casual Server: one which just needs to process occasional commands which come in from the network.
This includes “interactive” servers such as telnet.

• Master Controller: one which sends short data bursts to a number of “slave” controllers, which must be
sent and processed in a timely manner

• Web Server: a web-enabled appliance

• Protocol Translator: accepts stream of data, perhaps serial, and converts to a TCP data stream, or vice-
versa

All these application types have different requirements for the basic properties of a communications chan-
nel, namely bandwidth, throughput and latency.

The bandwidth of a channel is the maximum sustained rate of end-to-end data transmission, in bytes per
second. A full-duplex channel has the same bandwidth in each direction, independent of data traffic flow-
ing in the opposite direction. In a half-duplex channel, the total bandwidth is divided between both direc-
tions. Ethernet is usually half-duplex in that an Ethernet chip cannot send and receive at the same time,
however some types of Ethernet can run full-duplex.

The throughput of a channel is related to bandwidth, but is used to express the amount of useful data that
can be transmitted through the channel in a fixed (specified) amount of time, using a practical transport
protocol (i.e., a protocol which adds some overhead to each message). Throughput generally improves as
the bandwidth rises, and as the time interval increases. Throughput is always less than bandwidth for finite
TCP/IP Manual, Vol 1 rabbit.com 65

http://www.rabbit.com

time intervals or practical protocols, since there is usually some overhead to establish the connection in the
first place, as well as overhead during the transmission itself.

The latency of a channel can have several definitions. For our purposes, it is the minimum possible time
delay between sending of a message, its receipt by the other end, and the reception of a reply; in other
words, the round-trip-time (RTT). On electrical and radio channels, the latency is related to the physical
length of the link and the speed of light. On channels which are more complex than a simple electrical con-
nection, there may also be intermediate nodes which buffer the data being transmitted: this can add delays
which are much larger than the speed of light between the end nodes.

Note that round-trip times are important for most communications protocols: not only do we want to send
data, but we also want to receive an acknowledgment that the other end received the data.

Some examples of real networks may be helpful here. Note that the values given for RTT are approxima-
tions since they depend on the length of the connection, the sizes of packets sent, or intermediate nodes.
Throughput is specified for an infinite time interval, assuming TCP over IP with 600 bytes of data per
packet, and no data in the acknowledgment The RTT figure assumes the same size packets.

The above table does not count any delay in the host which generates the response, nor any delay passing
through the Internet. These represent minimum possible RTTs.

4.1 DBP and Sizing of TCP Buffers
An important quantity derived from the above is known as Delay-Bandwidth Product (DBP). As the name
suggests, this is the product of bandwidth and RTT, and has units of bytes. It represents the maximum
amount of data (and overhead) that can exist “in the network” at any point in time. This number has impli-
cations for sizing of TCP socket buffers. The DBP for local 10Base-T Ethernet is about 750 bytes. For
local Ethernet connections, the DBP is about the same as the packet size of the transmitted data. For wider
area networks that have significant propagation delays, the DBP can increase substantially. For example,
satellite links can add several 100’s of milliseconds to the RTT. If the bandwidth is high enough, the DBP
can exceed the packet size by orders of magnitude. This means that several packets may be in transit at the
same time.

The DBP is important for TCP connections. This is because TCP is able to transmit a large number of
packets into the network without having to wait for an acknowledgement for each one. Similarly, a TCP
can receive a large number of packets without necessarily acknowledging them all. In fact, TCP only has

Table 4.1 Channel Characteristics for Selected Networks

Type Bandwidth (Byte/sec) RTT (msec)
Throughput
(Byte/sec)

Local 10Base-T
Ethernet

1.25M 0.6 1M

PPP over 8N1 serial
(57.6k)

5760 120 5000

PPPoE over 1.5Mbit
DSL

187k 4 150k
66 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

to acknowledge the most recent packet; the sender can assume that all earlier packets are implicitly
acknowledged.

How does all this apply to sizing of TCP socket buffers? It basically means that there is little point in mak-
ing the buffers (both transmit and receive) larger than the expected maximum DBP of the communications
channel. For connections which are expected to traverse the Internet, you may need quite large buffers. For
local Ethernet only, the buffers need not be larger than, say, two packets.

The maximum packet size is a compromise between performance and memory usage. The largest packet
supported by dcrtcp.lib is 1500 bytes, which is dictated by the limits of Ethernet. Dynamic C’s
default packet size is 600 bytes. Using large packet sizes improves performance for bulk data transfer, but
has little effect for interactive traffic. Performance is improved for large packet sizes mainly because there
is less CPU overhead per byte. There is a roughly fixed amount of CPU time required to process each
packet. This is obviously better utilized if there are a large number of bytes per packet.

When using Ethernet, the Rabbit processor is limited in its overall TCP/IP throughput by CPU power.

10Base-T Ethernet is capable of 1MB/sec for TCP sockets1, however the Rabbit 2000 running at 21MHz
will only be able to transmit at about 270kB/sec when sending 1500 byte packets. Receive rate is slightly
slower at about 220kB/sec. This scales approximately linearly with respect to CPU clock speed as well as
application use of the CPU. In short, current Rabbit-based boards cannot use the full bandwidth of a local
Ethernet link.

The situation changes for PPP over serial. In this case, the serial port bandwidth is less than the rate at
which packets can be generated or received. Also, PPP is typically used to access peers over the Internet,
so there may be a much larger DBP than for a pure point-to-point link. For PPP serial links, smaller packet
sizes, e.g. 256 bytes, are satisfactory for bulk data transfers without impacting interactive traffic, should
that be required. Socket buffer sizes should be determined based on the expected Internet RTTs, which
may be 1 second or more. For a 57.6kbps serial link, the DBP is 5000 bytes for 1 second RTT, thus the
socket buffers should be about this size for receive and transmit.

TCP is adaptive to changing network conditions. For example, the RTT can vary considerably at different
times of day, and communication channels can become congested. TCP is designed to cope with these con-
ditions without exacerbating any existing problems, however socket buffer and packet sizes are usually
constants for the application so they need to be selected with due consideration to the most common condi-
tions.

1. Assuming there is no other traffic on the Ethernet, and that collisions are rare. This is rarely the case, so a 50-80% uti-
lization of bandwidth is considered the maximum desirable Ethernet load.
TCP/IP Manual, Vol 1 rabbit.com 67

http://www.rabbit.com

4.2 TCP Performance Tuning
TCP is a well-designed protocol, and provides nearly optimum performance over a wide range of condi-
tions. Obtaining the best possible performance requires the application to co-operate with TCP by setting
the correct options if the defaults are not optimal, making the most efficient use of the socket API func-
tions, and providing appropriate memory and CPU resources.

The available performance-related options are:

• Whether to use the Nagle algorithm

• Settings for time-out values

• Whether to define a pending connection queue (“reserved port”)

• Setting the IP Type Of Service field

• Packet, buffer and MTU sizes

• ARP cache size (for Ethernet).

Sizing of buffers was discussed in the previous section. The following sections discuss the other perfor-
mance controls.

4.2.1 The Nagle Algorithm
The Nagle algorithm is an option for TCP sockets. It modifies the transmit processing for a socket, but has
no effect on receive processing. The TCP/IP library allows Nagle to be applied on a per-socket basis.

Most applications should leave the Nagle algorithm enabled for each TCP socket, which is the default.
This provides the best utilization of bandwidth, since it prevents many small packets from being sent
where one big packet would be preferable.

The main reason to override the default, and disable the Nagle algorithm, is for applications that require
the least possible delay between writing data to the socket, and its receipt by the peer application. This
comes at the expense of efficiency, so you should carefully consider whether the application really requires
the slight reduction in delay.

When Nagle is turned off, using the macro tcp_set_nonagle(&socket), transmit processing is
changed so that TCP tries to transmit a packet for each call of a socket write function such as
sock_fastwrite().

If Nagle is on (which is the default state or can be set using tcp_set_nagle(&socket)) a new
packet will only be sent if there is no outstanding unacknowledged data. Thus, on a slow network where
acknowledgements from the peer take a substantial amount of time to arrive, fewer packets will be sent
because there is a greater chance that there is some unacknowledged data.

The difference may be illustrated by the following example: suppose that a TCP socket connection is cur-
rently established and quiescent (i.e., there is no outstanding data to be acknowledged; everything is up-to-
date). The network round-trip-time is 550ms. The application writes ten single characters to the socket, at
100ms intervals each. With Nagle turned off, ten packets will be sent at approximately 100ms intervals.
Each packet will contain a 40-byte header (IP and TCP) with a single byte of data. A total of 410 bytes will
be sent. With Nagle on, the first character written at time zero will cause a 41-byte packet to be sent. The
acknowledgment of this first packet will not arrive for another 550ms. In the meantime, the application
writes an additional 5 characters at 100ms intervals. Since there is outstanding unacknowledged data (the
68 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

first character) these characters are not sent immediately. They are buffered, waiting for an acknowledg-
ment from the peer. When the first character’s acknowledgment comes in at 550ms, there is no outstanding
unack’ed data; the additional 5 characters have not yet been sent so they do not count as unack’ed data.
Now the TCP stack will send the 5 additional characters in a single packet at approximately t=550ms.
While that packet is in transit, 4 more characters are written by the application. Again, these characters
will be buffered since characters 2 through 6 have not been acknowledged. Only when the next acknowl-
edgment is received will these 4 characters be sent. The total number of packets sent is 3, with 1, 5 and 4
bytes of data. This translates to 130 bytes in total.

Obviously, the total number of bytes transmitted, including overhead, is far less when Nagle is used (130
compared with 410 bytes). One can also examine how this looks from the point of view of the peer.

In the non-Nagle case, each character is received 275ms after it was transmitted (we assume that the one-
way trip is half of the RTT). The last character is received at t=1175ms (with the reference t=0 taken as the
first character transmission time). The acknowledgment of the last character, which completes the transac-
tion, is received at t=1400ms.

In the Nagle case, the last character is received at t=1375 and the final acknowledgment at t=1650. In this
example, the peer received all 10 characters 200ms later when Nagle was used.

It can be seen that at a slight cost in increased delay, a great saving in total data transmission was made. If
the above example was extended to hundreds or thousands of characters, then the additional delay would
remain constant at a few hundred ms, whereas the network bandwidth would be better utilized by a factor
approaching five!

In conclusion, leave Nagle on unless you absolutely must have the lowest delay between transmission and
reception of data. If you turn Nagle off, ensure that your application is disciplined enough to write the larg-
est blocks it can. For example, if you have to send an 8-byte value (as a unit), construct the full 8 bytes as a
single block then write them all in a single sock_fastwrite() call, rather than calling
sock_fastwrite() with two 4-byte calls or, worse, 8 single byte calls.

A useful alternative to turning Nagle off is to control packetization using calls to sock_flush(),
sock_noflush() and sock_flushnext(). These functions allow the application fairly fine con-
trol over when TCP sends packets. Basically, sock_noflush() is used to set a “lock” on the socket
that prevents TCP from sending packets containing new data. After sock_noflush(), you can call
sock_fastwrite() or other write functions. The new data will not be sent until the socket is
“unlocked” with a call to sock_flush(). sock_flushnext() unlocks the socket, but TCP does
not send any data until the next write function is called.

4.2.2 Time-Out Settings
There are many time-out settings in TCP. These are necessary because the TCP socket needs to be able to
take meaningful actions when things take longer than expected. For good performance, it is also some-
times necessary for the socket to delay slightly some action that it could otherwise perform immediately.

The time-out settings currently apply to all sockets; they cannot be applied selectively because they are in
the form of macro constants.

In general, you can improve overall TCP performance by reducing some of the time-out settings, however
there is a law of diminishing returns, and you can also start to reduce overall efficiency. What may be good
settings for a local Ethernet connection may be very poor for an Internet connection. Note that if you opti-
mize time-out settings for a particular network environment, you will need to document this so that your
TCP/IP Manual, Vol 1 rabbit.com 69

http://www.rabbit.com

end-users do not inadvertently use your application in the wrong sort of environment. For this reason, it is
best to use the default settings for general-purpose applications, since the defaults work well in worst-case
settings without affecting best-case performance unduly.

TCP is internally adaptive to network bandwidth and RTT, which are the main variables. Some of the time-
out settings only apply to an initial “guess” of the network characteristics; TCP will converge to the correct
values in a short time. Specifying a good initial guess will help TCP in the initial stages of establishing a
socket connection.

 4.2.2.1 Time-Out Setting Constants
The following constants can be #defined before including dcrtcp.lib. They specify various time inter-
vals that have a bearing on connection performance.

RETRAN_STRAT_TIME
This defaults to 10 ms. It specifies the minimum time interval between testing for retransmissions of data
for a particular TCP socket. This not only provides an upper bound for packet transmission rate, but also
cuts down on CPU overhead. Since retransmissions are basically driven from tcp_tick(), the less time
used in tcp_tick() processing the more time is left for your application. Note that the actual minimum
retransmit interval is defined by TCP_MINRTO; this setting only affects the testing interval.

Retransmissions are only required when there is an unexpected surge in network congestion, which causes
packets to be delayed well beyond the average or even dropped.

It is not recommended to reduce this setting, but you could increase it to about 100ms to cut down on
tcp_tick() overhead without materially affecting most applications.

TCP_MINRTO
Prior to Dynamic C 9.01, this macro defaulted to 250 ms; the default was changed to 10 ms. This value
specifies the actual minimum time between TCP retransmissions. Reducing this will not affect perfor-
mance in a properly functioning network, and may in fact worsen efficiency. Only in a network that is
dropping a high percentage of packets will this setting have any real effect. On local Ethernet connections,
genuine packet drops will be practically non-existent. The most likely cause of delays is if a host CPU is
tied up and unable to perform network processing. On Internet connections, setting a retransmit time
shorter than the default value is just as likely to worsen the congestion which is causing packets to be
dropped in the first place.

The only case where this value might be profitably reduced is the case of a point-to-point link where there
is a lot of packet loss (maybe because the RS232 wiring is routed near an industrial welder). In this case,
any packet loss may be assumed to be because of noise or interference, not because of router congestion.
In the Internet, most packet loss is because of router congestion, in which case there is nothing to be
gained by reducing TCP_MINRTO.

Another reason for not reducing this setting is that modern TCP/IP implementations only acknowledge
every second packet received (or after a short time-out - see TCP_LAZYUPD). Normally, this will happen
within the default value time interval, so there will be no unnecessary retransmission.
70 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

TCP_TWTIMEOUT
This defaults to 2000 ms (2 seconds). This is one area where embedded system requirements conflict
somewhat with recommendations in the standards documents. The “time-wait” time-out is a waiting
period that is necessary when a socket is closed. This waiting period is supposed to be twice the maximum
lifetime of any packet in the network. The maximum packet lifetime is 255 seconds, so the time-wait time-
out should be about 8 minutes. The purpose of the waiting time is to allow both ends of the connection to
be satisfied that their respective peer has agreed to the close and acknowledged it.

This wait time only affects the closed socket i.e., the unique socket combination of IP addresses and port
numbers. It means that when a socket is closed, the same socket cannot be re-opened until at least 8 min-
utes have passed.

This is usually no problem for systems that have large memories to hold the state of recently closed sock-
ets. For an embedded system, which has a limited pool of sockets and limited memory for storing connec-
tion states, this wait time is inconvenient since the socket structure cannot be re-used until the time-wait
period has expired.

The default time-wait period is thus set to 2 seconds in the Dynamic C TCP/IP libraries. This will work
perfectly well for local Ethernet connections, where the maximum packet lifetime is of the order of milli-
seconds. For Internet connections, this may be a bit short, but will generally be satisfactory.

If in fact the time-wait period is too short, the worst that will happen is that one of the peers will be unsure
about whether the other end got the last segment of data, and confusion may happen if old packets (from
this connection) happen to arrive after the close. This latter case is unlikely to happen, but if it does then it
will eventually be resolved when the socket connection process times out.

If you want your application to be more robust, you can increase this value. 8 minutes is an extremely con-
servative value. Most implementations shorten this to 2 minutes or 30 seconds, since packets are extremely
unlikely to survive more than 15 seconds.

Note that this value is only used if you do not specify the tcp_reserveport() option for the local
port of a passively opened connection. If you specify reserveport, then the time-wait period is set to zero.

TCP_LAZYUPD
This defaults to 5 ms, and is used for several purposes. The first use is to reschedule transmission attempts
that could not be processed owing to local resource shortages. For example, if a previous packet is still
being transmitted via a slow PPP interface, the current packet may need to be delayed. Similarly, the
Ethernet hardware can be busy. In these cases, the TCP stack needs to try again a short time later.

The second use is to allow time for further information to come in from the network before transmitting
otherwise empty packets. TCP has two main reasons for transmitting packets with no data content. The
first is acknowledgement of incoming data when we have nothing to send, and the other is to update our
receive window to the peer. The receive window tells the peer how much data it can transmit which we can
store in our socket receive buffer. This window needs to be updated not only when we receive data, but
also when the application reads data out of the receive buffer.

Rather than send these empty packets as soon as possible, it is often profitable to wait a short time. In the
case of window updates, this can allow the application to write some data after the read which updated the
window. The data can be sent with the window update, which improves efficiency because one packet can
do the work of two. For receive data acknowledgements, the same trick can be applied i.e., piggy-backing
on some additional data.
TCP/IP Manual, Vol 1 rabbit.com 71

http://www.rabbit.com

These optimizations can be taken advantage of quite often with most applications, so it is worth while
specifying the lazy update time-out to be at least a few ms. Lowering the lazy update interval can slightly
improve latency and throughput on high-speed (i.e., local Ethernet) connections.

4.2.3 Reserved Ports
As mentioned in the TCP_TWTIMEOUT description, you can specify that certain TCP port numbers have
the special property of being “reserved.” If a port is reserved, it has two effects:

• A number of pending connections can be queued while a socket connection is established. The pending
connections form a FIFO queue, with the longest-outstanding pending connection becoming active
after the current connection is closed.

• The time-wait time-out is truncated when the current connection is closed.

Together, these increase the performance of passively-opened sockets, which are designed to implement
server functions such as FTP and HTTP servers. Reserving a port has no effect on actively opened sockets
(i.e., “clients”), and does not affect its performance during the life of each connection.

The functions tcp_reserveport() and tcp_clearreserve() respectively enable and disable a
TCP port number from being treated in this manner.
72 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

4.2.4 Type of Service (TOS)
Type Of Service is an IP (Internet Protocol) header field that causes routers in the Internet to handle pack-
ets according to the specified service level. TOS has not been widely deployed in the past, but recently
Internet routers have been able to take advantage of the TOS field.

TOS generally takes one (and only one) of a pre-specified number of values. The currently available val-
ues are:

• IPTOS_DEFAULT - the default, used when none of the following are obviously applicable.

• IPTOS_CHEAP - minimize monetary cost. Used for bulk transfers where speed or reliability are not of
concern, and you are paying by the packet.

• IPTOS_RELIABLE - maximize reliability.

• IPTOS_CAPACIOUS - maximize throughput.

• IPTOS_FAST - minimize delay.

• IPTOS_SECURE - maximize security.

IP does not guarantee that the TOS setting will improve the objective performance, however, it at least
guarantees that performance will not be any worse than if the default TOS was selected. In other words, it
doesn’t hurt to specify TOS, and it may even help!

TOS can be set on a packet-by-packet basis; however, the TCP stack only allows a TOS to be set for a
socket (TCP or UDP) which is used for all packets until changed. The function sock_set_tos() is
used to set the TOS field.

4.2.5 ARP Cache Considerations
ARP (Address Resolution Protocol) is only relevant for non-PPPoE Ethernet, not PPP interfaces. Although
it works in the background, mainly to translate IP addresses into Ethernet MAC addresses, there are some
considerations which apply to TCP (and UDP) performance.

There is a limited size cache of address mapping entries, known as the ARP Table. The cache is necessary
in order to avoid network traffic each time a socket connection is established. It must be sized appropri-
ately to avoid “cache misses” as much as possible.

If the controller board is to be used exclusively in “server mode,” i.e., TCP sockets opened passively, then
the cache does not have to be very big. If, on the other hand, the controller is going to actively establish
sessions with a number of hosts, then the cache should be big enough to contain an entry for each host
such that entries do not get pushed out for at least a few minutes.

The ARP Table also contains special entries for routers that are on the local Ethernet. These entries are
important, since they represent entries for all hosts that are not on the local LAN segment subnet.

The default sizing rule for the ARP Table allocates an entry for each interface (including point-to-point)
plus 5 entries for each Ethernet interface in use. The single entry for each interface is basically reserved for
routers, on the assumption that each interface will probably require a router to allow connections to hosts
which are farther afield. The additional 5 entries (for Ethernet) are for non-router hosts that the controller
board will need to talk to.
TCP/IP Manual, Vol 1 rabbit.com 73

http://www.rabbit.com

This implies that 5 connections to hosts on the Ethernet subnet can be supported simultaneously, without
any of the entries being pushed out. If the table is full, connection to a 6th host can be made, with the least-
recently-used host entry being pushed out to make room.

If your application connects with, say, ten hosts in random order, it is likely that the ARP Table will need
to be increased in size. If in doubt, increase the table size, since each entry only takes up about 32 bytes.

4.3 Writing a Fast UDP Request/Response Server
UDP is a lightweight protocol wrapper that adds port number “multiplexing” and checksums to basic IP
packets. Being lightweight, it is capable of being very fast, with low CPU overhead. UDP is often selected
for custom application protocols that do not need the reliable, stream-oriented, connections of TCP.

UDP is connectionless, however, application designers can think in terms of client-server or transaction-
based programming. A popular design for UDP servers is to have the controller board listen for incoming
datagrams. Each incoming message is processed and an immediate reply is sent. It is left up to the client to
retransmit messages if it did not receive a reply in the expected time frame. The server, however, is
extremely simple to implement, which allows it to serve more clients than a TCP-based server could man-
age.

Starting with Dynamic C 7.30, a data handler facility has been added to UDP (as well as TCP) sockets.
The data handler is especially efficient for UDP, since it allows the datagram to be processed without any
copying to the socket buffer.

The UDP data handler is a callback function whose address is supplied on the udp_extopen() call. For
simple request/response applications, the only application requirements are to define the data handler, and
call tcp_tick() repeatedly in a loop after setting up the TCP/IP stack and opening the UDP socket.

The sample program Samples\tcpip\udp\udp_echo_dh.c shows how to implement a simple
UDP echo server using the technique described in this section.

4.4 Tips and Tricks for TCP Applications
This section contains miscellaneous suggestions for getting the most out of your TCP-based applications.

Application design requirements that affect TCP performance include:

• the responsiveness and throughput requirements of the application
• how often tcp_tick() can be called
• whether socket is used in ASCII or binary mode
• whether multitasking or “big loop” programming style.

The list of application types at the beginning of this chapter is used as a basis for discussion. Your applica-
tion may neatly fit into one of these categories, or it may be a combination of several. In either case, you
should try to follow the programming guidelines unless you are fairly experienced with the Dynamic C
TCP/IP libraries.
74 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

4.4.1 Bulk Loader Applications
This type of application is idle (from the TCP/IP point of view) most of the time, but this is punctuated by
periods of intensive data transfer. Applications which exhibit this characteristic include data loggers and
file transfer agents e.g. FTP server or client. Sending email via SMTP also comes under this category.

The main application requirement is good utilization of the available bandwidth i.e., highest throughput.
This is achieved by using the largest practical buffer sizes, processing data in the largest possible chunks,
and minimizing data copying. Since the Rabbit processor is CPU-bound when dealing with high speed
transfers (over Ethernet), every time the data is “handled” it reduces the ultimate throughput.

The Nagle algorithm should be left ON. Time-outs should be set to generously high values to avoid unnec-
essary retransmissions. The TOS should be set to IPTOS_CAPACIOUS.

Bulk TCP transfers are most efficient when the packet size is the largest possible. The largest packet size is
limited to the MTU size of the network connection. You can assume that 600 bytes is a reasonable MTU
for Internet connections. You can use up to 1500 for all supported interface types (except PPPoE, which is
limited to 1492), however it is best to use 600 if Internet connections are expected. If the Internet MTU is
in fact less than the expected value, then packets may become fragmented, which lowers efficiency. You
cannot do much about this except reduce the MTU.

When the MTU is determined, the maximum TCP packet data length will usually be the MTU minus 40.
The 40 bytes are for the IP and TCP header overhead. For a 600 byte MTU, the maximum TCP data seg-
ment size will be 560. Thus, TCP performance will be best if data is handled in multiples of 560 bytes.

It is not quite this simple, however. When a TCP connection is opened, both sides can agree to use differ-
ent data segment sizes than the default. Generally, whichever side has the smallest MTU will place a limit
on the segment size. This is negotiated via the TCP MSS (Maximum Segment Size) option.

In your program, rather than hard-coding the optimum chunk size, you can define a symbol as follows:

#define TCP_CHUNK_SIZE (MAX_MTU - 40)

Where MAX_MTU is a symbol defined by the library to be the actual MTU in effect. For multiple inter-
faces, it is probably better to use the minimum value of any interface. You can find out the current MTU
for an interface using ifconfig(iface, IFG_MTU, &mtu, IFS_END) which will read the
MTU for interface “iface” into the integer variable “mtu”.

Most of the time, the TCP socket MSS will be equal to the fixed value above. In cases where it is smaller,
there will not be a noticeable decrease in efficiency.

Once you determine the appropriate chunk size, use sock_awrite() or sock_axwrite() (for
extended memory data) with the specified chunk size, except possibly for the last chunk. The function
sock_awrite() and friends are available starting with Dynamic C 7.30. They have the advantage that
the data is completely buffered, or not at all. sock_fastwrite() may buffer less than the requested
amount, which means that your application needs to keep track of the current position in the data being
sent. sock_awrite() does not do things “by halves,” so it is easier to keep track in the application.
Because it will not do small data moves, it is also slightly more efficient in terms of CPU time.
TCP/IP Manual, Vol 1 rabbit.com 75

http://www.rabbit.com

4.4.2 Casual Server Applications
A casual server is a term we use for applications that need to respond to occasional requests for informa-
tion, or commands, without large data transfers. Although the amount of data transfer is limited, the appli-
cation still needs to be as responsive as possible. Example applications of this type include machine,
building and power controllers. Interactive servers are also included, such as telnet.

The main goal here is to achieve low latency.

4.4.3 Master Controller Applications
Master controllers are responsible for coordinating access to a number of other devices (via TCP/IP or
other types of communication) or acting as an “access concentrator”. Data transfer may be low to moder-
ate. Latency should be minimized.

4.4.4 Web Server Applications
The TCP/IP libraries include web server software. HTTP.LIB takes advantage of the TCP library to get
good performance. Your application can still affect web server performance, since it may be responsible
for generating content via CGI callback functions. Web servers have much the same characteristics as
“bulk loaders,” however, they are such a common case that they deserve special treatment.

4.4.5 Protocol Translator Applications
A protocol translator basically converts between a TCP data stream and some other type of data stream, for
example asynchronous serial data. The data may flow in either or both directions.

This type of application has the most stringent requirements on both throughput and latency. This is
because the incoming stream may not be amenable to any sort of flow control: it is necessary for TCP to
keep up with a possibly high data rate. Also, the more timely the transmission of data, the more useful the
protocol translator.
76 rabbit.com Optimizing TCP/IP Performance

http://www.rabbit.com

5. Network Addressing: ARP & DNS

ARP (Address Resolution Protocol) and DNS (Domain Name System) perform translations between vari-
ous network address formats. ARP converts between IP addresses and (usually) Ethernet hardware
addresses. DNS converts between human-readable domain names such as “ftp.mydomain.org” and IP
addresses.

ARP and DNS are not closely related protocols, but they are lumped together in this chapter for conve-
nience. In the Dynamic C TCP/IP libraries, ARP.LIB handles ARP proper, as well as router (gateway)
functionality.

5.1 ARP Functions
ARP (Address Resolution Protocol) is used on non-PPPoE Ethernet interfaces. ARP is used to determine
the hardware address of network interface adapters. Most of the ARP functionality operates in the back-
ground and is handled by the TCP/IP libraries. Most applications should not need to deal with ARP, and
indeed some of the ARP functions are quite complex to use correctly.

Nevertheless, there are some useful debugging functions included in ARP.LIB.

Starting with Dynamic C 7.20, the internal ARP processing was converted to non-blocking style. This has
no direct impact on applications, except that there will be lower maximum latency in tcp_tick() calls.

The ARP functions are all named starting with _arp, arpcache, arpresolve, or router.

router_printall() is a useful function for debugging router table problems, for example in the case
where connections to hosts which are not on local subnets appear to be failing.

5.2 Configuration Macros for ARP

ARP_LONG_EXPIRY
Number of seconds that a normal entry stays current. Defaults to 1200.

ARP_SHORT_EXPIRY
Number of seconds that a volatile entry stays current. Defaults to 300.

ARP_PURGE_TIME
Number of seconds until a flushed entry is actually deleted. Defaults to 7200.
TCP/IP Manual, Vol 1 rabbit.com 77

http://www.rabbit.com

ARP_PERSISTENCE
Number of retries allowed for an active ARP resolve request to come to fruition. Default s to 4.
If no response is received after this many requests, then the host is assumed to be dead. Set to a
number between 0 and 7. This number relates to the total time spent waiting for a response as
follows:

timeout = 2(ARP_PERSISTENCE+1) - 1

For example, for 0 the time-out is 1 second. For 4 it is 31 seconds. For 7 it is 255 seconds. If
you set this to 8 or higher, then ARP will persist forever, retrying at 128 second intervals.

ARP_NO_ANNOUNCE
Configuration items not defined by default. Do not announce our hardware address at
sock_init().

This macro is undefined by default. Do not uncomment it in NET.LIB. Instead, define it in
your mainline C program before including the networking libraries.

ARP_CONFLICT_CALLBACK
Define a function to call in case of IP address conflict. This function takes a arp_Header pointer
as the first and only parameter. It should return one of

• 0: do not take any action
• 0xFFFFFFFF : abort all open sockets with NETERR_IPADDR_CONFLICT
• other: new IP address to use. Open sockets aborted with NETERR_IPADDR_CHANGE.

This macro is undefined by default. Do not uncomment it in NET.LIB. Instead, define it in
your mainline C program before including the networking libraries.

ARP_TABLE_SIZE
Define to the number of ARP table entries. The default is set to the number of interfaces, plus
5 entries for every non-PPPoE Ethernet interface. The maximum allowable value is 200.

ARP_ROUTER_TABLE_SIZE
Define the maximum number of routers. Defaults to the number of interfaces, plus an extra en-
try for each non-PPPoE Ethernet.
78 rabbit.com Network Addressing: ARP & DNS

http://www.rabbit.com

5.3 DNS Functions
Starting with Dynamic C 7.05, non-blocking DNS lookups are supported. Prior to DC 7.05, there was only
the blocking function, resolve(). Compatibility has been preserved for resolve(),
MAX_DOMAIN_LENGTH , and DISABLE_DNS.

The application program has to do two things to resolve a host name:

1. Call resolve_name_start() to start the process.

2. Call resolve_name_check() to check for a response.

Call resolve_cancel()to cancel a pending lookup.

5.4 Configuration Macros for DNS Lookups

DISABLE_DNS
If this macro is defined, DNS lookups will not be done. The DNS subsystem will not be com-
piled in, saving some code space and memory.

DNS_MAX_RESOLVES
4 by default. This is the maximum number of concurrent DNS queries. It specifies the size of
an internal table that is allocated in xmem.

DNS_MAX_NAME
64 by default. Specifies the maximum size in bytes of a host name that can be resolved. This
number includes any appended default domain and the NULL-terminator. Backwards compati-
bility exists for the MAX_DOMAIN_LENGTH macro. Its value will be overridden with the value
DNS_MAX_NAME if it is defined.

For temporary storage, a variable of this size must be placed on the stack in DNS processing.
Normally, this is not a problem. However, for µC/OS-II with a small stack and a large value for
DNS_MAX_NAME, this could be an issue.

DNS_MAX_DATAGRAM_SIZE
512 by default. Specifies the maximum length in bytes of a DNS datagram that can be sent or
received. A root data buffer of this size is allocated for DNS support.

DNS_RETRY_TIMEOUT
2000 by default. Specifies the number of milliseconds to wait before retrying a DNS request. If
a request to a nameserver times out, then the next nameserver is tried. If that times out, then the
next one is tried, in order, until it wraps around to the first nameserver again (or runs out of re-
tries).
TCP/IP Manual, Vol 1 rabbit.com 79

http://www.rabbit.com

DNS_NUMBER_RETRIES
2 by default. Specifies the number of times a request will be retried after an error or a time-out.
The first attempt does not constitute a retry. A retry only occurs when a request has timed out,
or when a nameserver returns an unintelligible response. That is, if a host name is looked up and
the nameserver reports that it does not exist and then the DNS resolver tries the same host name
with or without the default domain, that does not constitute a retry.

DNS_MIN_KEEP_COMPLETED
10000 by default. Specifies the number of milliseconds a completed request is guaranteed to be
valid for resolve_name_check(). After this time, the entry in the internal table corre-
sponding to this request can be reused for a subsequent request.

DNS_SOCK_BUF_SIZE
1024 by default. Specifies the size in bytes of an xmem buffer for the DNS socket. Note that
this means that the DNS socket does not use a buffer from the socket buffer pool.
80 rabbit.com Network Addressing: ARP & DNS

http://www.rabbit.com

6. IGMP and Multicasting

The Internet Group Management Protocol (IGMP) and multicasting are supported by the Dynamic C
TCP/IP stack starting with version 7.30.

6.1 Multicasting
Multicasting is a form of limited broadcast. UDP is used to send datagrams to all hosts that belong to what
is called a “host group.” A host group is a set of zero or more hosts identified by the same destination IP
address. The following statements apply to host groups.

• Anyone can join or leave a host group at will.

• There are no restrictions on a host’s location.

• There are no restrictions on the number of members that may belong to a host group.

• A host may belong to multiple host groups.

• Non-group members may send UDP datagrams to the host group.

Multicasting is useful when data needs to be sent to more than one other device. For instance, if one device
is responsible for acquiring data that many other devices need, then multicasting is a natural fit. Note that
using multicasting as opposed to sending the same data to individual devices uses less network bandwidth.

6.1.1 Multicast Addresses
A multicast address is a class D IP address, i.e., the high-order four bits are “1110.” Addresses range from
224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned to any group, and
224.0.0.1 is assigned to the permanent group of all IP hosts (including gateways). This is used to address
all multicast hosts on a directly connected network.

6.1.2 Host Group Membership
Any datagram sent to a multicast address is received by all hosts that have joined the multicast group asso-
ciated with that address. A host group is joined automatically when the remote IP address passed to
udp_open() is a valid multicast address. A host group may also be joined by a call to
multicast_joingroup(). Leaving a host group is done automatically when udp_close() is
called. Like joining, leaving a group may be done explicitly by an application by calling an API function,
in this case: multicast_leavegroup().
TCP/IP Manual, Vol 1 rabbit.com 81

http://www.rabbit.com

6.2 IGMP
As long as all multicast traffic is local (i.e., on the same LAN) IGMP is not needed. IGMP is used for
reporting host group memberships to any routers in the neighborhood. The library IGMP.LIB conforms
to RFC 2236 for IGMPv2 hosts.

6.3 Multicast Macros
As mentioned above, the use of IGMP is not required for multicast support on a LAN. You may select
only multicast support by defining USE_MULTICAST.

USE_MULTICAST
This macro will enable multicast support. In particular, the extra checks necessary for accepting
multicast datagrams will be enabled and joining and leaving multicast groups (and informing
the Ethernet hardware about it) will be added.

USE_IGMP
If this macro is defined, the USE_MULTICAST macro is automatically defined. This macro en-
ables sending reports on joining multicast addresses and responding to IGMP queries by multi-
cast routers. Unlike USE_MULTICAST, this macro must be defined to be 1 or 2. This indicates
which version of IGMP will be supported. Note, however, that both version 1 and 2 IGMP cli-
ents will work with both version 1 and 2 IGMP routers. Most users should just choose version 2.

IGMP_V1_ROUTER_PRESENT_TIMEOUT
Defaults to 400. When IGMPv2 is supported, a timer is set to this many seconds every time the
board sees an IGMPv1 message from an IGMP router. As long as there is time left on the timer,
the board acts as an IGMPv1 host. If the timer expires, the board returns to acting as an IGMPv2
host.

IGMP_UNSOLICITED_REPORT_INTERVAL
Defaults to 100 deciseconds (10 seconds). This value is specified in deciseconds. It determines
the maximum random interval between the initial join report for a multicast group and the sec-
ond join report.
82 rabbit.com IGMP and Multicasting

http://www.rabbit.com

7. PPP Driver

The PPP packet driver is a set of libraries in Dynamic C that allows the user to establish a PPP (Point-to-
Point Protocol) link over a full-duplex serial line between a Rabbit-based controller and another system
that supports PPP. You may also establish PPP links over Ethernet (PPPoE).

A common use of the PPP protocol is the transfer of IP packets between a remote host and an Internet Ser-
vice Provider (ISP) over a modem connection. The PPP packet driver supports the transfer of Internet Pro-
tocol (IP) data and is compatible with all TCP/IP libraries for the Rabbit.

Establishing PPP links has become easier and more flexible. You can have as many different PPP inter-
faces as you have available serial (and Ethernet) ports. You can also run PPP (over serial and/or Ethernet)
at the same time as ordinary non-PPPoE Ethernet.

7.1 PPP Libraries
The PPP driver is in three library files, though it is mainly controlled via the ifconfig() function and
friends. PPP is mainly controlled via the ifconfig() function at runtime and IFCONFIG_PPP* con-
figuration macros at compile time.

PPP.LIB
Contains routines to handle the link negotiation (LCP), authentication (PAP) and IP negotiation
(IPCP). These are the three main sub-protocols of PPP. PPP.LIB calls routines in the other two
libraries to handle the lower level (physical) layer.

PPPLINK.LIB
Contains handlers for the asynchronous serial physical layer, namely the interrupt service rou-
tine for transmitting and receiving characters over the serial link. It also handles the insertion
and detection of escape characters and CRC generation and checking.

PPPOE.LIB
Contains handlers for the PPPoE physical layer, which is mainly the access concentrator dis-
covery mechanism, and the addition of the PPPoE header to Ethernet packets. This library calls
the Ethernet driver library to handle the Ethernet physical layer.
TCP/IP Manual, Vol 1 rabbit.com 83

http://www.rabbit.com

7.2 External Modem Library
A fourth library, MODEM.LIB, contains functions for controlling an external modem through a full RS232
link. MODEM.LIB should not be required for most ISP connections, since most ISPs these days auto-
detect the use of PPP and do not require any special logon screen navigation. Basic dial-up to an ISP is
handled directly by ifconfig() settings, which do not require any special modem control providing
that your modem has a Hayes-compatible interface.

MODEM.LIB is not directly related to PPP. It allows ASCII strings to be sent to and received from the
modem. Typically, these strings are AT commands and modem responses.

If you have special requirements for establishing communications with an ISP that cannot be handled by
the default PPP library methods, you will need to explicitly include MODEM.LIB and write a program to
establish the communications link. The program will typically need to command the modem to dial out;
wait for a valid connection; send a user ID and password to the ISP and validate the response. After this
has completed successfully, PPP can be started using the ifup() function.

For a complete description of ifup() and other Dynamic C TCP/IP functions, please see the Dynamic C
TCP/IP User’s Manual, Vol. I.

NOTE: MODEM.LIB is currently limited to controlling a single modem. The modem serial port
and control lines are defined using macro constants, which should match with the definitions of
the PPP interface.

The sample program Samples\PPP\modem_test.c shows the general idea for using MODEM.LIB.

7.3 Operation Details for PPP over Serial
The first step is to configure whatever transport medium will be used for the PPP connection. For directly
connecting a serial line to the peer, the two serial data lines TX and RX may be adequate; however, the
most common situation will be some sort of modem.

7.3.1 The Modem Interface
The interface between a modem and a controller is either a true RS232 interface or a variation on RS232
that uses TTL voltage levels for all of the signals. The latter are used by board-mounted modem modules.
If an external modem is used, an RS232 transceiver chip is needed to convert RS232 voltages to logic sig-
nals and vice versa. A full RS232 connection has 3 outputs and 5 inputs from the controller’s point of
view.

In RS232 terminology, the controller is referred to as the DTE (Data Terminal Equipment). Modems and
other peripherals are referred to as DCE’s (Data Communications Equipment).

The specifics of a dial-up PPP connection are dependent on the modem hardware and the ISP. There are
some settings that require information obtainable only from the ISP, like a phone number, a username, a
password, etc.
84 rabbit.com PPP Driver

http://www.rabbit.com

The sample programs for use with a modem (\Samples\PPP\MODEM_*.c) define macros used by
modem.lib. Contact your ISP to substitute the correct string values for any of these macros needed by
your application:

#define DIALUP_NAME "username"
#define DIALUP_NUMBER "5551212"
#define DIALUP_PASSWORD "password"
#define EMAIL_FROM "rabbit@isp.com"
#define EMAIL_TO "you@wherever.com"
#define SMTP_SERVER "smtp.isp.com"

 7.3.1.1 Rabbit Pin Connections to Modem
The modem control library, MODEM.LIB, defines default connections to the Rabbit as follows:

7.3.2 Flow Control
Hardware flow control is implemented for the Rabbit PPP system. It follows the RS232 convention of
using Ready To Send (RTS) and Clear To Send (CTS) lines.

Flow control is not required for speeds up to and including 115200 bps. The internal character processing
is fast enough that the controller does not have to throttle incoming data flow. However, the modem or
peer may need to throttle transmitted data. It is recommended that the RTS (modem to controller) line be
connected for modems that cannot handle a continuous data stream at the specified rate. You can also
connect the CTS (controller to modem) line, but the controller will merely assert this line continuously. To
enable or disable hardware flow control, call ifconfig() with the IFS_PPP_FLOWCONTROL
parameter identifier. You should also specify IFS_PPP_RTSPIN and IFS_PPP_CTSPIN parameter
identifiers.

Table 7.1 Rabbit Pin Assignments for Modem Connection

RS232 Signal Rabbit Pin Direction

DTR PB6 out

RTS PB7 out

CTS PB0 in

DCD PB2 in

RI PB3 in

DSR PB4 in

TD PC2 out

RD PC3 in
TCP/IP Manual, Vol 1 rabbit.com 85

http://www.rabbit.com

7.4 Operation Details for PPPoE
PPPoE avoids most of the complexities of PPP over serial. This is because the hardware (Ethernet) is easy
to set up, and no modems are involved. Actually, you might have something called a DSL modem (or sim-
ilar), but this type of modem does not have to do “dial-up” in the usual sense.

PPPoE is selected by defining the symbol USE_PPPOE to be a non-zero value. Currently, the only value
supported is “1” with “2” reserved for future controller boards that have a second Ethernet chip. If you
define USE_PPPOE, then you should also define IFCONFIG_PPPOE0 to contain initialization options
passed to ifconfig(). When PPPoE is specified, the interface is referred to by IF_PPPOE0.
(IF_PPPOE1 is reserved for future boards.)

7.5 Link Control Protocol Options
Link Control Protocol is the first sub-protocol used on a PPP link. The following LCP options are sup-
ported by the Rabbit PPP system:

For more information on these options, refer to RFC 1661: The Point-to-Point Protocol (PPP) at,

 http://www.faqs.org/rfcs/rfc1661.html

Table 7.2 Configuration Options

LCP Configuration
Option Type Field

Meaning of Option Type

01 MRU (Maximum-Receive-Unit)

02 ACCM (Async-Control-Character-Map)

03 Auth (Authentication-Type): PAP only

05 Magic Number

07 PFC (Protocol-Field-Compression)

08 ACFC (Address-and-Control-Field-Compression)
86 rabbit.com PPP Driver

http://www.rabbit.com
http://www.faqs.org/rfcs/rfc1661.html

7.6 Configuring PPP
Since multiple interfaces are supported, your application should call ifconfig() to change PPP inter-
face parameters at run-time, or define suitable IFCONFIG_PPP* macros for boot-time configuration of
each PPP interface (both serial and PPPoE).

You select serial port hardware to use with PPP by defining USE_PPP_SERIAL before including
dcrtcp.lib. Similarly, you select PPPoE by defining USE_PPPOE before including dcrtcp.lib.

7.6.1 Serial Port Selection
PPP over asynchronous serial requires a suitable Rabbit serial port to be selected. You can use any of the
available ports, since they all support asynchronous communications.

The serial port selection is entirely dynamic; however, there is a fixed mapping between interface numbers
and serial port hardware. IF_PPP0 always represents serial port A. IF_PPP1 is always serial port B,
and so on.

The serial port hardware to use is determined by the USE_PPP_SERIAL macro, which your application
defines in order to specify PPP serial interfaces. USE_PPP_SERIAL is set to a bitwise OR combination
of numbers representing the desired serial port(s). Ports are assigned according to the following table.

If multiple PPP serial interfaces are required, use (for example):

#define USE_PPP_SERIAL 0x0C

which, as the bitwise combination of 0x04 and 0x08, specifies SERC (IF_PPP2) and SERD (IF_PPP3).

7.6.2 PPPoE Port Selection
Since all Rabbit-based controller boards currently have at most a single Ethernet driver chip, only a single
PPPoE interface is available (however, it can be shared with non-PPPoE Ethernet over the same hardware,
that is, non-PPPoE Ethernet will use interface IF_ETH0 while PPPoE will use IF_PPPOE0).

Table 7.3 Bitmap Values for USE_PPP_SERIAL

Interface Number Serial Port Bitmap Value

IF_PPP0 SERA 0x01

IF_PPP1 SERB 0x02

IF_PPP2 SERC 0x04

IF_PPP3 SERD 0x08

IF_PPP4 SERE 0x10

IF_PPP5 SERF 0x20
TCP/IP Manual, Vol 1 rabbit.com 87

http://www.rabbit.com

7.6.3 ifconfig() Options for PPP
The ifconfig() parameter identifiers described in this section pertain to any PPP interface, whether
serial or Ethernet. There are a considerable number of options pertinent to PPP over asynchronous serial.
PPPoE does not, as yet, require any special configuration options because of its relative simplicity.

The parameter identifiers listed here are passed to the ifconfig() function. They can also be used in
the appropriate IFCONFIG_PPP* macro definitions, to ensure that the interface(s) are initialized cor-
rectly at boot time. For example, a run-time change to the userid and password might be coded as follows:

ifconfig (IF_PPP2,
 IFS_PPP_REMOTEAUTH, “myUserid”, “myPassword”,
 IFS_END);

The same definition, for boot-time initialization, might be coded as

#define IFCONFIG_PPP2 \
other parameters \
IFS_PPP_REMOTEAUTH, “myUserid”, “myPassword”, \
other parameters

The general PPP properties set during initialization are:

All of these IFS_PPP_* macros (except the initialization and callback) have IFG_PPP_* versions that
allow an application to look at the current properties.

Table 7.4 Macros for PPP Initialization (Serial and Ethernet)

Macro Name Macro Description
Data Type(s) for

Macro Parms

IFS_PPP_ACCEPTIP Accept peer's idea of our local IP address. bool

IFS_PPP_REMOTEIP Try to set IP address of peer. longword

IFS_PPP_ACCEPTDNS Accept a DNS server IP address from peer. bool

IFS_PPP_REMOTEDNS
Set DNS server IP addresses for peer
(primary and secondary).

longword,
longword

IFS_PPP_AUTHCALLBACK
Called when a peer attempts to
authenticate.

int (*)()

IFS_PPP_INIT Sets up PPP with default parameters. none

IFS_PPP_REMOTEAUTH
Sets username and password to give to
peer.

char *, char *

IFS_PPP_LOCALAUTH
Required username and password for
incoming peer

char *, char *
88 rabbit.com PPP Driver

http://www.rabbit.com

7.6.4 ifconfig() Options for Serial PPP
The ifconfig() parameter identifiers described in this section pertain to serial PPP interfaces only. (If
you specify these options for PPPoE interfaces they will be quietly ignored.) They may also be specified in
the appropriate IFCONFIG_PPP* macro definitions for boot-time initialization.

All of these IFS_PPP_* macros have IFG_PPP_* versions that allow an application to look at the cur-
rent properties.

The parameter for the IFS_PPP_SENDEXPECT option is a string containing a send/expect script to run
when the PPP connection comes up. It is a series of tokens separated by spaces, alternating between a
string to transmit, and a string to expect back.

Table 7.5 Macros for PPP Initialization (for Serial)

Macro Name Macro Description
Data Type(s)

for Macro
Parms

IFS_PPP_SPEED Set serial PPP speed (bps) longword

IFS_PPP_RTSPIN Define the RTS pin. int, char *, int

IFS_PPP_CTSPINf Define the CTS pin. int, int

IFS_PPP_USEPORTD
Use parallel port D instead of parallel port C for
serial ports A and B.

bool

IFS_PPP_FLOWCONTROL Turn hardware flow control on or off bool

IFS_PPP_HANGUP
An optional string to send to the modem after
PPP shuts down.

char *

IFS_PPP_MODEMESCAPE

When enabled, sends modem escape sequences
before send/expect or hangup sequence is:
‘<delay>+++<delay>’ This is recognized by
almost all modems to force them into command
mode.

bool

IFS_PPP_SENDEXPECT
A formatted send and expect sequence for
dialing and shell login.

char *

IFS_PPP_USEMODEM Specify whether to use modem dialout string. bool
TCP/IP Manual, Vol 1 rabbit.com 89

http://www.rabbit.com

For example:

SEscript = “ATDT5551212 CONNECT ‘’ ogin: ‘Joe User’ word: secret PPP”;

The sequence is:

1. Send ATDT5551212 - dials up an ISP.

2. Wait for the word CONNECT.

3. An empty send string, ‘’ means don’t send anything and wait for the next expect string.

4. Wait for “login:” or “Login:” By leaving off the ‘L’ either one will match.

5. Send ‘Joe User’. Note that this token is contained in single quotes because it contains a space.

6. Wait for “password:” or “Password:”

7. Send the password.

8. Wait for the sequence ‘PPP’ This indicates a PPP session has started.

 7.6.4.1 Additional Rules for Send/Expect Scripts

• A carriage return character (ASCII 13) is automatically sent after each send token.

• An ampersand (&) at the start of an expect token indicates that the driver should wait indefinitely for
that token to be received. This is useful when waiting to answer a call, e.g., to set the modem to answer
and wait indefinitely for a connection “ATS0=1 &CONNECT”

• As mentioned above, an empty token ‘’ is immediately skipped. This allows for a chain of expect
tokens to be used.

• The macro PSS_MODEM_CONNECT_WAIT determines the total time for the script. If this is exceeded,
a timeout failure will occur and the interface will fail to come up. Using the ampersand modifier resets
this timeout.

Note that the IFS_PPP_USEMODEM specifies that PPP assumes that it is talking to a modem. When the
interface is being brought up, it will first run through the send/expect script. After the script completes,
PPP will assume that it can launch straight into LCP. If this is not appropriate, do not use
IFS_PPP_SENDEXPECT or IFS_PPP_USEMODEM. Instead, use the facilities of MODEM.LIB to per-
form an appropriate login to the ISP. Only when this is complete should you call ifup().

Use of MODEM.LIB entails some limitations:

• Only one PPP serial interface can use MODEM.LIB.

• You need to configure MODEM.LIB to match the serial port you are using for PPP.

• Ensure that you specify an IFCONFIG_PPP* default such that the interface remains “down” at boot-
time. In other words, do not append IFS_UP to the IFCONFIG_PPP* definition.
90 rabbit.com PPP Driver

http://www.rabbit.com

7.6.5 Starting and Stopping PPP Interfaces
The details of establishing and tearing down PPP links are handled by sock_init() and
tcp_tick(), as are all other TCP/IP functions.

To start a PPP interface, ifup() is used, just as it is for non-PPPoE Ethernet interfaces. One difference
that you should note is that the interface will not usually be up after ifup() returns. The function
ifup() only sets the process in motion, which takes much longer for PPP than it does for non-PPPoE
Ethernet.

Your application should be aware of this, since you will not be able to open sockets on an interface that is
not fully enabled. If necessary, you can poll the interface to wait for it to come up. While polling, you must
call tcp_tick() regularly. This is because it is actually the processing driven from tcp_tick() that
drives the whole PPP negotiation machinery.

The correct way to poll an interface is given by the following code fragment. This code includes tests for
the possibility that the interface may not be able to come up (e.g., because of a time-out).

ifup(IF_PPP2);
while (ifpending(IF_PPP2) == 1) tcp_tick();
if (!ifstatus(IF_PPP2))

printf(“Failed!\n”);

A similar consideration applies for bringing the interface down:

ifdown(IF_PPP2);
while (ifpending(IF_PPP2) == 3) tcp_tick();

Note that there is no need to test for an interface “failing to come down,” however the tear-down process
may take a short time. If you wait for the interface to come down before restarting it then there is a better
chance that the link will come back up successfully, since the peer will have been notified properly.

NOTE: For PPP links with IFS_PPP_USEMODEM in effect, the process of bringing the inter-
face up and down will include the modem dial-out and hang-up procedure. If you had
USEMODEM in effect when connecting, but turned it off during the connection, then
ifdown() will not perform modem hang-up. You will need to “manually” hang up the
modem (or possibly just renegotiate from the LCP phase, if this is what you intended, by call-
ing ifup()).
TCP/IP Manual, Vol 1 rabbit.com 91

http://www.rabbit.com

92 rabbit.com PPP Driver

http://www.rabbit.com

8. Function Reference

This section contains descriptions for all user-callable functions in DCRTCP.LIB. Starting with Dynamic
C 7.05, DCRTCP.LIB is a light wrapper around:

• DNS.LIB
• IP.LIB
• NET.LIB
• TCP.LIB
• UDP.LIB.

This update requires no changes to existing code.

Descriptions for select user-callable functions in:

• ARP.LIB
• BSDNAME.LIB
• ICMP.LIB
• IGMP.LIB
• PPP.LIB
• XMEM.LIB

are also included here. Note that ARP.LIB, ICMP.LIB and BSDNAME.LIB are automatically #use’d
from DCRTCP.LIB.

Functions are listed alphabetically and by category grouped by the task performed.
TCP/IP Manual, Vol 1 rabbit.com 93

http://www.rabbit.com

94 rabbit.com Function Reference

http://www.rabbit.com

_abort_socks

int _abort_socks(byte reason, byte iface);

DESCRIPTION

Abort all open TCP and UDP sockets. This routine may be called if the network becomes un-
available, for example because a DHCP address lease expired or because an IP address conflict
was encountered.

This function is generally intended for internal library use, but may be invoked by applications
in special circumstances.

PARAMETERS

reason Reason code. A suitable NETERR_* constant as defined in
NETERRNO.LIB. This code is set as the error code for each socket that
was affected.

iface Specific interface on which active connections are to be aborted, or pass
IF_ANY to abort connections on all active interfaces.

RETURN VALUE

0

LIBRARY

net.lib

SEE ALSO

sock_abort, sock_error
TCP/IP Manual, Vol 1 rabbit.com 95

http://www.rabbit.com

arpcache_create

ATHandle arpcache_create(longword ipaddr);

DESCRIPTION

Create a new entry in the ARP cache table for the specified IP address. If a matching entry for
that address already exists, then that entry is returned. Otherwise, a new entry is initialized and
returned. If a new entry is created, then an old entry may need to be purged. If this is not possi-
ble, then ATH_NOENTRIES is returned.

PARAMETER

ipaddr IP address of entry.

RETURN VALUE

Positive value: Success.

ATH_NOENTRIES: No space is available in the table, and none of the entries could be purged
because they were all marked as permanent or router entries.

LIBRARY

ARP.LIB
96 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpcache_flush

ATHandle arpcache_flush(ATHandle ath);

DESCRIPTION

Mark an ARP cache table entry for flushing. This means that the given table entry will be the
first entry to be re-used for a different IP address, if necessary. Any entry (including permanent
and router entries) may be flushed except for the broadcast entry.

PARAMETER

ath ARP table handle obtained from e.g., arpcache_search().

RETURN VALUE

Positive value: Success.

ATH_UNUSED: The table entry was unused.

ATH_INVALID: the ath parameter was not a valid handle.

ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry. No
change made.

LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 97

http://www.rabbit.com

arpcache_hwa

ATHandle arpcache_hwa(ATHandle ath, byte *hwa);

DESCRIPTION

Copy the Ethernet (hardware) address from the given ARP cache table entry into the specified
area.

PARAMETERS

ath ARP cache table entry.

hwa Address of where to store the hardware address (6 bytes).

RETURN VALUE

Positive value: Handle to the entry.

ATH_UNUSED: The table entry was unused.

ATH_INVALID: The ath parameter was not a valid handle.

ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry. No
change made.

LIBRARY

ARP.LIB
98 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpcache_iface

ATHandle arpcache_iface(ATHandle ath, byte *iface);

DESCRIPTION

Copy the interface number from the given ARP cache table entry into the specified area.

If the ath parameter refers to a broadcast or loopback entry, then *iface is set to
IF_DEFAULT (and ATH_INVALID is returned, since we can't really determine which of the
interfaces to broadcast from).

PARAMETERS

ath ARP cache table entry.

iface Address of where to store the interface number (1 byte).

RETURN VALUE

Positive value: Handle to the entry.
ATH_UNUSED: The table entry was unused.
ATH_INVALID: The ath parameter was not a valid handle, or was a broadcast, multicast
or loopback handle.
ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.

 LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 99

http://www.rabbit.com

arpcache_ipaddr

ATHandle arpcache_ipaddr(ATHandle ath, longword *ipaddr);

DESCRIPTION

Copy the IP address from the given ARP cache table entry into the specified area. If the ath
parameter refers to a broadcast entry, then the subnet broadcast IP is returned.

PARAMETERS

ath ARP cache table entry.

ipaddr Address of where to store the IP address (4 bytes).

RETURN VALUE

Positive value: Handle to the entry.
ATH_UNUSED: The table entry was unused.
ATH_INVALID: The ath parameter was not a valid handle, or was a point-point, broadcast,
multicast or loopback handle.
ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry.

LIBRARY

ARP.LIB
100 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpcache_load

ATHandle arpcache_load(ATHandle ath, byte *hwa, byte iface,
word flags, byte router_used);

DESCRIPTION

Load an entry in the ARP cache table. The entry must have been created using
arpcache_create(), or be an existing valid entry located via arpcache_search().

This function is primarily intended for internal use by the ARP library, although advanced ap-
plications could also use it. Most applications should not need to call this function directly.

PARAMETERS

ath Handle for the entry.

hwa Hardware (Ethernet) address, or NULL. Pass NULL if the current hardware
address is not to be changed.

iface Interface to use (IF_DEFAULT to use default, or not change current set-
ting).

flags Flags for entry: one or more of the following values, OR'd together:

• ATE_PERMANENT: permanent entry

• ATE_RESOLVING: initiate network resolve for this entry (hwa is
ignored if this flag is set)

• ATE_RESOLVED: this entry now resolved

• ATE_ROUTER_ENT: this is a router entry

• ATE_FLUSH: mark this entry for flush

• ATE_VOLATILE: set short timeout for this entry

• ATE_ROUTER_HOP: this entry uses the specified router as the
first hop. hwa ignored.

• ATE_REDIRECTED: this entry redirected by ICMP.

Only one of ATE_ROUTER_ENT or ATE_ROUTER_HOP should be set.
For either of these, the next parameter indicates the router table entry to
use.

Only one of ATE_RESOLVING or ATE_RESOLVED should be set.

router_used Router table entry. Only used if one of ATE_ROUTER_ENT or
ATE_ROUTER_HOP is set in the flags parameter.
TCP/IP Manual, Vol 1 rabbit.com 101

http://www.rabbit.com

arpcache_load (cont.)

RETURN VALUE

Positive value: Success.

ATH_NOROUTER: The specified router entry number is invalid. This can be because the
router_used parameter is bad, or because the router entry has a mismatching ATH.

ATH_INVALID: Invalid table handle passed (or unused entry).

ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry. No
change made.

LIBRARY

ARP.LIB
102 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpcache_search

ATHandle arpcache_search(longword ipaddr, int virt);

DESCRIPTION

Return handle that refers to the ARP cache table entry for the given IP address. This does not
do any resolving. It only consults the existing cache entries. The returned handle is guaranteed
to be valid at least until the next call to tcp_tick(). Usually the handle will be valid for con-
siderably longer, however it is possible for the handle to become obsolete if the cache entry is
re-used for a different address. The caller should be able to deal with this possibility. The entry
returned for the broadcast address is guaranteed to be permanent.

PARAMETERS

ipaddr IP address to locate in the cache. This may be -1L to locate the broadcast
entry or our own IP address to return the "loopback" entry.

virt 0: Do not return the broadcast or loopback entries.
1: Allow the broadcast or loopback entries.

RETURN VALUE

Positive value: Handle to the entry.

ATH_NOTFOUND: No entry exists for the given IP address.

LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 103

http://www.rabbit.com

arp_getArpData

ATEntry *arp_getArpData(void);

DESCRIPTION

Return address of _arp_data[].

RETURN VALUE

address

LIBRARY

ARP.LIB

arp_getArpGateData

ATEntry *arp_getArpGateData(void);

DESCRIPTION

Return address of _arp_gate_data[].

RETURN VALUE

address

LIBRARY

ARP.LIB
104 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

_arp_resolve

int _arp_resolve(longword ina, eth_address * ethap, int nowait);

DESCRIPTION

Gets the Ethernet address for the given IP address. This function is deprecated starting with Dy-
namic C 7.20.

PARAMETERS

ina The IP address to resolve to an Ethernet address.

ethap The buffer to hold the Ethernet address.

nowait If 0, return within 750 ms; else if !0 wait up to 5 seconds trying to resolve
the address.

RETURN VALUE

1: Success.
0: Failure.

LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 105

http://www.rabbit.com

arpresolve_check

ATHandle arpresolve_check(ATHandle ath, longword ipaddr);

DESCRIPTION

Check up on status of resolve process initiated by arpresolve_start(). This function
should be called regularly to ensure that an ARP table handle is pointing to the correct entry,
and that the entry is still current.

This caller must call tcp_tick() if spinning on this function.

PARAMETERS

ath ARP Table Handle obtained from arpresolve_start().

ipaddr IP address specified to arpresolve_start(). If this is zero, no check
is performed. Otherwise, the ARP table entry is checked to see that it is the
correct entry for the specified IP address.

RETURN VALUE

Positive value: Completed successfully. The return value will be the same as the ath parameter.

ATH_AGAIN: Not yet completed, try again later.

ATH_FAILED: Completed in error. Address cannot be resolved because of a network config-
uration problem.

ATH_TIMEDOUT: Resolve timed out. No response from addressee within the configured time
limit.

ATH_INVALID: The ath parameter was not a valid handle|.

ATH_OBSOLETE: The given handle was valid, but obsoleted by a more recent entry. Restart
using arpresolve_start().

ATH_MISMATCH: The ipaddr parameter was not zero, and the IP address does not match the
table entry.

LIBRARY

ARP.LIB
106 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpresolve_ipaddr

longword arpresolve_ipaddr(ATHandle ath);

DESCRIPTION

 Given an ARP table handle, return the IP address of the corresponding table entry.

PARAMETER

ath ARP Table Handle obtained from e.g., router_for().

RETURN VALUE

0: An error occurred, such as an invalid or obsolete handle.

0xFFFFFFFF: The handle refers to either the broadcast address, or to a point-to-point entry
whose IP address is not defined.

Else: An IP address. This may be 127.0.0.1 for the loopback entry.

LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 107

http://www.rabbit.com

arpresolve_start

ATHandle arpresolve_start(longword ipaddr);

DESCRIPTION

Start resolve process for the given IP address. This may return immediately if the IP address is
in the ARP cache table and still valid. Otherwise, if the IP address is on the local subnet then an
ARP resolve request is issued through the appropriate interface. If the address is not on the local
subnet, then a router table entry is used and no network activity is necessary (unless the router
itself is not resolved, in which case its resolution commences).

PARAMETER

ipaddr IP address of host whose hardware address is to be resolved.

RETURN VALUE

Positive value: Success. The value is actually the ATH of the ARP cache table entry which is
(or will be) used. This value should be passed to subsequent calls to
arpresolve_check().

ATH_NOENTRIES: No space is available in the table, and none of the entries could be purged,
because they were all marked as permanent or router entries.

ATH_NOROUTER: No router ("gateway") is configured for the specified address, which is not
on the local subnet.

LIBRARY

ARP.LIB
108 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

arpresolve_start_iface

ATHandle arpresolve_start_iface(longword ipaddr, word iface);

DESCRIPTION

Start resolve process for the given IP address. This may return immediately if the IP address is
in the ARP cache table and still valid. Otherwise, if the IP address is on the local subnet of the
specified interface then an ARP resolve request is issued through that interface. If the address
is not on the local subnet, then a router table entry (with router on the given interface) is used
and no network activity is necessary (unless the router itself is not resolved, in which case its
resolution is commenced).

If ipaddr is zero, then the broadcast entry is returned, since this is required for DHCP when
our IP address is not yet known.

This function is identical to arpresolve_start() if the iface parameter is set to
IF_ANY.

PARAMETERS

ipaddr IP address of host whose hardware address is to be resolved.

iface Specific interface (or IF_ANY to get the library to select the most appro-
priate interface). A specific interface forces the use of that interface, even
if there is no route available. This function should only be used to override
the normal interface selection procedure.

RETURN VALUE

Positive value: Success. This value is actually the ATH of the ARP cache table entry which is
(or will be) used; it should be passed to subsequent calls to arpresolve_check().

ATH_NOENTRIES: No space is available in the table, and none of the entries could be purged,
because they were all marked as permanent or router entries.

ATH_NOROUTER: No router (“gateway”) is configured for the specified address, which is not
on the local subnet of the specified interface.

LIBRARY

ARP.LIB

SEE ALSO

arpresolve_start
TCP/IP Manual, Vol 1 rabbit.com 109

http://www.rabbit.com

_arp_send_gratuitous

int _arp_send_gratuitous(word iface);

DESCRIPTION

When a host sends an ARP request to resolve its own IP address, it is called gratuitous ARP. In
the ARP request packet, the source IP address and destination IP address are filled with the same
source IP address itself. The destination MAC address is the Ethernet broadcast address
(FF:FF:FF:FF:FF:FF).

Gratuitous ARP is used for the following:

1. In a properly configured network, there will not be an ARP reply for a gratuitous ARP re-
quest. But if another host in the network is also configured with the same IP address as the
source host, then the source host will get an ARP reply. In this way, a host can determine wheth-
er another host is also configured with its IP address.

2. When the network interface card in a system is changed, the MAC address to its IP address
mapping is changed. In this case, when the host is rebooted, it will send an ARP request packet
for its own IP address. As this is a broadcast packet, all the hosts in the network will receive and
process this packet. They will update their old mapping in the ARP cache with this new map-
ping.

PARAMETER

iface Interface number.

RETURN VALUE

1: Success

0: Failure

LIBRARY

ARP.LIB
110 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

aton

longword aton(char *text);

DESCRIPTION

Converts [a.b.c.d] or a.b.c.d to a 32 bit long value.

PARAMETER

text Pointer to string that holds the IP address to convert.

RETURN VALUE

0: Error, string has invalid format.

>0: Success, long value of IP address.

LIBRARY

IP.LIB
TCP/IP Manual, Vol 1 rabbit.com 111

http://www.rabbit.com

_chk_ping

longword _chk_ping(longword host_ip, longword *sequence_number);

DESCRIPTION

Checks for any outstanding ping replies from host. _chk_ping should be called frequently
with a host IP address. If an appropriate packet is found from that host IP address, the sequence
number is returned through *sequence_number. The time difference between our request
and their response is returned in milliseconds.

PARAMETERS

host_ip IP address to receive ping reply from.

sequence_number Sequence number of reply.

RETURN VALUE

Time in milliseconds from the ping request to the host’s ping reply.

If _chk_ping returns 0xffffffffL, there were no ping receipts on this current call.

LIBRARY

 ICMP.LIB

SEE ALSO

 _ping, _send_ping
112 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

dhcp_acquire

int dhcp_acquire(void);

DESCRIPTION

This function acquires a DHCP lease that has not yet been obtained, or has expired, or was re-
linquished using dhcp_release(). Normally, DHCP leases are renewed automatically,
however if the DHCP server is down for an extended period then it might not be possible to re-
new the lease in time, in which case the lease expires and TCP/IP should not be used. When the
lease expires, tcp_tick() will return 0, and the global variable for the IP address will be
reset to 0. At some later time, this function can be called to try to obtain an IP address.

This function blocks until the lease is renewed, or the process times out.

RETURN VALUE

0: OK, lease was not expired, or an IP address lease was acquired with the same IP address as
previously obtained.

-1: An error occurred, no IP address is available. TCP/IP functionality is thus not available.
Usual causes of an error are timeouts because a DHCP or BOOTP server is not available
within the timeout specified by the global variable _bootptimeout (default 30 sec-
onds).

1: Lease was re-acquired, however the IP address differs from the one previously obtained.
All existing sockets must be re-opened. Normally, DHCP servers are careful to reassign the
same IP address previously used by the client, however this is sometimes not possible.

LIBRARY

BOOTP.LIB
TCP/IP Manual, Vol 1 rabbit.com 113

http://www.rabbit.com

dhcp_get_timezone

 int dhcp_get_timezone(long *seconds);

DESCRIPTION

This function returns the time zone offset provided by the DHCP server, if any, or uses the fall-
back time zone defined by the TIMEZONE macro. Note that TIMEZONE is expressed in hours,
whereas the return result is in seconds.

PARAMETERS

seconds Pointer to result longword. If the return value is 0 (OK), then this will be
set to the number of seconds offset from Coordinated Universal Time
(UTC). The value will be negative for west; positive for east of Greenwich.
If the return value is -1, then the result will be set using the hard-coded val-
ue from the macro TIMEZONE (converted to seconds by multiplying by
3600), or zero if this macro is not defined.

RETURN VALUE

0: Time zone obtained from DHCP.

-1: Time zone not valid, or not yet obtained, or not using DHCP.

LIBRARY

BOOTP.LIB
114 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

dhcp_release

int dhcp_release(void);

DESCRIPTION

This function relinquishes a lease obtained from a DHCP server. This allows the server to re-
use the IP address that was allocated to this target. After calling this function, the global variable
for the IP address is set to 0, and it is not possible to call any other TCP/IP function which re-
quires a valid IP address. Normally, dhcp_release() would be used on networks where
only a small number of IP addresses are available, but there are a large number of hosts which
need sporadic network access.

This function is non-blocking since it only sends one packet to the DHCP server and expects no
response.

RETURN VALUE

 0: OK, lease was relinquished.

 1: Not released, because an address is currently being acquired, or because a boot file (from
the BOOTP or DHCP server) is being downloaded, or because some other network resource
is in use e.g., open TCP socket. Call dhcp_release() again after the resource is freed.

-1: Not released, because DHCP was not used to obtain a lease, or no lease was acquired.

 LIBRARY

BOOTP.LIB
TCP/IP Manual, Vol 1 rabbit.com 115

http://www.rabbit.com

getdomainname

char *getdomainname(char *name, int length);

DESCRIPTION

Gets the current domain name. For example, if the controller’s internet address is “test.mynet-
work.com” then “mynetwork” is the domain portion of the name.

The domain name can be changed by the setdomainname() function.

PARAMETERS

name Buffer to place the name.

length Maximum length of the name, or zero to get a pointer to the internal do-
main name string. Do not modify this string!

RETURN VALUE

If length 1: Pointer to name. If length is not long enough to hold the domain name, a
NULL string is written to name.

If length = 0: Pointer to internal string containing the domain name. Do not modify this
string!

LIBRARY

BSDNAME.LIB

SEE ALSO

setdomainname, gethostname, sethostname, getpeername,
getsockname

EXAMPLE

main() {
sock_init();
printf("Using %s for a domain\n", getdomainname(NULL, 0));

}

116 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

gethostid

longword gethostid(void);

DESCRIPTION

Return the IP address of the controller in host format.

RETURN VALUE

IP address in host format, or zero if not assigned or not valid.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sethostid

EXAMPLE

main() {
char buffer[512];
sock_init();

printf("My IP address is %s\n", inet_ntoa(buffer, gethostid()));

}

TCP/IP Manual, Vol 1 rabbit.com 117

http://www.rabbit.com

gethostname

char *gethostname(char *name, int length);

DESCRIPTION

Gets the host portion of our name. For example if the controller’s internet address is
“test.mynetwork.com” the host portion of the name would be “test.”

The host name can be changed by the sethostname() function.

PARAMETERS

name Buffer to place the name.

length Maximum length of the name, or zero for the internal host name buffer. Do
not modify this buffer.

RETURN VALUE

length 1: Return name.

length = 0: Return internal host name buffer (do not modify!).

LIBRARY

BSDNAME.LIB
118 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

getpeername

int getpeername(sock_type *s, void *dest, int *len);

DESCRIPTION

Gets the peer's IP address and port information for the specified socket.

PARAMETERS

s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the remote end of
the socket. The data structure is:

typedef struct sockaddr {
word s_type; // reserved
word s_port; // port #, or 0 if not connected
longword s_ip; // IP addr, or 0 if not connected
byte s_spares[6]; // not used for tcp/ip connections

};

len Pointer to the length of sockaddr. A NULL pointer can be used to repre-
sent the sizeof(struct sockaddr).

RETURN VALUE

0: Success.

-1: Failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getsockname
TCP/IP Manual, Vol 1 rabbit.com 119

http://www.rabbit.com

getsockname

int getsockname(sock_type *s, void *dest, int *len);

DESCRIPTION

Gets the controller’s IP address and port information for a particular socket.

PARAMETERS

 s Pointer to the socket.

dest Pointer to sockaddr to hold the socket information for the local end of
the socket. The data structure is:

typedef struct sockaddr {
word s_type; // reserved
word s_port; // port #, or 0 if not connected
longword s_ip; // IP addr, or 0 if not connected
byte s_spares[6]; // not used for tcp/ip connections

};

len Pointer to the length of sockaddr. A NULL pointer can be used to repre-
sent the sizeof(struct sockaddr). BSDNAME.LIB will assume
14 bytes if a NULL pointer is passed.

RETURN VALUE

0: Success.

-1: Failure.

LIBRARY

BSDNAME.LIB

SEE ALSO

getpeername
120 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

htonl

longword htonl(longword value);

DESCRIPTION

This function converts a host-ordered double word to a network-ordered double word. This
function is necessary if you are implementing standard internet protocols because the Rabbit
does not use the standard for network-byte ordering. The network orders bytes with the most
significant byte first and the least significant byte last. On the Rabbit, the bytes are in the oppo-
site order.

PARAMETERS

 value Host-ordered double word.

RETURN VALUE

Host word in network format, e.g., htonl(0x44332211) returns 0x11223344.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htons, ntohl, ntohs
TCP/IP Manual, Vol 1 rabbit.com 121

http://www.rabbit.com

htons

word htons(word value);

DESCRIPTION

Converts host-ordered word to a network-ordered word. This function is necessary if you are
implementing standard internet protocols because the Rabbit does not use the standard for net-
work-byte ordering. The network orders bytes with the most significant byte first and the least
significant byte last. On the Rabbit, the bytes are in the opposite order within each 16-bit sec-
tion.

PARAMETERS

value Host-ordered word.

RETURN VALUE

Host-ordered word in network-ordered format, e.g., htons(0x1122) returns 0x2211.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htonl, ntohl, ntohs
122 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig

int ifconfig(int iface,...);

DESCRIPTION

This function sets and gets network parameters at runtime. An arbitrary number of parameters
may be set or retrieved in one call.

This function replaces tcp_config() for setting network parameters at runtime. In addition,
it allows retrieval of parameters and supports multiple interfaces. An arbitrary number of pa-
rameters may be set or retrieved in one call.

Example:

ifconfig(IF_ETH0,
IFS_DOWN,
IFS_IPADDR, aton("10.10.6.100"),
IFS_NETMASK, 0xFFFFFF00uL,
IFS_ROUTER_SET, aton("10.10.6.1"),
IFS_NAMESERVER_SET, aton("192.68.1.123"),
IFS_NAMESERVER_ADD, aton("192.68.1.124"),
IFS_UP,
IFS_END);

This call to ifconfig() brings the first Ethernet interface down if it is not already inactive,
then it configures the home IP address, netmask, router (gateway), and two nameservers. Then,
the interface is made active (IFS_UP). IFS_END is required to terminate the parameter list.

Debugging note: if you experience an error dialog indicating “bad parameter passed to I/O func-
tion,” this is often caused by this function encountering a bad parameter. In this case, it is easier
to debug if you temporarily #define NET_VERBOSE at the top of your application code. This
will cause this function to print some more details about the parameter that it found to be in er-
ror. The parameter numbers refer to IFS/IFG parameter identifiers, not to the sub-parameters of
the identifiers. In the above example, IFS_DOWN would be considered the first parameter, and
IFS_UP would be the 7th (not the 12th).

Most errors are caused by:

• passing an int when a long is expected, so be sure to add the appropriate cast in your code.

• forgetting to terminate the parameter list with IFS_END.
TCP/IP Manual, Vol 1 rabbit.com 123

http://www.rabbit.com

ifconfig (cont’d)

PARAMETERS

iface Interface number. Use one of the definitions:
• IF_DEFAULT
• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5
• IF_ANY

If the interface does not exist, then you will get a compile time error.
IF_DEFAULT refers to the default interface, which will be equivalent to
the first of the other interface identifiers in the above list which exists.
IF_ANY may be used only for the parameters which are not specific to any
particular interface. It can also be used, where applicable, to mean “all in-
terfaces” if the operation would make sense when applied to all interfaces.

... Parameters 2 through n are polymorphic (like printf() parameters).
Parameters are provided in groups (usually pairs) with the first parameter
in the group being one of a documented set of identifiers, and any subse-
quent parameters in the group being the value specific to that identifier.

The data type for “bool” parameter really means an integer, whose value is
0 for false, or non-zero for true.

PARAMETER IDENTIFIERS FOR IFCONFIG()

IFS_END

Marks the end of the parameter list. The list of parameter groups MUST be terminated
using the identifier IFS_END.

IFS_UP

Bring up interface.

IFS_DOWN

Bring down interface.
124 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_IPADDR

Set home IP address (longword).

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

The action of IFS_IPADDR depends on the current interface state. If the i/f has the
IFS_DHCP flag set, then this parameter sets only the fallback IP address without chang-
ing the current i/f status. Otherwise, the i/f is reconfigured with the new address immedi-
ately, which may require it to be brought down then up. IFS_IPADDR always sets the
DHCP fallback address, but you can also use the IFS_DHCP_FB_IPADDR parameter
to set the fallback address without ever changing the i/f status.

IFG_IPADDR

Get home IP address (longword *).

IFS_NETMASK

Set netmask (longword).

IFG_NETMASK

Get netmask (longword *).

IFS_MTU

Set maximum transmit unit (MTU) (word).

IFG_MTU

Get MTU (word *).

IFS_ROUTER_SET

Delete all routers, then set this one as a default router (longword).

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.
TCP/IP Manual, Vol 1 rabbit.com 125

http://www.rabbit.com

ifconfig (cont’d)

IFS_ROUTER_SET_STATIC

Set static router:
IP address of router, longword
subnet served, longword
subnet mask, longword

“Static router” means a router that handles routing to a specified subnet destination. When
a router is selected for a given IP address, the most specific static router will be used. For
example, given the following setup:

Router Subnet Mask
10.10.6.1 0 0
10.10.6.2 10.99.0.0 255.255.0.0
10.10.6.3 10.99.57.0 255.255.255.0

Then, given a destination IP address (which is not on the local subnet 10.10.6.0), the rout-
er will be selected according to the following algorithm:

if address is 10.99.57.*, use 10.10.6.3
else if address is 10.99.*.*, use 10.10.6.2
else use 10.10.6.1

Note that IFS_ROUTER_SET is basically the same as IFS_ROUTER_SET_STATIC,
except that the subnet and mask parameters are automatically set to zero. Most simple net-
works with a single router to non-local subnets will use a single IFS_ROUTER_SET.

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFS_ROUTER_ADD

Add general router (longword).

This parameter identifier does not care about the value of “iface” because it is not specific
to an interface.

IFS_ROUTER_ADD_STATIC

Add static router:
IP address of router (longword)
subnet served (longword)
subnet mask (longword)

See IFS_ROUTER_SET_STATIC for a definition of static router.

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.
126 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_ROUTER_DEL

Delete router (longword). If identifier’s parameter = 0, delete all routers.

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFG_ROUTER_DEFAULT

Get default router (longword *).

The interface parameter may be either a specific interface number (to get the default rout-
er for that interface), or IF_ANY which will retrieve an overall default router.

IFS_HWA

Set the hardware address (byte *).

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

IFG_HWA

Get the hardware address (byte *).

IFS_NAMESERVER_SET

Delete all nameservers, then set this one (longword).

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFS_NAMESERVER_ADD

Add nameserver (longword).

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFS_NAMESERVER_DEL

Delete nameserver (longword).

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFS_ICMP_CONFIG

Allow “arp -s” ping to configure IP address, (bool).

If DHCP and ping configure are both set, then the completion of DHCP will automatically
turn off ping configure. If DHCP fails, then ping configure will be allowed after the set
time-out for DHCP. Ping config cannot override DHCP until DHCP has timed out. This
is the case whenever a DHCP lease is obtained, whether or not at sock_init() time.

This parameter may be set for IF_ANY i.e., all interfaces.
TCP/IP Manual, Vol 1 rabbit.com 127

http://www.rabbit.com

ifconfig (cont’d)

IFG_ICMP_CONFIG

Is ping configure enabled? (bool *)

IFG_ICMP_CONFIG_OK

Was ping configured successfully? (bool *)

IFS_ICMP_CONFIG_RESET

After ping configured okay, allow new ping configure.

IFS_DEBUG

Set debug level (int).

Sets a global variable, debug_on: 0 to print only a few messages, up to 5 to print suc-
cessively more messages. This parameter does not care about the value of “iface” because
it is not specific to an interface.

IFG_DEBUG

Get debug level (int *).

This parameter does not care about the value of “iface” because it is not specific to an in-
terface.

IFS_IF_CALLBACK

Set interface up/down callback, or NULL (void (*)()).

The interface up/down callback function is called with two parameters:

ifcallback(int iface, int up);

where “iface” is the interface number, and “up” is non-zero if the interface has just come
up, or zero if it has just come down. You must #define USE_IF_CALLBACK before #use
"dcrtcp.lib" to use this functionality.

PARAMETER IDENTIFIERS FOR DHCP

The DHCP parameters are only available if USE_DHCP is defined, and will only work if the
interface is qualified for DHCP. The IFS_DHCP parameter will cause acquisition or release of
the specified interface.

IFS_DHCP

Use DHCP to configure this interface (bool = 0 for false, non-zero for true).

IFG_DHCP

Get DHCP setting (bool *).

IFG_DHCP_OK

Get whether DHCP actually configured OK (bool *).

IFS_DHCP_TIMEOUT

Set DHCP overall timeout in seconds (int).
128 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFG_DHCP_TIMEOUT

Get DHCP overall timeout in seconds (int *).

IFS_DHCP_QUERY

Set whether DHCP uses INFORM (bool). This parameter specifies that DHCP INFORM
message is used for Ethernet interfaces, and is applicable if the IP address is configured
other than by DHCP. The parameter is always TRUE for PPP interfaces.

IFG_DHCP_QUERY

Get whether DHCP uses INFORM (bool).

IFS_DHCP_DOMAIN

Set whether to use domain and/or hostname information (bool).

IFG_DHCP_DOMAIN

Get flag setting (bool *).

IFS_DHCP_FALLBACK

Set whether DHCP allows fallback to static configuration (bool).

IFG_DHCP_FALLBACK

Does DHCP allow fallback to static configuration? (bool *).

IFS_DHCP_FB_IPADDR

Set the DHCP fallback IP address (longword).

The DHCP fallback address parameters are used in preference to IFS_IPADDR (the
“current” address). This indicates the static IP address to use in case DHCP could not be
used to configure the interface.

The action of IFS_IPADDR depends on the current interface state. If the i/f has the
IFS_DHCP flag set, then this parameter sets only the fallback IP address without chang-
ing the current i/f status. Otherwise, the i/f is reconfigured with the new address immedi-
ately, which may require it to be brought down then up. IFS_IPADDR always sets the
DHCP fallback address, but you can also use the IFS_DHCP_FB_IPADDR parameter
to set the fallback address without ever changing the i/f status.

IFG_DHCP_FB_IPADDR

Get the DHCP fallback IP address (longword *). See the description above for
IFS_DHCP_FB_IPADDR for more information.

IFG_DHCP_FELLBACK

Get whether DHCP actually had to use fallbacks (bool *).
TCP/IP Manual, Vol 1 rabbit.com 129

http://www.rabbit.com

ifconfig (cont’d)

IFS_DHCP_OPTIONS

Set DHCP custom options (int, char *, int(*)()).

DHCP custom options processing: First parameter (int) is length of options list. The sec-
ond parameter (char *) points to that options list. This is a byte array containing values
from the DHCP_VN_* definitions in BOOTP.LIB (these are taken from the list in
RFC2132). Also, option “0” is used to indicate the boot file name. If the boot file name is
provided, then the TFTP server IP address can be obtained from the di->bootp_host field
of the structure provided to the callback (see below). This options list must be in static
storage, since only the pointer is saved.

The third parameter may be NULL, or is a pointer to a callback function to process the
custom options. The callback function has the following prototype:

int my_callback (int iface, DHCPInfo *di, int opt, int len,
char * data)

iface: interface number.di: DHCP information struct. Read only, except you can mod-
ify the 'data' field if desired. See the definition of this struct in NET.LIB for details.

opt: DHCP option number (DHCP_VN_*); or 0 for the boot file name.
len: length of option data in bytes
data: pointer to data for this option. Read only.

The callback is only invoked for options which were requested and which were not han-
dled internally (such as DHCP_VN_SUBNET). The return value from the callback should
be zero, for future compatibility. The callback should not make any long computations,
blocking calls, or call any other TCP/IP functions, since it would delay the main applica-
tion. If uC/OS is in use, it should also be re-entrant and definitely not call any tcp/ip func-
tions. Note that the following options are always retrieved and MUST NOT be provided
in the options list:

• All DHCP protocol options (50-61)
• DHCP_VN_SUBNET
• DHCP_VN_TIMEOFF

The other options are only forbidden if DHCP_NUM_ROUTERS, etc., is defined non-zero:

• DHCP_VN_ROUTER
• DHCP_VN_DNS
• DHCP_VN_SMTPSRV
• DHCP_VN_NTPSRV
• DHCP_VN_COOKIE

IFG_DHCP_OPTIONS

Get DHCP custom options (int *, char **).

IFG_DHCP_INFO

Get DHCP information, or NULL if not qualified (DHCPInfo **).
130 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

PARAMETER IDENTIFIERS FOR PPP

The following parameter identifiers are for PPP interfaces only. You will get a runtime error
(non-zero return code) if you apply one of the PPP-specific parameters to a non-PPP interface.

IFS_PPP_INIT

Sets up PPP with default parameters. This should be used before any other PPP setting
parameters.

IFS_PPP_SPEED

Set serial PPP speed in bits per second (longword).

IFG_PPP_SPEED

Get serial PPP speed (longword).

IFS_PPP_ACCEPTIP

Accept peer's idea of our local IP address (bool).

IFG_PPP_ACCEPTIP

Are we accepting peer’s idea of our local IP address? (bool *)

IFS_PPP_REMOTEIP

Try to set peer's IP address (longword).

IFG_PPP_REMOTEIP

Will we try to set peer’s IP address? (longword *)

IFS_PPP_ACCEPTDNS

Accept a DNS server IP address from peer (bool).

IFG_PPP_ACCEPTDNS

Will we accept a DNS server IP address from peer? (bool *)

IFS_PPP_REMOTEDNS

Set DNS server IP addresses for peer; primary (longword), secondary (longword).

IFG_PPP_REMOTEDNS

Get DNS server IP addresses; primary (longword *) and secondary (longword *).

IFS_PPP_AUTHCALLBACK

Called when a peer attempts to authenticate (int (*)()).

The authentication callback is invoked with the following parameters:
int auth_cb (char *user, int userlen, char *pass, int passlen)
The parameters indicate userid, password and their lengths (not null terminated). The call-
back should return 1 if OK, 0 if not authorized.
TCP/IP Manual, Vol 1 rabbit.com 131

http://www.rabbit.com

ifconfig (cont’d)

IFS_PPP_REMOTEAUTH

Sets username and password to give to peer (char *, char *).

IFG_PPP_REMOTEAUTH

Get username and password given to peer (char **, char **).

IFS_PPP_LOCALAUTH

Required username and password for incoming peer
 (char *, char *).

IFG_PPP_LOCALAUTH

char **, char **

IFS_PPP_RTSPIN

 Define the RTS pin (int, char *, int).

The parameters for the RTS/CTS pin assignments are:
RTS: int port_address, char * shadow_reg, int port_pin

CTS: int port_address, int port_pin

where “port_address” is the parallel port internal I/O address e.g., PEDR for port E.
“shadow_reg” is the appropriate shadow register for the parallel port data register e.g.
&PEDRShadow for port E. “port_pin” is a number from 0-7 indicating the pin number of
the port.

IFG_PPP_RTSPIN

Get RTS pin definitions (int *, char **, int *).

IFS_PPP_CTSPIN

Define the CTS pin (int, int). See description for IFS_PPP_RTSPIN.

IFG_PPP_CTSPIN

Get CTS pin definitions (int *, int *).

IFS_PPP_FLOWCONTROL

Turn hardware flow control on or off (bool).

IFG_PPP_FLOWCONTROL

Get hardware flow control setting (bool *).

IFS_PPP_USEPORTD

Use parallel port D instead of parallel port C for serial ports A & B (bool).

IFG_PPP_USEPORTD

Are we using parallel port D instead of C? (bool *)
132 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_PPP_USEPORTE

Use parallel port E instead of parallel port C for serial ports E & F (bool). (Rabbit 4000
only)

IFG_PPP_USEPORTE

Are we using parallel port E instead of C? (bool *)

IFG_PPP_PEERADDR

Get the PPP peer address. Returns 0 if no connection (longword *).

IFS_PPP_PASSIVE

Set passive mode for PPP (bool). If TRUE, then interface will wait indefinitely for a con-
nection after its initial connection attempt.

IFG_PPP_PASSIVE

Is passive mode set for PPP? (bool *)

THE FOLLOWING PARAMETER IDENTIFIERS ARE FOR MODEMS ON PPP INTERFACES:

IFS_PPP_SENDEXPECT

A series of strings to send and then expect, each separated by a carriage return (“\r”)
(char *).

Setting send/expect automatically turns on IFS_PPP_USEMODEM. See the documenta-
tion for chat_init() for details on the syntax for these strings. The specified strings
MUST be in static storage, since only the pointers are stored rather than copying the
strings.

Note that two substitution parameters are available: %0 may be used to insert the current
user name (as set using the IFS_PPP_REMOTEAUTH command) and %1 is the corre-
sponding password. This is useful if your logon script uses the same userid/password as
is used by PPP during its authentication (PAP) stage.

IFG_PPP_SENDEXPECT

char **

IFS_PPP_USEMODEM

Specify whether to use modem dialout string (bool).

IFG_PPP_USEMODEM

Is modem dialout string going to be used? (bool *)

IFS_PPP_MODEMESCAPE

Specify whether or not to add an escape sequence <delay>+++<delay> before sending
send/expect or hangup strings (bool).
TCP/IP Manual, Vol 1 rabbit.com 133

http://www.rabbit.com

ifconfig (cont’d)

IFG_PPP_MODEMESCAPE

Will escape sequence <delay>+++<delay> be added before sending send/expect or han-
gup strings? (bool *)

IFS_PPP_HANGUP

Optional string to send to modem to shut it down, in send-expect format. See
IFS_PPP_SENDEXPECT for more information.

IFG_PPP_HANGUP

Get optional string (char **).

PARAMETER IDENTIFIERS FOR DMA

The following two parameter identifiers rely on the existence of DMA channels, thus are only
for PPP or VSPD interfaces on Rabbit 4000 or newer Rabbit processors:

IFS_USE_DMA

Use the specified DMA channel instead of the serial port.

• dma_chan_t: specifies channel for source
• dma_chan_t: specifies channel for destination
• word: specifies I/O port address

IFS_USE_SERIAL

Use the serial port directly. This undoes the effect of IFS_USE_DMA.

Any PPP over asynchronous serial, or VSPD (Virtual Stream Packet Driver) interface may be
switched between its normal fixed async serial port and a pair of DMA channels allocated to the
application via the DMAalloc() function in DMA.LIB. The DMA channels should not be
modified by the application while in use by the network library.

When specifying DMA channels (type dma_chan_t), you also provide a third, word param-
eter that specifies the I/O register to be the source and destination for incoming and outgoing
data respectively. This does not need to be a serial port data register, but it usually would be.
Currently, only internal I/O registers are supported for this function.

The application is responsible for setting serial port parameters as desired. When using DMA
channels, the network library routines do not make any changes to or make any assumptions
about the underlying I/O port. The same applies to the DMA channel. For example, the appli-
cation is responsible for enabling the external DMA request line if, for example, it is desired to
implement hardware transmit flow control.

Use of a DMA channel reduces the amount of CPU overhead taken up servicing interrupts. This
allows higher communication rates, or allows the application to perform more useful work in
the same time.

If the DMA channels are released via IFS_USE_SERIAL then it is the application's responsi-
bility to re-use or unallocate the DMA channels as desired.
134 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

PARAMETER IDENTIFIERS FOR WI-FI INTERFACES

The following parameter identifiers are only for Wi-Fi interfaces. You will get a runtime error
(non-zero return code) if you apply one of the Wi-Fi-specific parameters to a non-Wi-Fi inter-
face. See the “Wi-Fi Configuration” documentation in tcp_config.lib for details on configuring
the Wi-Fi interface.

IFS_WIFI_SSID

Set the SSID for the Wi-Fi device (int, byte *).

Since the SSID can contain any byte (including nulls), it's necessary to provide the length
along with the SSID. See wifi_ssid_to_str() for creating a null-terminated, print-
able version of the SSID, with nulls and non-printable characters (byte values 0x00-0x20
and 0x7F-0xFF) replaced with “?”.

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

IFG_WIFI_SSID

Get the currently configured SSID (int *, byte *). See the set command for more informa-
tion on the SSID.

IFS_WIFI_MULTI_DOMAIN

Enable multi-domain (bool). This only works on APs with 802.11d.

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

IFG_WIFI_MULTI_DOMAIN

Is multi-domain enabled? (bool *).
TCP/IP Manual, Vol 1 rabbit.com 135

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_REGION

Set regulatory region (int). Valid parameters and the channels they allow are:
IFPARAM_WIFI_REGION_AMERICAS, 1-11
IFPARAM_WIFI_REGION_AUSTRALIA, 1-11
IFPARAM_WIFI_REGION_CANADA, 1-11
IFPARAM_WIFI_REGION_CHINA, 1-11
IFPARAM_WIFI_REGION_EMEA, 1-13
FPARAM_WIFI_REGION_FRANCE, 10-13
IFPARAM_WIFI_REGION_ISRAEL, 3-11
IFPARAM_WIFI_REGION_JAPAN, 1-13
IFPARAM_WIFI_REGION_MEXICO_INDOORS, 1-11
IFPARAM_WIFI_REGION_MEXICO_OUTDOORS, 9-11

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

IFG_WIFI_REGION

Get region number (int *). See set command for more information.

IFG_WIFI_REGION_INFO

Get region settings (wifi_region *).

The wifi_region structure contains the following elements:

typedef struct {
 char id; // IFPARAM_WIFI_REGION_*
 char country[16]; // description of region
 int first_channel;
 int last_channel;
 unsigned int channel_mask;
 int max_pwr_dBm;
 int max_pwr_index;
} wifi_region;

IFS_WIFI_MODE

Set operating mode (int). Valid parameters are:

• IFPARAM_WIFI_ADHOC
• IFPARAM_WIFI_INFRASTRUCTURE

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.
136 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFG_WIFI_MODE

Get operating mode (int *).

IFS_WIFI_CHANNEL

Set channel (int). See IFS_WIFI_REGION for more information about available chan-
nels. If using infrastructure mode can be set to “0” for automatic channel selection.

Setting the value of this parameter may require the interface to be brought down tempo-
rarily. If this is necessary, it will be brought up again before return; however, any sockets
that were open on that interface will have been aborted.

IFG_WIFI_CHANNEL

Get current channel setting (int *).

IFS_WIFI_ENCRYPTION

Set encryption (word). Setting the value of this parameter may require the interface to be
brought down temporarily. If this is necessary, it will be brought up again before return;
however, any sockets that were open on that interface will have been aborted.

Valid values are:

• IFPARAM_WIFI_ENCR_ANY
• IFPARAM_WIFI_ENCR_NONE
• IFPARAM_WIFI_ENCR_WEP

If WIFI_USE_WPA is defined:

• IFPARAM_WIFI_ENCR_TKIP

If WIFI_USE_WPA and WIFI_AES_ENABLED are defined:

• IFPARAM_WIFI_ENCR_CCMP

IFG_WIFI_ENCRYPTION

Get encryption setting (word *).

IFS_WIFI_AUTHENTICATION

Set authentication method to use (word). Valid values are:

• IFPARAM_WIFI_AUTH_ANY
• IFPARAM_WIFI_AUTH_OPEN
• IFPARAM_WIFI_AUTH_SHAREDKEY
• IFPARAM_WIFI_AUTH_WPA_PSK
• IFPARAM_WIFI_AUTH_WPA_8021X

Note that when using WEP encryption, open authentication is actually more secure than
shared key authentication.

IFG_WIFI_AUTHENTICATION

Get current authentication setting (word *).
TCP/IP Manual, Vol 1 rabbit.com 137

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_TX_RATE

Set maximum transmit rate, as a multiple of 100 kbps (int). Use the macros below, or their
integer equivalents.

Available on 802.11b and 802.11g hardware:

• IFPARAM_WIFI_TX_RATE_ANY, 0
• IFPARAM_WIFI_TX_RATE_1, 10 (1.0 Mbps)
• IFPARAM_WIFI_TX_RATE_2, 20 (2.0 Mbps)
• IFPARAM_WIFI_TX_RATE_5_5, 55 (5.5 Mbps)
• IFPARAM_WIFI_TX_RATE_11, 110 (11.0 Mbps)

Available on 802.11g hardware only:

• IFPARAM_WIFI_TX_RATE_6, 60 (6.0 Mbps)
• IFPARAM_WIFI_TX_RATE_9, 90 (9.0 Mbps)
• IFPARAM_WIFI_TX_RATE_12, 120 (12.0 Mbps)
• IFPARAM_WIFI_TX_RATE_18, 180 (18.0 Mbps)
• IFPARAM_WIFI_TX_RATE_24, 240 (24.0 Mbps)
• IFPARAM_WIFI_TX_RATE_36, 360 (36.0 Mbps)
• IFPARAM_WIFI_TX_RATE_48, 480 (48.0 Mbps)
• IFPARAM_WIFI_TX_RATE_54, 540 (54.0 Mbps)

IFG_WIFI_TX_RATE

Get maximum transmit rate setting (int *).

IFS_WIFI_TX_POWER

Set maximum Tx power; valid values are: 0-15.

IFG_WIFI_TX_POWER

Get maximum Tx power setting (int *).

IFS_WIFI_FRAG_THRESHOLD

Set fragment threshold; valid values are: 256-2346.

IFG_WIFI_FRAG_THRESHOLD

Get fragment threshold (int *).

IFS_WIFI_RTS_THRESHOLD

Set RTS (request-to-send) threshold; valid values are: 1-2347.

IFG_WIFI_RTS_THRESHOLD

Get RTS threshold (int *).
138 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_SCAN

Initiate a Wi-Fi scan of all valid channels for the current region. A pointer to a scan call-
back function is the only parameter The callback function must have the following func-
tion prototype:

root void scan_callback (far wifi_scan_data *data);

When the scan has completed, the scan callback function is called. The Wi-Fi scan can be
done without taking the interface down, but it will briefly interrupt the network connec-
tivity as it scans the channels on the wireless network.

The scan data is provided to the callback function in its data parameter. The
wifi_scan_data structure has the following definition:

typedef struct {
int count;
_wifi_wln_scan_bss bss[_WIFI_SCAN_NUM];

} wifi_scan_data;

_WIFI_SCAN_NUM is set to 16 in wifi_wln_api.lib. “count” contains the number of ac-
cess points that were detected. “bss” is an array where each element corresponds to a de-
tected access point. _wifi_wln_scan_bss has the following definition:

typedef struct {
uint8 ssid[WLN_SSID_SIZE]; // network name, up to 32 bytes long
int ssid_len; // number of bytes in the SSID
int channel; // Wi-Fi network channel (1-13)
mac_addr bss_addr; // BSS ID (the AP's MAC address)
uint16 bss_caps; // reserved
uint8 wpa_info[WLN_WPAIE_SIZE]; // reserved
uint8 erp_info; // reserved
uint16 rates; // reserved
uint16 rates_basic; // reserved
uint16 atim; // reserved
int tx_rate; // max transmission rate (in 100 kbps)
int rx_signal; // received signal strength
} _wifi_wln_scan_bss;

See the WiFiScan.c sample program for an example of using IFS_WIFI_SCAN.
TCP/IP Manual, Vol 1 rabbit.com 139

http://www.rabbit.com

ifconfig (cont’d)

IFG_WIFI_STATUS

Get current MAC status.

The IFG_WIFI_STATUS command returns the current Wi-Fi MAC status into the user-
supplied buffer or data structure area. The buffer must be large enough to hold the entire
wln_status structure (size can be checked with sizeof(wln_status)).

The wln_status structure has the following definition:

typedef struct {
wln_state state; // Association state, see below.
uint8 ssid[WLN_SSID_SIZE]; // Current service set ID (SSID)
int ssid_len; // Service set ID length
int channel; // Current channel: 1-13
mac_addr bss_addr; // BSS ID (AP MAC address)
uint16 bss_caps; // reserved
uint8 wpa_info[WLN_WPAIE_SIZE]; // reserved
uint32 authen; // reserved
uint32 encrypt; // reserved
int tx_rate; // transmit rate, in 100 kbps
int rx_rate; // Last received rate, in 100 kbps
int rx_signal; // Last received signal strength (range 0-107)
int tx_power; // reserved
uint8 country_info[WLN_COUNTRY_STRLEN]; // reserved
int link; // reserved

} wln_status;

The association state is indicated by one of the following macros:

WLN_ST_STOPPED - Wi-Fi driver is stopped
WLN_ST_SCANNING - Currently performing a scan
WLN_ST_ASSOC_ESS - Associated with an AP
WLN_ST_AUTH_ESS - Authenticated with an AP
WLN_ST_JOIN_IBSS - Joined an existing ad-hoc network
WLN_ST_START_IBSS - Started an ad-hoc network

COMMANDS FOR MANAGING WEP SHARED AND WPA PRE-SHARED KEYS

IFS_WIFI_WEP_KEYNUM

Set which of four WEP keys to use (0-3).

IFG_WIFI_WEP_KEYNUM

Get WEP key number that is active (int *).

The wln_status structure is documented with the parameter in ifconfig().
140 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_WEP_KEY_BIN

Set WEP key to 5 or 13 bytes, using 3 parameters:

1. WEP key number to set (int, 0-3)),

2. Length in bytes:

• IFPARAM_WIFI_WEP_KEY40 (5-byte key)
• IFPARAM_WIFI_WEP_KEY104 (13-byte key))

3. Pointer to WEP key value (byte *)

IFG_WIFI_WEP_KEY_BIN

Get value of specified WEP key, using 3 parameters:

1. WEP key number specified (int, 0-3)

2. Pointer to location to store length of WEP key (int *)

3. Pointer to location to store key value (byte *)

IFS_WIFI_WEP_KEY_HEXSTR

Set WEP key to 10 or 26 character hex string.

Set value of WEP key # specified in the first parameter (int) to 10 or 26 char hex string
stored at the second parameter (char *).

IFG_WIFI_WEP_KEY_HEXSTR

Get value of WEP key specified in the first parameter (int).
Store hex string in the second parameter (char *).

IFS_WIFI_WPA_PSK_PASSPHRASE

Set the WPA PSK to hash based on a null-terminated ASCII string of up to 63 characters
(char *) and the SSID. (Set the SSID before setting the passphrase.)

After generating the key, you can use IFG_WIFI_WPA_PSK_HEXSTR to get the key as
a 64-character hex string for use with IFS_WIFI_WPA_PSK_HEXSTR. Note that if you
change the SSID after setting the passphrase, you will need to reset the passphrase by us-
ing the IFS_WIFI_WPA_PSK_PASSPHRASE command again.

WPA pre-shared keys (PSK) are used for WPA PSK authentication and for TKIP and
CCMP encryption. Setting the key with a passphrase can take 20 seconds on an
RCM4400W. Setting the key directly as hex is much more efficient.

IFS_WIFI_WPA_PSK_HEXSTR

Set WPA PSK to 64-character hex string (char[65]).

IFS_WIFI_WPA_PSK_HEXSTR takes a null-terminated ASCII string of 64 hex digits
and uses it for the key.

IFG_WIFI_WPA_PSK_HEXSTR

Get WPA PSK as a 64-character hex string (char[65]).
TCP/IP Manual, Vol 1 rabbit.com 141

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_WPA_PSK_BIN

Set 32-byte WPA PSK (byte[32]).

IFG_WIFI_WPA_PSK_BIN

Get 32-byte WPA PSK (byte[32]).

COMMANDS FOR WI-FI ROAMING:

IFS_WIFI_ROAM_ENABLE

Set roaming state: on/off (bool).

IFG_WIFI_ROAM_ENABLE

Get roaming enabled state (bool *).

IFS_WIFI_ROAM_BEACON_MISS

Set number of beacons that must be missed consecutively before a scan for a new access
point is initiated (int).

IFG_WIFI_ROAM_BEACON_MISS

Get number of beacons that must be missed consecutively before a scan for a new access
point is initiated (int *).

COMMANDS FOR WPA/WPA2 IN ENTERPRISE MODE

IFS_WIFI_WPA_PROTOCOL
IFG_WIFI_WPA_PROTOCOL

Set/Get acceptable security protocol(s) [word/word *]. Default is to support both WPA
and WPA2.

• IFPARAM_WIFI_WPA_PROTOCOL_WPA - WPA; aka, IEEE 802.11i/D3.0
• IFPARAM_WIFI_WPA_PROTOCOL_WPA2 - WPA2; aka, IEEE 802.11i/D9.0
• IFPARAM_WIFI_WPA_PROTOCOL_RSN - WPA2; aka, IEEE 802.11i/D9.0
• IFPARAM_WIFI_WPA_PROTOCOL_ALL - A bitwise combination of all protocols

IFS_WIFI_PAIRWISE_ENCRYPTION
IFG_WIFI_PAIRWISE_ENCRYPTION

Set/Get Wi-Fi pairwise encryption types [word/word *I].

Valid values are:

• IFPARAM_WIFI_ENCR_TKIP - Valid if WIFI_USE_WPA is defined.
• IFPARAM_WIFI_ENCR_CCMP - Valid if both WIFI_USE_WPA and

WIFI_AES_ENABLED are defined.
• IFPARAM_WIFI_ENCR_NONE - Use only Group Keys (deprecated, should not be

included if APs support pairwise keys).
142 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_EAP_METHODS
IFG_WIFI_EAP_METHODS

Set/Get acceptable EAP method [longword/longword *].

The parameter is a bitmask with one of the following values. Note that methods that do
not have compiled-in support via the WPA_USE_EAP macro will be ignored. Currently,
we only support EAP_TYPE_TLS and EAP_TYPE_PEAP.

Valid values are:

• IFPARAM_EAP_PEAP - This parameter selects PEAP-MSCHAPV2. Using this
method, requires the statement:
#define WPA_USE_EAP WPA_USE_EAP_PEAP

• IFPARAM_EAP_TLS - This parameter selects EAP-TLS. Using this method,
requires the statement:
#define WPA_USE_EAP WPA_USE_EAP_TLS

IFS_WIFI_IDENTITY
IFG_WIFI_IDENTITY

Set/Get identity string for EAP [char */char **].

IFS_WIFI_ANONYMOUS_IDENTITY
IFG_WIFI_ANONYMOUS_IDENTITY

Set/Get anonymous identity string for “outer” EAP [char */char **].

IFS_WIFI_PASSWORD
IFG_WIFI_PASSWORD

Set/Get password string for EAP [char */char **].

IFS_WIFI_EAP_PSK_PASSPHRASE

Set Wi-Fi EAP PSK using passphrase [char *].

IFS_WIFI_EAP_PSK_HEXSTR
IFG_WIFI_EAP_PSK_HEXSTR

Set/Get Wi-Fi EAP PSK using 64-char hex string [char */char *].

IFS_WIFI_EAP_PSK_BIN
IFG_WIFI_EAP_PSK_BIN

Set/Get Wi-Fi EAP PSK using 32-byte array [byte */byte *].
TCP/IP Manual, Vol 1 rabbit.com 143

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_SUBJECT_MATCH

Set substring to be matched against the subject of the authentication server certificate
[char *].

The subject string is in following format (for example):

C=US/ST=CA/L=Davis/CN=Test1-AS/emailAddress=test1_as@rabbit.com

so this parameter string could be set to “/L=Davis/CN=Test” to allow all access servers
with a location of “Davis” and a common name starting with “Test.”

IFS_WIFI_ALTSUBJECT_MATCH

Set semicolon separated string of entries to be matched against the alternative subject
name of the authentication server certificate [char *].

If this string is set, the server certificate is only accepted if it contains one of the entries in
an alternative subject name extension.

altSubjectName string is in following format: TYPE:VALUE

Example: EMAIL:server@example.com
Example: DNS:server.example.com;DNS:server2.example.com

Following types are supported: EMAIL, DNS, URI.

COMMANDS FOR CERTIFICATES AND KEYS

The following parameters are for convenience when “hard-coding” certificates (e.g., from
#ximported files).

Pass a zero longword as the parameter in order to delete any resources that were allocated on a
previous call (since the library manages the SSL_Cert_t structures that are created).

IFS_WIFI_CA_CERT
IFG_WIFI_CA_CERT

Set/Get CA certificate [SSL_Cert_t far */SSL_Cert_t far **].

The authentication server is not verified if no CA certificate is provided in the “Set” com-
mand, which introduces risk of “access server spoofing.”

IFS_WIFI_CA_CERT_PATH

Set CA certificate as a Zserver resource path [char *].
144 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifconfig (cont’d)

IFS_WIFI_CLIENT_CERT
IFG_WIFI_CLIENT_CERT

Set/Get client certificate [SSL_Cert_t far */SSL_Cert_t far **].

IFS_WIFI_CLIENT_CERT_PATH

Set client certificate as Zserver file [char *,char *].

The first parameter is for the certificate, and the second one is for the private key. If the
certificate parameter is NULL, then delete resources.

IFS_WIFI_CA_CERT_XIM

Set CA certificate as #ximport DER/PEM format [longword].

IFS_WIFI_CLIENT_CERT_XIM

Set client certificate and private key as two #ximport DER/PEM format files [longword,
longword]. The first parameter is the certificate, the second one is for the private key.

RETURN VALUE

0: Success.

>0: identifer of first parameter group that encountered an error.

-1: iface parameter is invalid.

An exception (runtime error) is raised if the parameter list contains an invalid parameter
number.

LIBRARY

NET.LIB

SEE ALSO

sock_init, tcp_config, ip_print_ifs, ifstatus, ifpending
TCP/IP Manual, Vol 1 rabbit.com 145

http://www.rabbit.com

ifdown

int ifdown(int iface);

DESCRIPTION

This function attempts to deactivate the specified interface. The action depends on the previous
status reported by ifpending().

PARAMETER

iface Interface number. Use one of the definitions:

• IF_DEFAULT
• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5

If the interface does not exist you will get a compile time error.

IF_DEFAULT refers to the default interface, which will be equivalent to
the first of the other interface identifiers in the above list which exists.

RETURN VALUE

IFCTL_OK: if OK

IFCTL_FAIL: if error

IFCTL_PEND: if OK but not complete

LIBRARY

NET.LIB

SEE ALSO

ifconfig, ifup, ifstatus, ifpending

ifpending() Action

IF_DOWN None, returns IFCTL_OK.

IF_COMING_UP Cancels bringing up, starts down.

IF_UP Starts bringing interface down using normal “graceful” procedure.

IF_COMING_DOWN Forces down, cuts short any normal termination procedure.
146 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifpending

int ifpending(int iface);

DESCRIPTION

Returns indication of whether the specified interface is up, down, pending up or pending down.
This gives more than ifstatus(), which only indicates the current state (up or down).

NOTE: ANDing the return value with 0x01 indicates a pending condition; ANDing with 0x02
is equivalent to the return from ifstatus(), except that ifstatus() returns “1” instead
of “2”.

Example:

// assume IF_DEFAULT is down. Bring it up...
ifconfig(IF_DEFAULT, IFS_UP, IFS_END);
while (ifpending(IF_DEFAULT) == IF_COMING_UP)
tcp_tick(NULL);
if (ifpending(IF_DEFAULT) == IF_UP) // came up OK
else // failed to come up

PARAMETERS

iface Interface number. Use one of the definitions:

• IF_DEFAULT
• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5

If the interface does not exist, you will get a compile time error.
IF_DEFAULT refers to the default interface, which will be equivalent to
the first of the other interface identifiers in the above list which exists.

RETURN VALUE

0: If interface is currently down and not pending up.
1: If interface is currently down and pending up.
2: If interface is currently up and not pending down.
3: If interface is currently up and pending down.

Rather than the above constants, you should use the macros: IF_DOWN, IF_COMING_UP,
IF_UP and IF_COMING_DOWN.

 LIBRARY

NET.LIB

SEE ALSO

ifconfig, ifdown, ifup, ifstatus
TCP/IP Manual, Vol 1 rabbit.com 147

http://www.rabbit.com

ifstatus

int ifstatus(int iface);

DESCRIPTION

This macro returns the status of the specified interface.

PARAMETER

iface Interface number. Use one of the definitions

• IF_DEFAULT
• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5

If the interface does not exist, then you will get a compile time error.
IF_DEFAULT refers to the default interface, which will be equivalent to
the first of the other interface identifiers in the above list which exists.

RETURN VALUE

 0: Interface is currently down.
!0: Interface is currently up (active).

LIBRARY

NET.LIB

SEE ALSO

ifconfig, ifup, ifdown, ifpending
148 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ifup

int ifup(int iface);

DESCRIPTION

This function attempts to activate the specified interface. The action depends on the previous
status reported by ifpending().

 Return Value of ifpending() Action Taken by ifup()

IF_UP None, returns IFCTL_OK

IF_COMING_UP None, returns IFCTL_PEND

IF_DOWN Starts bringing interface up using normal procedure.

IF_COMING_DOWN Depends on interface capabilities, but note that in prac-
tice this always returns IFCTL_FAIL.

If the interface is currently “coming down,” the action
taken when ifup() is called depends on the interface.
Some interfaces may not allow the interface to come
back up in this condition, in which case IFCTL_FAIL
will be returned. Try again later when the interface is
fully down, or you can call ifdown() to force the
interface down immediately.

If the interface allows changing requested state when
coming down, then the return value will be either
IFCTL_PEND or IFCTL_OK. Currently, the only inter-
face types which do not come down instantly are PPP
over async serial and PPPoE. These do NOT currently
implement calling ifup() when they are pending
down.
TCP/IP Manual, Vol 1 rabbit.com 149

http://www.rabbit.com

ifup (cont’d)

 PARAMETER

iface Interface number. Use one of the definitions

• IF_DEFAULT
• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5

If the interface does not exist, then you will get a compile time error.
IF_DEFAULT refers to the default interface, which will be equivalent to
the first of the other interface identifiers in the above list which exists.

RETURN VALUE

IFCTL_OK: if OK.
IFCTL_FAIL: if error.
IFCTL_PEND: if OK but not complete.

LIBRARY

NET.LIB

SEE ALSO

ifconfig, ifdown, ifstatus
150 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

inet_addr

longword inet_addr(char *dotted_ip_string);

DESCRIPTION

Converts an IP address from dotted decimal IP format to its binary representation. No check is
made as to the validity of the address.

PARAMETERS

dotted_ip_string Dotted decimal IP string, e.g., "10.10.6.100".

RETURN VALUE

0: Failure.

Binary representation of dotted_ip_string: Success.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet_ntoa
TCP/IP Manual, Vol 1 rabbit.com 151

http://www.rabbit.com

inet_ntoa

char *inet_ntoa(char *s, longword ip);

DESCRIPTION

Converts a binary IP address to its dotted decimal format, e.g.,
inet_ntoa(s,0x0a0a0664) returns a pointer to "10.10.6.100".

PARAMETERS

s Location to place the dotted decimal string. A sufficient buffer size would
be 16 bytes.

ip The IP address to convert.

RETURN VALUE

Pointer to the dotted decimal string pointed to by s.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

inet_addr
152 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ip_iface

byte ip_iface(longword ipaddr, int local_only);

DESCRIPTION

Given an IP address, this function return the interface number for that address. If ipaddr is an
address on one of the local subnets, then the interface to that subnet is returned.

If the address is not local, then the local_only parameter determines the result:

If local_only is 1, then IF_ANY will be returned for a non-local address.

Otherwise, the router_for() function is invoked to find the correct router -- the interface
for the router is returned.

PARAMETERS

ipaddr IP address of an external host.

local_only 0: allow non-local addresses (returns interface for router).
1: return IF_ANY for non-local addresses.

RETURN VALUE

Interface number (0..IF_MAX-1), of possibly IF_ANY (0xFF).

LIBRARY

IP.LIB

SEE ALSO

router_for
TCP/IP Manual, Vol 1 rabbit.com 153

http://www.rabbit.com

ip_print_ifs

void ip_print_ifs(void);

DESCRIPTION

Print all interface table entries. This is for debugging only, since the results are printed to the
Dynamic C Stdio window.

There are 8 fields for each interface entry:

The interface number

IP addr The local ("home") IP address of this interface. May be 0.0.0.0 if interface
is not currently active.

Mask Local subnet mask.

Up Indicates status; one of

Yes: interface currently active
No: currently inactive
NYU: Not Yet Up i.e., coming up
NYD: Not Yet Down i.e., coming down

Type: Interface type; one of

eth: normal Ethernet
ppp: PPP over serial port
pppoe: PPP over Ethernet

MTU: Maximum transmission unit.

Flags: A list of the following characters:

*: this is the default interface (IF_DEFAULT)
D: Use DHCP
DD: Currently configured via DHCP
S: allow IP addr configuration via directed ping (ICMP echo).
SS: IP address currently set via directed ping
1: IGMP version 1 router present on this interface

Peer/router IP address of peer node (for PPP or PPPoE), or address of default router on
this interface (for Ethernet type). May be blank or 0.0.0.0 if no peer or rout-
er is available.

LIBRARY

IP.LIB
154 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ip_timer_expired

word ip_timer_expired(void *s);

DESCRIPTION

Check the timer inside the socket structure that was set by ip_timer_init().

PARAMETER

s Pointer to a socket.

RETURN VALUE

0: If not expired.

1: If expired.

LIBRARY

NET.LIB

SEE ALSO

ip_timer_init
TCP/IP Manual, Vol 1 rabbit.com 155

http://www.rabbit.com

ip_timer_init

void ip_timer_init(void *s, word seconds);

DESCRIPTION

Set a timer inside the socket structure.

PARAMETER

s Pointer to a socket.

seconds Number of seconds for the time-out; if seconds is zero never time-out.

RETURN VALUE

None.

LIBRARY

NET.LIB

SEE ALSO

ip_timer_expired
156 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

is_valid_iface

int is_valid_iface(int iface);

DESCRIPTION

This function returns a boolean indicator of whether the given interface number is valid for the
configuration.

PARAMETER

iface Interface number. Use one of the definitions

• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_PPPOE0
• IF_PPPOE1
• IF_PPP0-5

RETURN VALUE

!0: Interface is valid.

0: Interface does not exist.

LIBRARY

NET.LIB

SEE ALSO

ifconfig, ifup, ifdown, ifstatus
TCP/IP Manual, Vol 1 rabbit.com 157

http://www.rabbit.com

ModemClose

void ModemClose(void);

DESCRIPTION

Closes the serial driver down.

LIBRARY

MODEM.LIB

ModemConnected

int ModemConnected(void);

DESCRIPTION

Returns true if the DCD line is asserted, meaning the modem is connected to a remote carrier.

RETURN VALUE

1: DCD line is active.

0: DCD inactive (nothing connected).

LIBRARY

MODEM.LIB
158 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ModemExpect

int ModemExpect(char *send_string, unsigned long timeout);

DESCRIPTION

Listens for a specific string to be sent by the modem.

PARAMETERS

send_string A NULL-terminated string to listen for.

timeout Maximum wait in milliseconds for a character.

RETURN VALUE

1: The expected string was received.

0: A timeout occurred before receiving the string.

LIBRARY

MODEM.LIB

 ModemHangup

int ModemHangup(void);

DESCRIPTION

Sends "ATH" and "ATZ" commands.

RETURN VALUE

1: Success.

0: Modem not responding.

LIBRARY

MODEM.LIB
TCP/IP Manual, Vol 1 rabbit.com 159

http://www.rabbit.com

ModemInit

int ModemInit(void);

DESCRIPTION

Resets modem with AT, ATZ commands.

RETURN VALUE

1: Success.

0: Modem not responding.

LIBRARY

MODEM.LIB

ModemOpen

int ModemOpen(unsigned long baud);

DESCRIPTION

Starts up communication with an external modem.

PARAMETERS

baud The baud rate for communicating with the modem.

RETURN VALUE

1: External modem detected

0: Not connected to external modem

LIBRARY

MODEM.LIB
160 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

ModemReady

int ModemReady(void);

DESCRIPTION

Returns true if the DSR line is asserted.

RETURN VALUE

1: DSR line is active.

0: DSR inactive (nothing connected).

LIBRARY

MODEM.LIB

ModemRinging

int ModemRinging(void);

DESCRIPTION

Returns true if the RI line is asserted, meaning that the line is ringing.

RETURN VALUE

1: RI line is active.

0: RI inactive (nothing connected).

LIBRARY

MODEM.LIB
TCP/IP Manual, Vol 1 rabbit.com 161

http://www.rabbit.com

ModemSend

void ModemSend(char *send_string);

DESCRIPTION

Sends a string to the modem.

PARAMETERS

send_string A NULL-terminated string to be sent to the modem.

LIBRARY

MODEM.LIB

ModemStartPPP

void ModemStartPPP(void);

DESCRIPTION

Hands control of the serial line over to the PPP driver.

LIBRARY

MODEM.LIB
162 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

multicast_joingroup

int multicast_joingroup(int iface, longword ipaddr);

DESCRIPTION

This function joins the specified multicast group (class D IP address--from 224.0.0.0 to
239.255.255.255) on the specified interface. For an Ethernet interface, it configures the hard-
ware to accept multicast packets for the specified address.

Note that this function is called automatically when udp_open() is used to open a multicast
address.

PARAMETER

iface Interface on which to join the group. Use one of the definitions

• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_DEFAULT

ipaddr Multicast group to join.

RETURN VALUE

0: Success.

1: Failure (e.g., ipaddr is not a multicast address; or not enough available ARP entries to hold
the group).

LIBRARY

IGMP.LIB
TCP/IP Manual, Vol 1 rabbit.com 163

http://www.rabbit.com

multicast_leavegroup

int multicast_leavegroup(int iface, longword ipaddr);

DESCRIPTION

This function leaves the specified multicast group (class D IP address--from 224.0.0.0 to
239.255.255.255) on the specified interface. For an Ethernet interface, it configures the hard-
ware to no longer accept multicast packets for the specified address. This function will leave the
group no matter how many multicast_joingroup() calls were made on that group.
However, note that this function will not actually leave a group for which there are UDP sock-
ets. However, when those UDP sockets close, the group will be left.

Note that this function is called automatically when a multicast UDP socket is closed.

PARAMETER

iface Interface on which to leave the group. Use one of the definitions

• IF_ETH0
• IF_ETH1
• IF_WIFI0
• IF_DEFAULT

ipaddr Multicast group to leave.

RETURN VALUE

0: Success.

1: Failure (e.g., ipaddr is not a multicast address).

LIBRARY

IGMP.LIB
164 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

 ntohl

longword ntohl(longword value);

DESCRIPTION

Converts network-ordered long word to host-ordered long word. This function is necessary if
you are implementing standard internet protocols because the Rabbit does not use the standard
for network byte ordering. The network orders bytes with the most significant byte first and the
least significant byte last. On the Rabbit, the bytes are in the opposite order.

PARAMETERS

value Network-ordered long word.

RETURN VALUE

Network-ordered long word in host-ordered format, e.g., ntohl(0x44332211) returns
0x11223344

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htons, ntohs, htonl
TCP/IP Manual, Vol 1 rabbit.com 165

http://www.rabbit.com

ntohs

word ntohs(word value);

DESCRIPTION

Converts network-ordered word to host-ordered word. This function is necessary if you are im-
plementing standard internet protocols because the Rabbit does not use the standard for network
byte ordering. The network orders bytes with the most significant byte first and the least signif-
icant byte last. On the Rabbit, the bytes are in the opposite order.

PARAMETERS

value Network-ordered word.

RETURN VALUE

Network-ordered word in host-ordered format, e.g., ntohs(0x2211) returns 0x1122

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

htonl, ntohl, htons
166 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

pd_getaddress

void pd_getaddress(int nic, void *buffer);

DESCRIPTION

This function copies the Ethernet address (aka the MAC address) into the buffer.

PARAMETERS

nic Starting with Dynamic C 7.30, this parameter identifies an Ethernet inter-
face. Use a value of 0 if only one NIC is present

buffer Place to copy address to. Must be at least 6 byes.

RETURN VALUE

None.

LIBRARY

PKTDRV.LIB

EXAMPLE

main() {
char buf[6];
sock_init();
pd_getaddress(0,buf);

printf("Your Link Address is:%02x%02x:%02x%02x:%02x%02x
\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);

}

TCP/IP Manual, Vol 1 rabbit.com 167

http://www.rabbit.com

pd_havelink

int pd_havelink(int nic);

DESCRIPTION

Determines if the physical-layer link is established for the specified NIC.

PARAMETERS

nic The NIC to check. Use a value of 0 if only one NIC is present.

RETURN VALUE

0: There is no link.

!0: The link is established.

LIBRARY

PKTDRV.LIB
168 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

pd_powerdown

 int pd_powerdown(int nic);

DESCRIPTION

Power down the interface hardware by turning off as many services as possible. When the NIC
is in powerdown mode, it is very important to not call any TCP/IP, Ethernet, etc. functions, as
they will obviously fail, and the results will be undefined. pd_powerup() should be the very
next network function called, to re-enable the NIC.

WARNING: When used to power down a wireless chipset (IF_WIFI0 interface) then this will
result in loss of association with the access point. In effect, the network interface will come down.
Thus, it is highly recommended to bring the interface down before calling this power-down func-
tion. See the POWERDOWN.C sample in Samples\RCM4400W\TCPIP for an example of how
to do this.

PARAMETERS

nic The interface to powerdown. Currently, only some Ethernet chipsets are
applicable (IF_ETH0), and some Wi-Fi chipsets such as on the
RCM4400W. If the interface does not support this function, then it will be
ignored.

RETURN VALUE

0: Success.

!0: Error.

LIBRARY

PKTDRV.LIB

SEE ALSO

pd_powerup
TCP/IP Manual, Vol 1 rabbit.com 169

http://www.rabbit.com

pd_powerup

int pd_powerup(int nic);

DESCRIPTION

Power up the NIC, undoing the sleepy-mode changes made by pd_powerdown. After this
function has returned success, Ethernet and TCP/IP function may be called again.

NOTE: This function will block for 10 ms, to let the chip start up.

PARAMETERS

nic The NIC to power up. Use a value of 0 if only one NIC is present.

RETURN VALUE

0: Success.

!0: Error.

LIBRARY

PKTDRV.LIB

SEE ALSO

pd_powerdown
170 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

_ping

int _ping(longword host_ip, longword sequence_number);

DESCRIPTION

Generates an ICMP request for host. NOTE: this is a macro that calls _send_ping.

PARAMETERS

host_ip IP address to send ping.

sequence_number User-defined sequence number.

RETURN VALUE

0: Success.

1: Failure, unable to resolve hardware address.

-1: Failure, unable to transmit ICMP request.

LIBRARY

ICMP.LIB

SEE ALSO

_chk_ping, _send_ping
TCP/IP Manual, Vol 1 rabbit.com 171

http://www.rabbit.com

PPPactive

int PPPactive(void);

DESCRIPTION

Returns boolean value indicating if there is currently an active link to a peer.

RETURN VALUE

>0: Active link to peer.

0: No active link.

LIBRARY

PPP.LIB

PPPnegotiateIP

void PPPnegotiateIP(unsigned long local_ip, unsigned long remote_ip);

DESCRIPTION

Sets PPP driver to negotiate IP addresses for itself and the remote peer. Otherwise, the system
will rely on the remote peer to set addresses.

PARAMETERS

local_ip IP number to use for this PPP connection.

remote_ip IP number that the remote peer should be set to.

RETURN VALUE

None.

LIBRARY

PPP.LIB
172 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

PPPsetAuthenticatee

void PPPsetAuthenticatee(char * username, char * password);

DESCRIPTION

Sets up the driver to send a PAP authentication message to a peer when requested.

PARAMETERS

username The username to send to the peer. The argument string is not copied, so it
must stay constant.

password The password to send to the peer. The argument string is not copied, so it
must stay constant.

RETURN VALUE

None.

LIBRARY

PPP.LIB

PPPsetAuthenticator

void PPPsetAuthenticator(char * username, char * password);

DESCRIPTION

Sets up the driver to require a PAP authentication message from a peer. Negotiation will fail un-
less the peer sends the specified username/password pair. This function is generally used when
the Rabbit is acting as a dial-in server.

PARAMETERS

username The user name that the peer must match for the link to proceed. The argu-
ment string is not copied, so it must stay constant.

password The password that the peer must match for the link to proceed. The argu-
ment string is not copied, so it must stay constant.

RETURN VALUE

None.

LIBRARY

PPP.LIB
TCP/IP Manual, Vol 1 rabbit.com 173

http://www.rabbit.com

PPPshutdown

int PPPshutdown(unsigned long timeout);

DESCRIPTION

Sends a Link Terminate Request packet. Waits for link to be torn down.

PARAMETERS

timeout Number of milliseconds to wait before giving up on a response from the
peer.

RETURN VALUE

1: Shutdown succeeded.

0: Shutdown timed-out.

LIBRARY

PPP.LIB

psocket

void psocket(void *s);

DESCRIPTION

Given an open UDP or TCP socket, the IP address of the remote host is printed out to the Stdio
window in dotted IP format followed by a colon and the decimal port number on that machine.
This routine can be useful for debugging your programs.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

BSDNAME.LIB
174 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

resolve

longword resolve(char *host_string);

DESCRIPTION

Converts a text string, which contains either the dotted IP address or host name, into the long-
word containing the IP address. In the case of dotted IP, no validity check is made for the ad-
dress. NOTE: this function blocks. Names are currently limited to 64 characters. If it is
necessary to lookup larger names include the following line in the application program:

#define DNS_MAX_NAME <len in chars>

If DISABLE_DNS has been defined, resolve() will not do DNS lookup.

If you are trying to resolve a host name, you must set up at least one name server. You can set
the default name server by defining the MY_NAMESERVER macro at the top of your program.
When you call resolve(), it will contact the name server and request the IP address. If there
is an error, resolve() will return 0L.

To simply convert dotted IP to longword, see inet_addr().

For a sample program, see the Example Using tcp_open() listed under tcp_open().

PARAMETERS

host_string Pointer to text string to convert.

RETURN VALUE

0: Failure.

!0: The IP address *host_string resolves to.

LIBRARY

DNS.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

_arp_resolve, inet_addr, inet_ntoa
TCP/IP Manual, Vol 1 rabbit.com 175

http://www.rabbit.com

resolve_cancel

int resolve_cancel(int handle);

DESCRIPTION

Cancels the resolve request represented by the given handle. If the handle is 0, then this function
cancels all outstanding resolve requests.

PARAMETERS

handle Handle that represents a DNS lookup process, or 0 to cancel all outstanding
resolve requests.

RETURN VALUE

RESOLVE_SUCCESS: The resolve request has been cancelled and is no longer valid.

RESOLVE_HANDLENOTVALID: There is no request for the given handle.

RESOLVE_NONAMESERVER: No nameserver has been defined.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_start, resolve_name_check, resolve
176 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

resolve_name_check

int resolve_name_check(int handle, longword *resolved_ip);

DESCRIPTION

Checks if the DNS lookup represented by the given handle has completed. On success, it fills
in the resolved IP address in the space pointed to by resolved_ip.

PARAMETERS

handle Handle that represents a DNS lookup process.

resolved_ip A pointer to a user-supplied longword where the resolved IP address
will be placed.

RETURN VALUE

RESOLVE_SUCCESS: The address was resolved. The given handle will no longer be valid af-
ter this value is returned.

RESOLVE_AGAIN: The resolve process has not completed, call this function again.

RESOLVE_FAILED: The DNS server responded that the given host name does not exist. The
given handle will no longer be valid if RESOLVE_FAILED is returned.

RESOLVE_TIMEDOUT: The request has been cancelled because a response from the DNS
server was not received before the last time-out expired. The given handle will no longer be
valid after this value is returned.

RESOLVE_HANDLENOTVALID: There is no DNS lookup occurring for the given handle.

RESOLVE_NONAMESERVER: No nameserver has been defined.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_start, resolve_cancel, resolve
TCP/IP Manual, Vol 1 rabbit.com 177

http://www.rabbit.com

resolve_name_start

int resolve_name_start(char *hostname);

DESCRIPTION

Starts the process of resolving a host name into an IP address. The given host name is limited
to DNS_MAX_NAME characters, which is 64 by default (63 characters + the NULL terminator).
If a default domain is to be added, then the two strings together are limited to DNS_MAX_NAME.

If hostname does not contain a '.' then the default domain (MY_DOMAIN) , if provided, is ap-
pended to hostname. If hostname with the appended default domain does not exist,
hostname is tried by itself. If that also fails, the lookup fails.

If hostname does contain a '.' then hostname is looked up by itself. If it does not exist, the
default domain is appended, and that combination is tried. If that also fails, the lookup fails.

If hostname ends with a '.', then the default domain is not appended. The host name is con-
sidered “fully qualified.” The lookup is attempted without the ending '.' and if that fails no other
combinations are attempted.

This function returns a handle that must be used in the subsequent
resolve_name_check() and resolve_cancel() functions.

PARAMETERS

hostname Host name to convert to an IP address

RETURN VALUE

>0: Handle for calls to resolve_name_check() and resolve_cancel().

RESOLVE_NOENTRIES: Could not start the resolve process because there were no resolve en-
tries free.

 RESOLVE_LONGHOSTNAME: The given hostname was too large.

RESOLVE_NONAMESERVER: No nameserver has been defined.

LIBRARY

DNS.LIB

SEE ALSO

resolve_name_check, resolve_cancel, resolve
178 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

rip

char *rip(char *string);

DESCRIPTION

Strips newline (\n) and/or carriage return (\r) from a string. Only the first \n and \r characters are
replaced with \0s. The resulting string beyond the first \0 character is undefined.

PARAMETERS

string Pointer to a string.

RETURN VALUE

Pointer to the modified string.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

EXAMPLE

setmode(s, TCP_MODE_ASCII);
...
sock_puts(s, rip(questionable_string));

NOTE: In ASCII mode sock_puts() adds \n; rip is used to make certain the string does
not already have a newline character. Remember, rip modifies the source string, not a copy!
TCP/IP Manual, Vol 1 rabbit.com 179

http://www.rabbit.com

router_add

ATHandle router_add(longword ipaddr, byte iface, longword subnet,
longword mask, word flags);

DESCRIPTION

Add a router to the router table. The same router can be added multiple times, with different
subnet and mask. Normally, only one entry is needed in order to access non-local subnets: this
entry should be specified with a zero mask. The hardware address of the router is not immedi-
ately resolved, however this can be done explicitly by calling arpresolve_start() with
the same IP address. Otherwise, the router will be resolved only when it first becomes necessary.

PARAMETERS

ipaddr IP address of the router. This address should be on the local subnet, since
non-local routers are not supported.

iface Interface to use to access this router, or IF_DEFAULT.

subnet Subnet accessible through this entry.

mask Subnet mask for this entry.

flags Flags word: set to zero (non-zero reserved for internal use).

RETURN VALUE

Positive value: completed successfully. The return value is the ARP cache table entry for this
router.

ATH_NOENTRIES: insufficient space in either the router or ARP cache tables.

LIBRARY

ARP.LIB
180 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

router_del_all

void router_del_all(void);

DESCRIPTION

Delete all router table entries. This will make any host that is not on the local subnet inaccessi-
ble. This function is usually called in preparation for adding a new router entry.

LIBRARY

ARP.LIB

router_delete

ATHandle router_delete(longword ipaddr);

DESCRIPTION

Delete a router from the router table. All instances of the router's IP address are deleted, and the
ARP cache table entry is flushed.

PARAMETER

ipaddr IP address of the router. This address should be on the local subnet, since
non-local routers are not supported.

RETURN VALUE

Positive value: completed successfully.

ATH_NOTFOUND: specified entry did not exist.

LIBRARY

ARP.LIB
TCP/IP Manual, Vol 1 rabbit.com 181

http://www.rabbit.com

router_for

ATHandle router_for(longword ipaddr, byte *router_used,
byte *r_iface);

DESCRIPTION

Return the ARP cache table entry corresponding to the router that handles the given IP address.
If there is a pre configured router for the given address, it is selected. Otherwise, routers discov-
ered via DHCP or ICMP router discovery are searched, with the highest preference being se-
lected. Failing this, if there is a point-to-point interface, this is selected as the default.

An alternative mode of calling this function is invoked if ipaddr is zero. In this case, the de-
fault router for the specified interface (*r_iface) is returned. If r_iface is NULL, then the
default interface is assumed:IF_DEFAULT, the only interface supported at present.
IF_DEFAULT may refer to the primary Ethernet NIC or a PPP connection that uses a serial
port or the primary Ethernet NIC.

PARAMETERS

ipaddr IP address of the host which is not on the local subnet.

router_used If not NULL, the byte at this location is set to the index of the router in the
router table.

r_iface If not NULL, the byte at this location is set to the interface number that can
access the router.

RETURN VALUE

Positive value: completed successfully.

ATH_NOROUTER: no suitable router found. Either no router is configured, or the given IP ad-
dress is on the local subnet.

LIBRARY

ARP.LIB
182 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

router_for_iface

ATHandle router_for_iface(longword ipaddr, word * router_used,
word * r_iface, word siface);

DESCRIPTION

Return the ARP cache table entry corresponding to the router which handles the given IP ad-
dress on a specific interface.

If the “siface” parameter is IF_ANY, then return the ARP cache table entry corresponding to
the router which handles the given IP address. If there is a preconfigured router for the given
address, it is selected. Otherwise, routers discovered via DHCP or ICMP router discovery are
searched, with the highest preference being selected. Failing this, if there is a point-to-point in-
terface, this is selected as the default.

If the specified IP address already has an entry in the ARP cache table, and there is a router al-
ready defined for that address, then the current router is returned. This overrides any other se-
lection process.

Where multiple routers can be used to access the given IP address, the one whose entry has the
most specific netmask is used. If the netmasks are equal, then an arbitrary entry is used.

An alternative mode of calling this function is invoked if “ipaddr” is zero. In this case, the de-
fault router for the specified interface (i.e., “siface”) is returned. If “siface” is IF_ANY, then the
most general router entry is returned, i.e., the overall default.

If “siface” is a virtual ethernet interface, then if there is no specific router defined, then the rout-
er for the underlying real interface will be used. This may not be satisfactory if the router is not
on the subnet defined for the virtual interface. Thus, if non-overlapping subnets are used then
the virtual interface should have a valid router explicitly defined.

PARAMETERS

ipaddr IP address of the host which is not on the local subnet, or zero to find a de-
fault router.

router_used If not NULL, the word at this location is set to the index of the router in the
router table.

r_iface If ipaddr is non-zero this is an output parameter: If not NULL, the word at
this location is set to the interface number that can access the router.

siface Specific interface, or IF_ANY to select the best router for the given IP ad-
dress.
TCP/IP Manual, Vol 1 rabbit.com 183

http://www.rabbit.com

router_for_iface (cont’d)

RETURN VALUE

Positive value: Completed successfully.

ATH_NOROUTER: No suitable router found. Either no router is configured, or the given IP ad-
dress is on the local subnet of the specified interface, or no router on the specified interface
can handle the address based on the router network/netmask information in the router table.

LIBRARY

ARP.LIB

SEE ALSO

router_add
184 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

router_print

int router_print(byte r);

DESCRIPTION

Print a router table entry, indexed by 'r.' This is for debugging only, since the results are printed
to the Dynamic C stdio window. 'r' may be obtained from the router_for() function, by
passing &r as the router_used parameter to that function.

If the specified router entry is not in use, nothing is printed and the return value is non-zero.
Otherwise, the information is printed and zero returned.

See router_printall() for a description of the output fields printed.

PARAMETER

r Router table index. A number from 0 through
(ARP_ROUTER_TABLE_SIZE-1).

RETURN VALUE

0: Success, information printed to stdio window.

!0: Entry is not in use.

LIBRARY

ARP.LIB

SEE ALSO

router_printall
TCP/IP Manual, Vol 1 rabbit.com 185

http://www.rabbit.com

router_printall

int router_printall(void);

DESCRIPTION

Print all router table entries. This is for debugging only, since the results are printed to the Dy-
namic C stdio window. If no routers exist in the table, nothing is printed and the return value is
non-zero.

There are 6 fields for each router entry:

RETURN VALUE

0: Success, information printed to stdio window.

!0: No routers in the table.

LIBRARY

ARP.LIB

Router Table Entry Field Description of Field

The entry number.

Flags

A list of the following characters:
P = this entry pre configured
T = transient entry
D = added by DHCP/BOOTP
R = added by ICMP redirect
? = router not reachable
H = router's hardware address resolved

Address
Either the router's IP address or an indication that the entry is a
point-to-point link.

 i/f Interface number.

Net/preference

For pre configured entries, indicates the network(s) which are
served by this entry (the Mask indicates which bits of the IP
address are used to match with the network address). For non-
pre configured entries, this is the "preference value" assigned.

Mask/exp(sec)
For pre configured entries, the bitmask to apply to IP addresses
when matching against the above network. Otherwise, is the
expiry time from the present, in seconds, of a transient entry.
186 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

_send_ping

int _send_ping(longword host, longword countnum, byte ttl,
byte tos, longword *theid);

DESCRIPTION

Generates an ICMP request for host.

PARAMETERS

host IP address to send ping.

countnum User-defined count number.

ttl Time to live for the packets (hop count). 255 is a standard value for this
field. See sock_set_ttl() for details.

tos Type of service on the packets. See sock_set_tos() for details.

theid The identifier that was sent out.

RETURN VALUE

0: Success.

1: Failure: unable to resolve hardware address.

-1: Failure: unable to transmit ICMP request.

LIBRARY

ICMP.LIB

SEE ALSO

_chk_ping, _ping, sock_set_ttl, sock_set_tos
TCP/IP Manual, Vol 1 rabbit.com 187

http://www.rabbit.com

setdomainname

char *setdomainname(char *name);

DESCRIPTION

The domain name returned by getdomainname() and used for resolve() is set to the
value in the string pointed to by name. Changing the contents of the string after a
setdomainname() will change the value of the system domain string. It is not recommend-
ed. Instead dedicate a static location for holding the domain name.

setdomainname(NULL) is an acceptable way to remove any domain name and subse-
quent resolve calls will not attempt to append a domain name.

PARAMETERS

name Pointer to string.

RETURN VALUE

Pointer to string that was passed in.

LIBRARY

BSDNAME.LIB

SEE ALSO

getdomainname, sethostname, gethostname, getpeername,
getsockname
188 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sethostid

longword sethostid(longword ip);

DESCRIPTION

This function changes the system’s current IP address. Changing this address will disrupt exist-
ing TCP or UDP sessions. You should close all sockets before calling this function.

Normally there is no need to call this function. The macro MY_IP_ADDRESS defines an initial
IP address for this host, or you can define USE_DHCP to obtain a dynamically assigned address.
In either case, it is not recommended to use this function to change the address.

 PARAMETERS

ip New IP address.

RETURN VALUE

New IP address.

LIBRARY

IP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

gethostid
TCP/IP Manual, Vol 1 rabbit.com 189

http://www.rabbit.com

sethostname

char *sethostname(char *name);

DESCRIPTION

Sets the host portion of our name.

PARAMETERS

name Pointer to the new host name.

RETURN VALUE

Pointer to internal hostname buffer on success.

NULL on error (if hostname is too long).

LIBRARY

BSDNAME.LIB
190 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_abort

void sock_abort(void *s);

DESCRIPTION

Close a connection immediately. Under TCP this is done by sending a RST (reset).

Under UDP there is no difference between sock_close() and sock_abort().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_close, tcp_open
TCP/IP Manual, Vol 1 rabbit.com 191

http://www.rabbit.com

sock_alive

int sock_alive(tcp_Socket *s);

DESCRIPTION

This function performs the same test as tcp_tick(s) i.e., it checks the status of the socket
and returns 0 if the socket is fully closed.

The processing overhead of tcp_tick() is avoided for cases where several sockets need to
be checked in succession.

When this function returns zero for a socket, the socket is then ready for a new call to
tcp_open() or tcp_listen() and friends.

PARAMETER

s TCP socket pointer.

RETURN VALUE

0: Connection reset or fully closed. Socket ready for re-use in another connection.

!0: Connection is opening, established, listening, or in the process of closing.

 LIBRARY

NET.LIB

SEE ALSO

tcp_open, tcp_listen, sock_close, sock_abort, tcp_tick
192 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_aread

int sock_aread(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Read exactly len bytes from the socket or, if that amount of data is not yet available, do not
read anything. Unlike sock_fastread(), this function will never return less than the re-
quested amount of data. This can be useful when the application knows that it will be receiving
a fixed amount of data, but does not wish to handle the arrival of only part of the data, as it would
have to do if sock_fastread() was used.

len must be less than or equal to the socket receive buffer size, otherwise
sock_fastread() must be used.

This function is only valid for TCP sockets. It is available starting with DC 7.30.

PARAMETERS

s Pointer to a TCP socket.

dp Buffer to place bytes that are read.

len Number of bytes to copy to the buffer.

RETURN VALUE

-1: len is greater than the total socket receive buffer size, hence this request could never be satis-
fied in one call.

-2: The socket is closed or closing, but insufficient data is in the buffer to satisfy the request.
-3: len < 0 or the socket parameter was invalid.
0: Insufficient data is in the buffer to satisfy the request, or len was zero. Try again later since

the socket is still able to receive data from the peer.
len: The len parameter is returned if there was sufficient data in the socket buffer to satisfy the

request.

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_xfastread, sock_fastwrite,
sock_xfastwrite, sock_axread, sock_awrite, sock_axwrite
TCP/IP Manual, Vol 1 rabbit.com 193

http://www.rabbit.com

sock_awrite

int sock_awrite(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Write exactly len bytes to the socket or, if that amount of data can not be written, do not write
anything. Unlike sock_fastwrite(), this function will never return less than the request-
ed amount of data. This can be useful when the application needs to write a fixed amount of
data, but does not wish to handle the transmission of only part of the data, as it would have to
do if sock_fastwrite() was used.

len must be less than or equal to the socket transmit buffer size, otherwise
sock_fastwrite() must be used.

This function is only valid for TCP sockets. It is available starting with DC 7.30.

PARAMETERS

s Pointer to a TCP socket.

dp Buffer containing data to write.

len Number of bytes to write to the socket buffer.

RETURN VALUE

-1: len is greater than the total socket receive buffer size, hence this request could never be
satisfied in one call.

-2: The socket has been closed for further transmissions, e.g., because sock_close() has
already been called.

-3: len < 0 or the socket parameter was invalid.
0: Insufficient free space in the transmit buffer to satisfy the request, or len was zero. Try

again later since the peer will eventually acknowledge the receipt of previous data, freeing
up transmit buffer space.

len: The len parameter is returned if there was sufficient data in the socket transmit buffer to
satisfy the request.

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_xfastread, sock_fastwrite,
sock_xfastwrite, sock_axread, sock_aread, sock_axwrite
194 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_axread

int sock_axread(tcp_Socket *s, long dp, int len);

DESCRIPTION

Reads exactly len bytes from the socket or, if that amount of data is not yet available, do not
read anything.

This function is available starting with DC 7.30. It is identical to sock_aread() except that
the destination buffer is in xmem.

PARAMETERS

s Pointer to a TCP socket.

dp Buffer to place bytes that are read.

len Number of bytes to copy to the buffer.

RETURN VALUE

-1: len is greater than the total socket receive buffer size, hence this request could never be satis-
fied in one call.

-2: The socket is closed or closing, but insufficient data is in the buffer to satisfy the request.
-3: len < 0 or the socket parameter was invalid.
0: Insufficient data is in the buffer to satisfy the request, or len was zero. Try again later since

the socket is still able to receive data from the peer.
len: The len parameter is returned if there was sufficient data in the socket buffer to satisfy the

request.

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_xfastread, sock_fastwrite,
sock_xfastwrite, sock_aread, sock_awrite, sock_axwrite
TCP/IP Manual, Vol 1 rabbit.com 195

http://www.rabbit.com

sock_axwrite

int sock_axwrite(tcp_Socket *s, long dp, int len);

DESCRIPTION

Write exactly len bytes to the socket or, if that amount of data can not be written, do not write
anything. This function is available starting with DC 7.30. It is identical to sock_awrite()
except that the source buffer is in xmem.

Parameters

s Pointer to a TCP socket.

dp Buffer containing data to write.

len Number of bytes to write to the socket buffer.

RETURN VALUE

-1: len is greater than the total socket receive buffer size, hence this request could never be
satisfied in one call.

-2: The socket has been closed for further transmissions, e.g., because sock_close() has
already been called.

-3: len < 0 or the socket parameter was invalid.
0: Insufficient free space in the transmit buffer to satisfy the request, or len was zero. Try

again later since the peer will eventually acknowledge the receipt of previous data, freeing
up transmit buffer space.

len: The len parameter is returned if there was sufficient data in the socket transmit buffer to
satisfy the request.

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_xfastread, sock_fastwrite,
sock_xfastwrite, sock_axread, sock_aread, sock_awrite
196 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_bytesready

int sock_bytesready(void *s);

DESCRIPTION

For TCP sockets:

If the socket is in binary mode, sock_bytesready() returns the number of bytes waiting
to be read. If there are no bytes waiting, it returns -1.

In ASCII mode, sock_bytesready() returns -1 if there are no bytes waiting to be read or
the line that is waiting is incomplete (no line terminating character has been read). The number
of bytes waiting to be read will be returned given one of the following conditions:

• the buffer is full

• the socket has been closed (no line terminating character can be sent)

• a complete line is waiting

In ASCII mode, a blank line will be read as a complete line with length 0, which will be the
value returned. sock_bytesready() handles ASCII mode sockets better than
sock_dataready(), since it can distinguish between an empty line on the socket and an
empty buffer.

For UDP sockets:

Returns the number of bytes in the next datagram to be read. If it is a datagram with no data (an
empty datagram), then it will return 0. If there are no datagrams waiting, then it returns -1.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

-1: No bytes waiting to be read.

0: If in ASCII mode and a blank line is waiting to be read;
for DC 7.05 and later, a UDP datagram with 0 bytes of data is waiting to be read.

>0: The number of bytes waiting to be read.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_established, sockstate
TCP/IP Manual, Vol 1 rabbit.com 197

http://www.rabbit.com

sock_close

void sock_close(void *s);

DESCRIPTION

Close an open socket. The socket cannot be reused until it is completely closed.

In the case of UDP, the socket is closed immediately. TCP, being a connection-oriented proto-
col, must negotiate the close with the remote computer. You can tell a TCP socket is closed by
tcp_tick(s)==NULL or by running sock_wait_closed(s).

In emergency cases, it is possible to abort the TCP connection rather than close it. Although not
recommended for normal transactions, this service is available and is used by all TCP/IP sys-
tems.

PARAMETERS

s Pointer to a socket.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_abort, sock_tick, sock_wait_closed, tcp_open, udp_open
198 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_dataready

int sock_dataready(void *s);

DESCRIPTION

Returns the number of bytes waiting to be read. If the socket is in ASCII mode, this function
returns zero if a newline character has not been read or the buffer is not full. For UDP sockets,
the function returns the number of bytes in the next datagram.

This function cannot tell the difference between no bytes to read and either a blank line or a
UDP datagram with no data. For this reason, use sock_bytesready() instead.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

 0: No bytes to read;
or newline not yet read if the socket is in ASCII mode;
or (for DC 7.05 and later) if a UDP datagram has 0 bytes of data waiting to be read.

>0: Number of bytes ready to read.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_bytesready
TCP/IP Manual, Vol 1 rabbit.com 199

http://www.rabbit.com

sockerr

char *sockerr(void *s);

DESCRIPTION

Gets the last ASCII error message recorded for the specified socket. Use of this function will
introduce a lot of string constants in root memory. For production programs, it is better to use
error numbers (without translation to strings).

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Pointer to the string that represents the last error message for the socket.

NULL pointer if there have been no errors.

 If the symbol SOCKERR_NO_RETURN_NULL is defined, then if no error occurred the string
"OK" will be returned instead of a NULL pointer.

The error messages are read-only; do not modify them!

LIBRARY

NETERRNO.LIB

SEE ALSO

sock_error, sock_perror

EXAMPLE

char *p;
...
if (p = sockerr(s))

printf("Socket closed with error '%s'\n\r", p);
200 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_error

int sock_error(void *s, int clear);

DESCRIPTION

Return the most recent error number for the specified socket, which may be a TCP or UDP sock-
et. Up to two error codes may be queued to a socket.

PARAMETERS

s socket

clear 0: do not clear the returned error condition.

1: clear the returned error from the socket. You can call this function again
to get the next older error code (if any).

RETURN VALUE

0: No error.

!0: One of the NETERR_* constants defined in NETERRNO.LIB.

LIBRARY

NETERRNO.LIB

SEE ALSO

sockerr, sock_perror
TCP/IP Manual, Vol 1 rabbit.com 201

http://www.rabbit.com

sock_established

int sock_established(void *s);

DESCRIPTION

TCP connections require a handshaked open to ensure that both sides recognize a connection.
Whether the connection was initiated with tcp_open() or tcp_listen(),
sock_established() will continue to return 0 until the connection is established, at
which time it will return 1. It is not enough to spin on this after a listen because it is possible for
the socket to be opened, written to and closed between two checks. sock_bytesready()
can be called with sock_established() to handle this case.

UDP is a connectionless protocol, hence sock_established() always returns 1 for UDP
sockets.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

0: Not established.

1: Established.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_bytesready, sockstate
202 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_fastread

int sock_fastread(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Reads up to len bytes from dp on socket s. If possible this function fills the buffer, otherwise
only the number of bytes immediately available, if any, are returned.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP sockets,
use udp_recv() or udp_recvfrom(). Prior to 7.05, this function cannot be used on UDP
sockets after sock_recv_init() is called.

PARAMETERS

s Pointer to a socket.

dp Buffer to put bytes that are read.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

0: Success, number of bytes read.

-1: Error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_fastwrite, sock_write, sockerr, udp_recv,
udp_recvfrom, sock_xfastwrite, sock_aread, sock_axread

EXAMPLE

Note that sock_fastread() and sock_read() do not necessarily return a complete or
single line; they return blocks of bytes. In comparison, sock_getc() returns a single byte at
a time and thus yields poor performance.

do {
/* this function does not block */
len = sock_fastread(s, buffer, sizeof(buffer)-1);
if (len>0) {

buffer[len] = 0;
printf("%s", buffer);

}
} while(tcp_tick(s));
TCP/IP Manual, Vol 1 rabbit.com 203

http://www.rabbit.com

sock_fastwrite

int sock_fastwrite(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp to socket s. This function writes as many bytes as possible to
the socket and returns that number of bytes. Starting with Dynamic C 7.05, this function is only
valid for TCP sockets. For UDP sockets, use udp_send() or udp_sendto().

When using a UDP socket prior to DC 7.05, sock_fastwrite() will send one record if

len <= ETH_MTU - 20 - 8

ETH_MTU is the Ethernet Maximum Transmission Unit; 20 is the IP header size and 8 is the
UDP header size. By default, this is 572 bytes. If len is greater than this number, then the func-
tion does not send the data and returns -1. Otherwise, the UDP datagram would need to be frag-
mented.

For TCP, the new data is queued for sending and sock_fastwrite() returns the number
of bytes that will be sent. The data may be transmitted immediately if enough data is in the buf-
fer, or sufficient time has expired, or the user has explicitly used sock_flushnext() to in-
dicate this data should be flushed immediately. In either case, no guarantee of acceptance at the
other end is possible.

PARAMETERS

s Pointer to a socket.

dp Buffer to be written.

len Maximum number of bytes to write to the socket.

RETURN VALUE

0: Success, number of bytes written.

-1: Error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_write, sock_fastread, sock_read, sockerr, sock_flush,
sock_flushnext, udp_send, udp_sendto, sock_xfastwrite
204 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_flush

void sock_flush(tcp_Socket *s);

DESCRIPTION

sock_flush() will flush the unwritten portion of the TCP buffer to the network. No guar-
antee is given that the data was actually delivered. In the case of a UDP socket, no action is tak-
en.

sock_flushnext() is recommended over sock_flush().

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_flushnext, sock_fastwrite, sock_write, sockerr
TCP/IP Manual, Vol 1 rabbit.com 205

http://www.rabbit.com

sock_flushnext

void sock_flushnext(tcp_Socket *s);

DESCRIPTION

Writing to TCP sockets does not guarantee that the data are actually transmitted or that the re-
mote computer will pass that data to the other client in a timely fashion. Using a flush function
will guarantee that DCRTCP.LIB places the data onto the network. No guarantee is made that
the remote client will receive that data.

sock_flushnext() is the most efficient of the flush functions. It causes the next function
that sends data to the socket to flush, meaning the data will be transmitted immediately.

Several functions imply a flush and do not require an additional flush: sock_puts(), and
sometimes sock_putc() (when passed a \n).

PARAMETERS

s Pointer to a socket.

RETURN VALUE

None.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_write, sock_fastread, sock_read, sockerr, sock_flush,
sock_flushnext
206 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_getc

int sock_getc(tcp_Socket *s);

DESCRIPTION

Gets the next character from the socket. NOTE: This function blocks. Starting with Dynamic C
7.05, this function is only valid with TCP sockets. Prior to 7.05, this function could not be used
on UDP sockets after sock_recv_init() was called.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Character read or -1 if error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_putc, sock_gets, sock_puts, sock_read, sock_write

EXAMPLE

do {
if (sock_bytesready(s) > 0)

putchar(sock_getc(s));
} while (tcp_tick(s));
TCP/IP Manual, Vol 1 rabbit.com 207

http://www.rabbit.com

sock_gets

int sock_gets(tcp_Socket * s, char * dp, int len);

DESCRIPTION

Read a string from a socket and replace the CR or LF with a '\0'. If the string is longer than len,
the string is null terminated and any remaining characters will be returned on the next
sock_gets() call. This function is only valid for TCP sockets.

To use sock_gets(), you must first set ASCII mode using the function sock_mode()or
the macro tcp_set_ascii().

PARAMETERS

s Pointer to a socket

dp Buffer to put the string.

len Max length of buffer.

RETURN VALUE

0: The buffer is empty; or no '\r' or '\n' was read, plus the buffer has room and the connection
can get more data.

>0: The length of the string.

-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_puts, sock_putc, sock_getc, sock_read, sock_write

EXAMPLE

sock_mode(s, TCP_MODE_ASCII);
do {

if (sock_bytesready(s) > 0) {
sock_gets(s, buffer, sizeof(buffer)-1);
puts(buffer);

}
} while (tcp_tick(s);
208 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_iface

byte sock_iface(void *s);

DESCRIPTION

Retrieve the interface number of an open socket. May return IF_ANY for unbound sockets.

PARAMETER

s Pointer to open TCP or UDP socket.

RETURN VALUE

Interface number (0..IF_MAX-1).

IF_ANY: If the socket is unbound.

LIBRARY

NET.LIB

SEE ALSO

tcp_extopen, udp_extopen, tcp_extlisten
TCP/IP Manual, Vol 1 rabbit.com 209

http://www.rabbit.com

sock_init

int sock_init(void);

DESCRIPTION

This function initializes the packet driver and DCRTCP using the compiler defaults for config-
uration. This function should be called before using other DCRTCP functions.

The return value indicates if sock_init() was successful. If it returns 0, then everything
was successful. If it returns 1, then the packet driver initialization failed.

Note that the network interface will not necessarily be available immediately after
sock_init() is called, even if you are simply using an Ethernet interface with a static con-
figuration. This is especially true if you are using DHCP. If you need to make a network con-
nection directly after calling sock_init(), then you will probably want to use code like the
following:

sock_init();
while (ifpending(IF_DEFAULT) == IF_COMING_UP) {
tcp_tick(NULL);

}

The while loop will not finish until the interface has either completely come up or has failed
(see the documentation for ifpending() for more information).

If you use ucos2.lib, be sure to call OSInit() before calling sock_init().

RETURN VALUE

0: OK.

1: Ethernet packet driver initialization failed.

Other: reserved.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
210 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_init_or_exit

void sock_init_or_exit(int verbose);

DESCRIPTION

This is a convenience function intended mainly for sample code which starts a network inter-
face. It is equivalent to the following sequence:

if (sock_init() != 0)
exit(-NETERR_IFDOWN);

while (ifpending(IF_DEFAULT) == IF_COMING_UP)
tcp_tick(NULL);

if (ifpending(IF_DEFAULT) != IF_UP)
exit(-NETERR_IFDOWN);

In other words, it attempts to initialize the network stack via sock_init(). It then waits for
the default interface to come active (or fail). If the default interface fails to start, then exit()
is called.

This function is primarily for debugging and sample code, since there is an indeterminate wait
for the interface to start. Production applications may not wish to incur this delay at startup, and
also they should handle network errors in a manner other that exit() since exit() is really only
useful in a debug environment.

In particular, if the interface is a Wi-Fi interface, then this function will wait until the interface
is associated with an access point. If it appears to wait indefinitely, then there is probably an
error in the configuration such as a mis-typed SSID, or incorrect security keys.

NOTE: Don't use this function if you intend the network interface to be down after
sock_init().

PARAMETER

verbose Non-zero to print handy message on success. Message shows IP address
and netmask of default interface. Also will print messages at intervals
while the interface is in a pending state. This can happen if the interface
takes a long time to come up. In the case of an Ethernet interface, if you
accidentally leave the cable unplugged then this function will loop forever,
printing messages at a default 5 second interval.

RETURN VALUE

None. May exit (-NETERR_IFDOWN) if error.

LIBRARY

NET.LIB

SEE ALSO

sock_init, ifpending, tcp_tick
TCP/IP Manual, Vol 1 rabbit.com 211

http://www.rabbit.com

sock_mode

word sock_mode(void *s, word mode);

DESCRIPTION

Change some of the socket options. Depending on whether s is a TCP or UDP socket, you may
pass OR’d combinations of the following flags in the mode parameter. For a TCP socket, only
the TCP_MODE_* flags are relevant. For a UDP socket, only the UDP_MODE_* flags are rel-
evant. Do not use the wrong flags for the given socket type.

It is more convenient, faster, and safer to use the macro equivalent if it is only desired to change
one mode at a time. If you use this function, then you must specify the setting of all relevant
flags (TCP or UDP). The macros do not do socket locking so, strictly speaking, µC/OS-II users
should call this function rather than use the macros.

TCP MODES:

TCP_MODE_ASCII | TCP_MODE_BINARY (default)
TCP and UDP sockets are usually in binary mode which means an arbitrary stream of
bytes is allowed (TCP is treated as a byte stream and UDP is treated as records filled
with bytes.) The default is TCP_MODE_BINARY. By changing the mode to
TCP_MODE_ASCII, some of the DCRTCP.LIB functions will see a stream of re-
cords terminated with a newline character.

In ASCII mode, sock_bytesready() will return -1 until a newline-terminated
string is in the buffer or the buffer is full. sock_puts() will append a newline to any
output. sock_gets() (which should only be used in ASCII mode) removes the new-
line and null terminates the string.

Equivalent Macros: tcp_set_binary(s) and tcp_set_ascii(s)

TCP_MODE_NAGLE (default) | TCP_MODE_NONAGLE
The Nagle algorithm may substantially reduce network traffic with little negative effect
on a user (In some situations, the Nagle algorithm even improves application perfor-
mance.) The default is TCP_MODE_NAGLE. This mode only affects TCP connections.

Equivalent Macros: tcp_set_nagle(s) and tcp_set_nonagle(s)
212 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_mode (cont’d)

UDP MODES:

UDP_MODE_CHK | UDP_MODE_NOCHK
Checksums are required for TCP, but not for UDP. The default is UDP_MODE_CHK.
If you are providing a checksum at a higher level, the low-level checksum may be re-
dundant. The checksum for UDP can be disabled by selecting the UDP_MODE_NOCHK
flag. Note that you do not control whether the remote computer will send checksums.
If that computer does checksum its outbound data, DCRTCP.LIB will check the re-
ceived packet's checksum.

Equivalent Macros: udp_set_chk(s) and udp_set_nochk(s)

UDP_MODE_NOICMP (default) | UDP_MODE_ICMP
Marks this socket for receipt of ICMP error messages. The messages are queued like
normal received datagrams, and read using udp_recvfrom(), which returns -3
when ICMP messages are returned instead of normal datagrams. Only ICMP messages
which are relevant to the current binding of the socket are queued.

Equivalent Macros: udp_set_noicmp(s) and udp_set_icmp(s)

UDP_MODE_NODICMP (default) | UDP_MODE_DICMP
Marks this socket as the default receiver of ICMP messages which cannot be assigned
to a particular UDP socket. This would be used for UDP sockets that are used with
many different sendto addresses, since the ICMP message may refer to a message
sent some time ago (with different destination address than the most recent). Only one
UDP socket should be set with this mode.

Equivalent Macros: udp_set_nodicmp(s) and udp_set_dicmp(s)

PARAMETERS

s Pointer to a socket.

mode New mode for specified socket.

RETURN VALUE

 Resulting mode flags.

SEE ALSO

inet_addr

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
TCP/IP Manual, Vol 1 rabbit.com 213

http://www.rabbit.com

sock_noflush

void sock_noflush(tcp_Socket *s);

DESCRIPTION

This function prevents the next write to the socket from transmitting a data segment. It needs to
be issued before each write function in which it is desired not to transmit. It can be used to make
more efficient use of network bandwidth when the Nagle algorithm is turned off for the socket.
If Nagle is on, then there is not much benefit to using this function.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

 None.

LIBRARY

TCP.LIB

SEE ALSO

sock_flush, sock_flushnext, sock_fastwrite, sock_write
214 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_perror

void sock_perror(void *s, const char *prefix);

DESCRIPTION

Prints out the most recent error messages for a socket, and clear the errors. This calls
sockerr() and printf(), so it should only be called for debugging a new application. The
output is in the format:

[TCP|UDP] socket (ipaddr:port -> ipaddr:port) msg1; msg2

where msg1 and, possibly, msg2 are the most recent error messages. The initial string is
"TCP" or "UDP" for open sockets, or may be "Closed" if the socket is currently closed (either
TCP or UDP). Up to two error codes may be queued to a socket.

If there are no errors, nothing is printed.

PARAMETERS

s Pointer to TCP or UDP socket.

prefix Pointer to text to add to generated messages, or NULL.

LIBRARY

NETERRNO.LIB

SEE ALSO

sock_error, sockerr
TCP/IP Manual, Vol 1 rabbit.com 215

http://www.rabbit.com

sock_preread

int sock_preread(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

This function reads up to len bytes from the socket into the buffer dp. The bytes are not re-
moved from the socket's buffer. This function is only valid with TCP sockets.

PARAMETERS

s Pointer to a socket structure.

dp Buffer to preread into.

len Maximum number of bytes to preread.

RETURN VALUE

0: No data waiting.

-1: Error.

>0: Number of preread bytes.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_fastread, sock_fastwrite, sock_read, sock_write
216 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_putc

byte sock_putc(tcp_Socket *s, byte c);

DESCRIPTION

A single character is placed on the output buffer. In the case of ‘\n’, the buffer is flushed as de-
scribed under sock_flushnext. No other ASCII character expansion is performed.

Note that sock_putc uses sock_write, and thus may block if the output buffer is full. See
sock_write for more details.

Starting with Dynamic C 7.05, this function is only valid with TCP sockets.

PARAMETERS

s Pointer to a socket.

c Character to send.

RETURN VALUE

The character c.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_write, sock_fastread, sock_fastwrite, sock_mode
TCP/IP Manual, Vol 1 rabbit.com 217

http://www.rabbit.com

sock_puts

int sock_puts(tcp_Socket *s, byte *dp);

DESCRIPTION

A string is placed on the output buffer and flushed as described under sock_flushnext().
If the socket is in ASCII mode, CR and LF are appended to the string. No other ASCII character
expansion is performed. In binary mode, the string is sent as is.

Note that sock_puts() uses sock_write(), and thus may block if the output buffer is
full. See sock_write() for more details.

Starting with Dynamic C 7.05, this function is only valid with TCP sockets.

PARAMETERS

s Pointer to a socket.

dp Buffer to read the string from.

RETURN VALUE

0: Length of string in dp.

-1: Function was called with a UDP socket (valid for Dynamic C 7.05 and later).

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_gets, sock_putc, sock_getc, sock_read, sock_write
218 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_rbleft

int sock_rbleft(void *s);

DESCRIPTION

Determines the number of bytes available in the receive buffer.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes available in the receive buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_tbsize, sock_tbused, sock_tbleft
TCP/IP Manual, Vol 1 rabbit.com 219

http://www.rabbit.com

sock_rbsize

int sock_rbsize(void *s);

DESCRIPTION

Determines the size of the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the receive buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbleft, sock_rbused, sock_tbsize, sock_tbused, sock_tbleft
220 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_rbused

int sock_rbused(void *s);

DESCRIPTION

Returns the number of bytes in use in the receive buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbleft, sock_tbsize, sock_tbused, sock_tbleft
TCP/IP Manual, Vol 1 rabbit.com 221

http://www.rabbit.com

sock_read

int sock_read(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Reads up to len bytes from dp on socket s. This function will busy wait until either len bytes
are read or there is an error condition. If sock_yield() has been called, the user-defined
function that is passed to it will be called in a tight loop while sock_read() is busy waiting.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP sockets,
use udp_recv() or udp_recvfrom(). Prior to 7.05, this function cannot be used on UDP
sockets after sock_recv_init() is called.

PARAMETERS

s Pointer to a socket.

dp Buffer to store bytes that are read.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

0: Success, number of bytes read..

-1: Error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_fastread, sock_fastwrite, sock_write, sockerr, udp_recv,
udp_recvfrom

EXAMPLE

Note that sock_fastread() and sock_read() do not necessarily return a complete or
single line—they return blocks of bytes. In comparison, sock_getc() returns a single byte
at a time and thus yields poor performance.

do {
len = sock_bytesready(s);
if (len > 0) {

if (len > sizeof(buffer) - 1) // If too many bytes, read some
len = sizeof(buffer) - 1; // now, read the rest next time.

sock_read(s, buffer, len);

buffer[len] = 0;
printf("%s", buffer);

}
} while (tcp_tick(s));
222 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_readable

int sock_readable(void * s);

DESCRIPTION

This function determines whether a socket may have data read from it using, for example,
sock_fastread() or udp_recvfrom().

The parameter may be either a TCP socket or a UDP socket.

The return value is more than a simple boolean: it also indicates the amount of data the socket
is guaranteed to deliver with a sock_fastread() call that immediately follows (provided
that the buffer length is at least that long).

Note: a TCP socket may be readable after it is closed, since there may be pending data in the
buffer that has not been read by the application, and it is also possible for the peer to keep send-
ing data.

PARAMETERS

s TCP or UDP socket pointer.

RETURN VALUE

If parameter is a TCP socket (tcp_Socket *):

0: socket is not readable. It was aborted by the application or the peer has closed the
socket and all pending data has been read by the application. This can be used as a de-
finitive EOF indication for a receive stream.

non-zero: the socket is readable. The amount of data that the socket would deliver is
this value minus 1; which may turn out to be zero if the socket’s buffer is temporarily
empty, or the socket is not yet connected to a peer.

If parameter is a UDP socket (udp_Socket *):

0: socket is not open.

non-zero: socket is open. This value minus 1 equals the size of the next datagram in the
receive buffer, that would be returned by udp_recvfrom() etc. Note that ICMP er-
ror messages are also considered if the socket is set up to receive ICMP messages.

LIBRARY

NET.LIB

SEE ALSO

tcp_open, tcp_listen, sock_close, sock_abort, tcp_tick,
sock_established, sock_alive, sock_waiting, sock_writable,
udp_open, udp_recvfrom
TCP/IP Manual, Vol 1 rabbit.com 223

http://www.rabbit.com

sock_recv

int sock_recv(sock_type *s, char *buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv() scans the buffers for any datagram received by that socket.

This function is not available starting with Dynamic C 7.05 (see Section 3.5).

PARAMETERS

s Pointer to a UDP socket.

buffer Buffer to put datagram.

maxlength Length of buffer.

RETURN VALUE

>0: Length of datagram.

0: No datagram found.

-1: Receive buffer not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv_init
224 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

EXAMPLE USING SOCK_RECV()

// Old way of setting network addresses are commented out
//#define MY_IP_ADDRESS "10.10.6.100"
//#define MY_NETMASK "255.255.255.0"

// New way of setting network addresses.
#define TCPCONFIG 1

#memmap xmem

#use "dcrtcp.lib"
#define SAMPLE 401

udp_Socket data;
char bigbuf[8192];

main() {
word templen;
char spare[1500];

sock_init();
if (!udp_open(&data, SAMPLE, 0xffffffff, SAMPLE, NULL)
{

puts("Could not open broadcast socket");
exit(3);

}

/* set large buffer mode */
if (sock_recv_init(&data, bigbuf, sizeof(bigbuf))) {

puts("Could not enable large buffers");
exit(3);

}

sock_mode(&data, UDP_MODE_NOCHK); // turn off checksums

while (1) {
tcp_tick(NULL);

if (templen = sock_recv(&data, spare, sizeof(spare)))
{

/* something received */
printf("Got %u byte packet\n", templen);

}
}

}

TCP/IP Manual, Vol 1 rabbit.com 225

http://www.rabbit.com

sock_recv_from

int sock_recv_from(sock_type *s, long *hisip, word *hisport, char
*buffer, int len);

DESCRIPTION

After a UDP socket is initialized with udp_open() and sock_recv_init(),
sock_recv_from () scans the buffers for any datagram received by that socket and iden-
tifies the remote host’s address.

This function is not available starting with Dynamic C 7.05 (see Section 3.5).

PARAMETERS

s Pointer to UDP socket.

hisip IP of remote host, according to UDP header.

hisport Port of remote host.

buffer Buffer to put datagram in.

len Length of buffer.

RETURN VALUE

>0: Length of datagram received.

0: No datagram.

-1: Receive buffer was not initialized with sock_recv_init().

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv, sock_recv_init
226 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_recv_init

int sock_recv_init(sock_type *s, void *space, word len);

DESCRIPTION

This function is not available starting with Dynamic C 7.05 (see Section 3.5).

The basic socket reading functions (sock_read(), sock_fastread(), etc.) are not ad-
equate for all your UDP needs. The most basic limitation is their inability to treat UDP as a re-
cord service.

A record service must receive distinct datagrams and pass them to the user program as such.
You must know the length of the received datagram and the sender (if you opened in broadcast
mode). You may also receive the datagrams very quickly, so you must have a mechanism to buf-
fer them.

Once a socket is opened with udp_open(), you can use sock_recv_init() to initialize
that socket for sock_recv() and sock_recv_from(). Note that sock_recv() and
related functions are incompatible with sock_read(), sock_fastread(),
sock_gets() and sock_getc(). Once you have used sock_recv_init(), you can
no longer use the older-style calls.

sock_recv_init() installs a large buffer area which gets segmented into smaller buffers.
Whenever a UDP datagram arrives, DCRTCP.LIB stuffs that datagram into one of these new
buffers. The new functions scan those buffers. You must select the size of the buffer you submit
to sock_recv_init(); make it as large as possible, say 4K, 8K or 16K.

For a sample program, see Example using sock_recv() listed under sock_recv().

PARAMETERS

s Pointer to a UDP socket.

space Buffer of temporary storage space to store newly received packets.

len Size of the buffer.

RETURN VALUE

0

LIBRARY

DCRTCP.LIB

SEE ALSO

sock_recv_from, sock_recv
TCP/IP Manual, Vol 1 rabbit.com 227

http://www.rabbit.com

sock_resolved

int sock_resolved(void *s);

DESCRIPTION

Check whether the socket has a valid destination hardware address. This is typically used for
UDP sockets, but may also be used for TCP sockets. If this function returns zero (FALSE), then
any datagrams you send using udp_send() or udp_sendto() may not be transmitted be-
cause the destination hardware address is not known.

If the current destination IP address of the socket is zero (i.e., the socket is passively opened),
this function returns zero, since datagrams cannot be transmitted from a passively opened sock-
et.

 If udp_bypass_arp() is in effect, the return value from this function is unaffected, how-
ever datagrams will still be sent to the specified hardware address (since the normal resolve pro-
cess is bypassed).

Note that a hardware address may become invalid after being valid, since the underlying ARP
table may need to purge the entry. This would be rare, but if any UDP application needs to en-
sure that all packets are actually transmitted, which is a questionable goal since UDP is unreli-
able, then this function should be consulted before each send. If this function returns 0, then the
UDP socket should be re-opened.

The hardware address may also be invalidated if udp_sendto() is called with a different
destination IP address, that has not been determined based on an incoming datagram.

This function is not required for TCP sockets, since the TCP library handles these details inter-
nally.

PARAMETER

s Pointer to open TCP or UDP socket

RETURN VALUE:

0: Destination hardware address not valid.

!0: Destination hardware address resolved OK.

LIBRARY

NET.LIB

SEE ALSO

udp_extopen, arpresolve_start, arpresolve_check, udp_waitopen,
udp_sendto, udp_bypass_arp
228 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_set_tos

void sock_set_tos(void *s, byte tos);

DESCRIPTION

Set the IP “Type Of Service” field in outgoing packets for this socket. The given TOS will be
in effect until the socket is closed. When a socket is opened (or re-opened), the TOS will be set
to the default (TCP_TOS or UDP_TOS as appropriate). If not overridden, the defaults are zero
(IPTOS_DEFAULT) in both cases.

PARAMETERS

s Pointer to open TCP or UDP socket.

tos Type Of Service. This should be one of the following values:

• IPTOS_DEFAULT - Default service
• IPTOS_CHEAP - Minimize monetary cost
• IPTOS_RELIABLE - Maximize reliability
• IPTOS_CAPACIOUS - Maximize throughput
• IPTOS_FAST - Minimize delay
• IPTOS_SECURE - Maximize security.

Other value may be used (since TOS is just a number between 0 and 255),
but this should only be done for experimental purposes.

LIBRARY

NET.LIB

SEE ALSO

sock_set_ttl
TCP/IP Manual, Vol 1 rabbit.com 229

http://www.rabbit.com

sock_set_ttl

void sock_set_ttl(void *s, byte ttl);

DESCRIPTION

Set the IP “Time To Live” field in outgoing packets for this socket. The given TTL will be in
effect until the socket is closed. When a socket is opened (or re-opened), the TTL will be set to
the default (TCP_TTL or UDP_TTL as appropriate). If not overridden, the defaults are 64 in
both cases.

PARAMETERS

s Pointer to open TCP or UDP socket.

ttl Time To Live. This is a value between 1 and 255. A value of zero is also
accepted, but will have undesirable consequences.

LIBRARY

NET.LIB

SEE ALSO

sock_set_tos
230 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sockstate

char *sockstate(void *s);

DESCRIPTION

Returns a string that gives the current state for a socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

An ASCII message which represents the current state of the socket. These strings should not be
modified.

“Listen" indicates a passively opened socket that is waiting for a connection.

"SynSent" and "SynRcvd" are connection phase intermediate states.

"Established" states that the connection is complete.

"EstClosing" "FinWait1" "FinWait2" "CloseWait" "Closing" "LastAck"
"TimeWait" and "CloseMSL" are connection termination intermediate states.

"Closed" indicates that the connection is completely closed.

"UDP Socket" is always returned for UDP sockets because they are stateless.

"Not an active socket" is a default value used when the socket is not recognized as
UDP or TCP.

"BAD" more than one bit set.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_established, sock_dataready

EXAMPLE

char *p;
...
#ifdef DEBUG
if (p = sockstate(s))

printf("Socket state is '%s'\n\r", p);
#endif DEBUG
TCP/IP Manual, Vol 1 rabbit.com 231

http://www.rabbit.com

sock_tbleft

int sock_tbleft(void *s);

DESCRIPTION

Gets the number of bytes left in the transmit buffer. If you do not wish to block, you may first
query how much space is available for writing by calling this function before generating data
that must be transmitted. This removes the need for your application to also buffer data.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes left in the transmit buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize, sock_tbused

EXAMPLE

if (sock_tbleft(s) > 10) {

/* we can send up to 10 bytes without blocking or overflowing */
...

}

232 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_tbsize

int sock_tbsize(void *s);

DESCRIPTION

Determines the size of the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

The size of the transmit buffer.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbleft, sock_tbused
TCP/IP Manual, Vol 1 rabbit.com 233

http://www.rabbit.com

sock_tbused

int sock_tbused(void *s);

DESCRIPTION

Gets the number of bytes in use in the transmit buffer for the specified socket.

PARAMETERS

s Pointer to a socket.

RETURN VALUE

Number of bytes in use.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_rbsize, sock_rbused, sock_rbleft, sock_tbsize, sock_tbleft
234 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_tick

void sock_tick(void *s, int *optional_status_ptr);

DESCRIPTION

This macro calls tcp_tick() to quickly check incoming and outgoing data and to manage
all the open sockets. If our particular socket, s, is either closed or made inoperative due to an
error condition, sock_tick() sets the value of *optional_status_ptr (if the pointer
is not NULL) to 1, then jumps to a local, user-supplied label, sock_err. If the socket connec-
tion is fine and the pointer is not NULL *optional_status_ptr is set to 0.

PARAMETERS

s Pointer to a socket.

optional_status_ptr Pointer to status word.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
TCP/IP Manual, Vol 1 rabbit.com 235

http://www.rabbit.com

sock_wait_closed

void sock_wait_closed(void *s, int seconds, int (*fptr)(),
int *status);

DESCRIPTION

This macro waits until a TCP connection is fully closed. Returns immediately for UDP sockets.
On an error, the macro jumps to a local, user-supplied sock_err label. If fptr returns non-
zero the macro returns with the status word set to the value of fptr‘s return value.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indicates the
macro should never time-out. A good value to use is sock_delay, a sys-
tem variable set on configuration. Typically sock_delay is about 20
seconds, but can be set to something else in main().

fptr Function to call repeatedly while waiting. This is a user-supplied function.

status Pointer to a status word.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
236 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_wait_established

void sock_wait_established(void *s, int seconds, int (*fptr)(),
int *status);

DESCRIPTION

This macro waits until a connection is established for the specified TCP socket, or aborts if a
time-out occurs. It returns immediately for UDP sockets. On an error, the macro jumps to the
local, user-supplied sock_err label. If fptr returns non-zero, the macro returns.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indicates the
macro should never time-out. A good value to use is sock_delay, a sys-
tem variable set on configuration. Typically sock_delay is about 20
seconds, but can be set to something else in main().

fptr Function to call repeatedly while waiting. This is a user-supplied function.

status Pointer to a status word.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
TCP/IP Manual, Vol 1 rabbit.com 237

http://www.rabbit.com

sock_waiting

int sock_waiting(tcp_Socket * s);

DESCRIPTION

This function determines whether a TCP socket is waiting for a connection establishment. It re-
turns TRUE (non-zero) if and only if the socket is open, but not YET established.

The purpose of this function is to simplify the application logic in programs which interleave
TCP/IP functions with other processing i.e., “non-blocking” style.

NOTE: it is an error to pass a UDP socket to this function. UDP sockets are connectionless, so
there is no concept of “waiting for a connection.”

PARAMETER

s TCP socket pointer. This should be a TCP socket which was opened using
tcp_listen(), tcp_extlisten(), tcp_open() or
tcp_extopen().

RETURN VALUE

0: socket is not waiting. In this case, then next tests that the application should perform are:

a. sock_established(): if this returns TRUE, a connection is currently estab-
lished. The application can now communicate using sock_read(),
sock_write() etc., then finally call sock_close().

b. sock_alive(): if this returns FALSE, then the socket was aborted by the peer.
The application may re-open or re-listen the socket.

c. Otherwise, the socket was established, but is now closing because the peer closed its
side of the connection. The application MAY be able to read and/or write to the socket
(depending on protocol) however the amount of readable data will be limited. The ap-
plication should call sock_close() or sock_abort().

In cases (a) and (c), a socket should not be re-opened until tcp_tick() on that sock-
et returns 0.

Note that '0' is returned for invalid sockets (e.g., UDP sockets or sockets that are
closed).

non-zero: the socket is waiting for a connection. The application should keep calling
tcp_tick() until this function returns 0.

LIBRARY

NET.LIB

SEE ALSO

tcp_open, tcp_listen, sock_close, sock_abort, tcp_tick,
sock_established, sock_alive
238 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_wait_input

void sock_wait_input(void *s, int seconds, int (*fptr)(),
int *status);

DESCRIPTION

Waits until input exists for functions such as sock_read() and sock_gets(). As de-
scribed under sock_mode(), if in ASCII mode, sock_wait_input only returns when a
complete string exists or the buffer is full. It returns immediately for UDP sockets.

On an error, the macro jumps to a local, user-supplied sock_err label. If fptr returns non-
zero, the macro returns.

This macro has been deprecated in Dynamic C version 7.20.

PARAMETERS

s Pointer to a socket.

seconds Number of seconds to wait before timing out. A value of zero indicates the
macro should never time-out. A good value to use is sock_delay, a sys-
tem variable set on configuration. Typically sock_delay is about 20
seconds, but can be set to something else in main().

fptr Function to call repeatedly while waiting.

status A pointer to the status word. If this parameter is NULL, no status number
will be available, but the macro will otherwise function normally. Typical-
ly the pointer will point to a local signed integer that is used only for status.
status may be tested to determine how the socket was ended. A value
of 1 means a proper close while a -1 value indicates a reset or abort.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
TCP/IP Manual, Vol 1 rabbit.com 239

http://www.rabbit.com

sock_writable

int sock_writable(void * s);

DESCRIPTION

This function determines whether a socket may have data written to it using (e.g.)
sock_fastwrite() or udp_sendto().

The parameter may be either a TCP socket or a UDP socket.

The return value is more than a simple boolean: it also indicates the amount of data the socket
is guaranteed to accept with a sock_fastwrite() call that immediately follows.

NOTE: a TCP socket may be writable before it is established. In this case, any written data is
transferred as soon as the connection is established.

PARAMETER

s TCP or UDP socket pointer.

RETURN VALUE

If parameter is a TCP socket (tcp_Socket *):

0: socket is not writable. It was closed by the application or it may have been aborted
by the peer.

non-zero: the socket is writable. The amount of data that the socket would accept is this
value minus 1; which may turn out to be zero if the socket's buffer is temporarily full.
On a freshly-established socket, and at any other time when all data has been acknowl-
edged by the peer, the return value (minus one) indicates the maximum socket transmit
buffer size.

If parameter is a UDP socket (udp_Socket *):

0: socket is not open.

non-zero: socket is open. This value minus 1 equals the maximum size datagram pay-
load that would be sent without fragmentation at the IP level.

Note: the maximum payload depends on the interface that is selected. Since this is not
known a priori, the interface with the largest MTU is arbitrarily selected.

LIBRARY

NET.LIB

SEE ALSO

tcp_open, tcp_listen, sock_close, sock_abort, tcp_tick,
sock_established, sock_alive, sock_waiting, sock_readable,
udp_open, udp_sendto
240 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_write

int sock_write(tcp_Socket *s, byte *dp, int len);

DESCRIPTION

Writes up to len bytes from dp to socket s. This function busy waits until either the buffer is
completely written or a socket error occurs. If sock_yield() has been called, the user-de-
fined function that is passed to it will be called in a tight loop while sock_write() is busy-
waiting.

For UDP, sock_write() will send one (or more) records. For TCP, the new data may be
transmitted if enough data is in the buffer or sufficient time has expired or the user has explicitly
used sock_flushnext() to indicate this data should be flushed immediately. In either case,
there is no guarantee of acceptance at the other end.

Starting with Dynamic C 7.05, this function is only valid for TCP sockets. For UDP sockets,
use udp_send() or udp_sendto().

PARAMETERS

s Pointer to a socket.

dp Pointer to a buffer.

len Maximum number of bytes to write to the buffer.

RETURN VALUE

Number of bytes written or -1 on an error.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

sock_read, sock_fastwrite, sock_fastread, sockerr, sock_flush,
sock_flushnext, udp_send, udp_sendto
TCP/IP Manual, Vol 1 rabbit.com 241

http://www.rabbit.com

sock_xfastread

int sock_xfastread(tcp_Socket *s, long dp, long len);

DESCRIPTION

Reads up to len bytes from dp on socket s. If possible this function fills the buffer, otherwise
only the number of bytes immediately available if any are returned. This function is only valid
for TCP sockets. For UDP sockets, use udp_recv() or udp_recvfrom().

This function is identical to sock_fastread(), except that it reads into an extended mem-
ory buffer.

PARAMETERS

s Pointer to socket.

dp Buffer to place bytes that are read, as an xmem address obtained from, for
example, xalloc().

len Maximum number of bytes to write to the buffer.

RETURN VALUE

 Number of bytes read or -1 if there was an error.

LIBRARY

TCP.LIB

SEE ALSO

sock_read, sock_fastwrite, sock_write, sockerr, udp_recv,
udp_recvfrom, sock_fastread
242 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

sock_xfastwrite

int sock_xfastwrite(tcp_Socket *s, long dp, long len);

DESCRIPTION

Writes up to len bytes from dp to socket s. This function writes as many bytes possible to the
socket and returns that number of bytes. This function is only valid for TCP sockets. For UDP
sockets, use udp_send() or udp_sendto().

This function is identical to sock_fastwrite(), except that an extended memory data
source is used.

PARAMETERS

s Pointer to socket.

dp Buffer containing data to be written, as an xmem address obtained from,
for example, xalloc().

len Maximum number of bytes to write to the socket.

RETURN VALUE

 Number of bytes written or -1 if there was an error.

LIBRARY

TCP.LIB

SEE ALSO

sock_write, sock_fastread, sock_read, sockerr, sock_flush,
sock_flushnext, udp_send, udp_sendto, sock_fastwrite
TCP/IP Manual, Vol 1 rabbit.com 243

http://www.rabbit.com

sock_yield

int sock_yield(tcp_Socket *s, void (*fn)());

DESCRIPTION

This function, if called prior to one of the blocking functions, will cause fn, the user-defined
function that is passed in as the second parameter, to be called repeatedly while the blocking
function is in a busywait state.

PARAMETERS

s Pointer to a TCP socket.

fn User-defined function.

RETURN VALUE

0

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)
244 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

tcp_clearreserve

void tcp_clearreserve(word port);

DESCRIPTION

This function causes DCRTCP to handle a socket connection to the specified port normally.
This undoes the action taken by tcp_reserveport().

PARAMETERS

port Port to use.

RETURN VALUE

None.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, tcp_listen, tcp_reserveport
TCP/IP Manual, Vol 1 rabbit.com 245

http://www.rabbit.com

tcp_config

void tcp_config(char *name, char *value);

DESCRIPTION

Sets TCP/IP stack parameters at runtime. It should not be called with open sockets.

Note that there are specific (and safer) functions for modifying some of the common parame-
ters.

This function is deprecated and will be removed in a future release. The recommended replace-
ment function is ifconfig.

PARAMETERS

name Setting to be changed. The possible parameters are:

MY_IP_ADDRESS: host IP address (use sethostid() instead)
MY_NETMASK
MY_GATEWAY: host’s default gateway
MY_NAMESERVER: host’s default nameserver
MY_HOSTNAME
MY_DOMAINNAME: host’s domain name (use setdomainname() in-
stead)

value The value to assign to name.

RETURN VALUE

None.

LIBRARY

NET.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, sock_close, sock_abort, sethostid, setdomainname,
sethostname
246 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

tcp_extlisten

int tcp_extlisten(tcp_Socket *s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, word reserved, long
buffer, int buflen);

DESCRIPTION

This function tells DCRTCP that an incoming session for a particular port will be accepted. The
buffer and buflen parameters allow a user to supply a socket buffer, instead of using a
socket buffer from the pool. tcp_extlisten() is an extended version of
tcp_listen().

PARAMETERS

s Pointer to the socket’s data structure.

iface Local interface on which to open the socket. Use IF_ANY if the socket is
to accept connections from any interface. Otherwise, connections will be
accepted only from the specified interface.

Prior to Dynamic C 7.30 this parameter was not implemented and should
be IF_DEFAULT.

lport Port to listen on.

remip IP address to accept connections from or 0 for all.

port Port to accept connections from or 0 for all.

datahandler Function to call when data is received, NULL for placing data in the sock-
et’s receive buffer. Prior to Dynamic C 7.30, some details for implementa-
tion of this service had not been finalized. Insert a value of NULL if you are
using a version of Dynamic C prior to 7.30.

reserved Set to 0 for now. This parameter is for compatibility and possible future
use.

buffer Address of user-supplied socket buffer in xmem. This is the return value of
xalloc(). If buffer is 0, the socket buffer for this socket is pulled
from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE

0: Failure.

1: Success.

LIBRARY

TCP.LIB
TCP/IP Manual, Vol 1 rabbit.com 247

http://www.rabbit.com

tcp_extopen

int tcp_extopen(tcp_Socket *s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, long buffer, int
buflen);

DESCRIPTION

Actively creates a session with another machine. The buffer and buflen parameters allow
a user to supply a socket buffer, instead of using a socket buffer from the pool.
tcp_extopen() is an extended version of tcp_open().

s Pointer to socket’s data structure.

iface Local interface on which to open the socket. Use IF_ANY if interface is to
be selected automatically based on the destination IP address.

lport Our port, zero for the next one available in the range 1025-65536.

remip IP address to connect to.

port Port to connect to.

datahandler Function to call when data is received, NULL for placing data in the sock-
et’s receive buffer. Prior to Dynamic C 7.30, some details for implementa-
tion of this service had not been finalized. Insert a value of NULL if you are
using a version of Dynamic C prior to 7.30.

buffer Address of user-supplied socket buffer in xmem. This is the return value of
xalloc(). If buffer is 0, the socket buffer for this socket is pulled
from the buffer pool defined by the macro
MAX_TCP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE

0:Error, unable to resolve the remote computer's hardware address.

!0: Success.

LIBRARY

TCP.LIB

SEE ALSO

tcp_open
248 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

tcp_keepalive

int tcp_keepalive(tcp_Socket *s, long timeout);

DESCRIPTION

Enable or disable TCP keepalives on a specified socket. The socket must already be open. Kee-
palives will then be sent after timeout seconds of inactivity. It is highly recommended to keep
timeout as long as possible, to reduce the load on the network. Ideally, it should be no shorter
than 2 hours. After the timeout is sent, and KEEPALIVE_WAITTIME seconds pass, another
keepalive will be sent, in case the first was lost. This will be retried
KEEPALIVE_NUMRETRYS times. Both of these macros can be defined at the top of your pro-
gram, overriding the defaults of 60 seconds, and 4 retries.

Using keepalives is not a recommended procedure. Ideally, the application using the socket
should send its own keepalives. tcp_keepalive() is provided because telnet and a few
other network protocols do not have a method of sending keepalives at the application level.

PARAMETERS

s Pointer to a socket.

timeout Period of inactivity, in seconds, before sending a keepalive or 0 to turn off
keepalives.

RETURN VALUE

0: Success.

1: Failure.

LIBRARY

TCP.LIB

SEE ALSO

sock_fastread, sock_fastwrite, sock_write, sockerr
TCP/IP Manual, Vol 1 rabbit.com 249

http://www.rabbit.com

tcp_listen

int tcp_listen(tcp_Socket *s, word lport, longword remip,
word port, dataHandler_t datahandler, word reserved);

DESCRIPTION

This function tells DCRTCP.LIB that an incoming session for a particular port will be accept-
ed. After a call to tcp_listen(), the function sock_established() (or the macro
sock_wait_established) must be called to poll the connection until a session is fully
established.

It is possible for a connection to be opened, written to and closed between two calls to the func-
tion sock_established(). To handle this case, call sock_bytesready() to deter-
mine if there is data to be read from the buffer.

Multiple calls to tcp_listen() to the same local port (lport) are acceptable and consti-
tute the mechanism for supporting multiple incoming connections to the same local port. Each
time another host attempts to open a session on that particular port, another one of the listens
will be consumed until such time as all listens have become established sessions and subsequent
remote host attempts will receive a reset.

PARAMETERS

s Pointer to a socket.

lport Port to listen on (the local port number).

remip IP address of the remote host to accept connections from or 0 for all.

port Port to accept connections from or 0 for all.

datahandler Function to call when data is received; NULL for placing data in the sock-
et's receive buffer. Prior to Dynamic C 7.30, some details for implementa-
tion of this service had not been finalized. Insert a value of NULL if you are
using a version of Dynamic C prior to 7.30.

reserved Set to 0 for now. This parameter is for compatibility and possible future
use.

RETURN VALUE

0: Failure.

1: Success.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_extlisten
250 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

EXAMPLE USING TCP_LISTEN()

// Old way of setting network addresses is commented out.
//#define MY_IP_ADDRESS "10.10.6.100"
//#define MY_NETMASK "255.255.255.0"

// New method of setting network addresses
#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"

#define TELNET_PORT 23

static tcp_Socket *s;
char *userid;

telnets(int port) {
tcp_Socket telnetsock;
char buffer[512];
int status;
s = &telnetsock;

tcp_listen(s, port, 0L, 0, NULL, 0);

while (!sock_established(s) && sock_bytesready(s)==-1){
tcp_tick(NULL);

}
puts("Receiving incoming connection");
sock_mode(s, TCP_MODE_ASCII);
sock_puts(s, "Welcome to a sample telnet server.");
sock_puts(s, "Each line you type will be printed on"\
" this screen once you hit return.");
/* other guy closes connection except if we timeout ... */
do {

if (sock_bytesready(s) >= 0) {
sock_gets(s, buffer, sizeof(buffer)-1);
puts (buffer);

}
} while (tcp_tick(s));

}
main() {

sock_init();
telnets(TELNET_PORT);
exit(0);

}

TCP/IP Manual, Vol 1 rabbit.com 251

http://www.rabbit.com

tcp_open

int tcp_open(tcp_Socket *s, word lport, longword remip,
word port, dataHandler_t datahandler);

DESCRIPTION

This function actively creates a session with another machine. After a call to tcp_open(),
the function sock_established() (or the macro sock_wait_established) must
be called to poll the connection until a session is fully established.

It is possible for a connection to be opened, written to and closed between two calls to the func-
tion sock_established(). To handle this case, call sock_bytesready() to deter-
mine if there is data to be read from the buffer.

PARAMETERS

s Pointer to a socket structure.

lport Our local port. Use zero for the next available port in the range 1025-
65536. A few applications will require you to use a particular local port
number, but most network applications let you use almost any port with a
certain set of restrictions. For example, FINGER or TELNET clients can
use any local port value, so pass the value of zero for lport and let
DCRTCP.LIB pick one for you.

remip IP address to connect to.

port Port to connect to.

datahandler Function to call when data is received; NULL for placing data in the sock-
et’s receive buffer. Prior to Dynamic C 7.30, some details for implementa-
tion of this service had not been finalized. Insert a value of NULL if you are
using a version of Dynamic C prior to 7.30.

RETURN VALUE

0: Unable to resolve the remote computer's hardware address.

!0 otherwise.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_listen
252 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

EXAMPLE USING TCP_OPEN()

// Old way of setting network addresses is commented out.
//#define MY_IP_ADDRESS "10.10.6.100"
//#define MY_NETMASK "255.255.255.0"

// New of setting network addresses
#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"

#define ADDRESS "10.10.6.19"
#define PORT "200"

main() {
word status;
word port;
longword host;
tcp_Socket tsock;

sock_init();

if (!(host = resolve(ADDRESS))) {
puts("Could not resolve host");
exit(3);

}
port = atoi(PORT);

printf("Attempting to open '%s' on port %u\n\r", ADDRESS,
port);

if (!tcp_open(&tsock, 0, host, port , NULL)) {
puts("Unable to open TCP session");
exit(3);

}

printf("Waiting a maximum of %u seconds for connection"\
" to be established\n\r", sock_delay);

while (!sock_established(&tsock) &&
sock_bytesready(&tsock)== -1){

tcp_tick(NULL);
}
puts("Socket is established");
sock_close(&tsock);
exit(0);

}

TCP/IP Manual, Vol 1 rabbit.com 253

http://www.rabbit.com

tcp_reserveport

void tcp_reserveport(word port);

DESCRIPTION

This function allows a connection to be established even if there is not yet a socket available.
This is done by setting a parameter in the TCP header during the connection setup phase that
indicates 0 bytes of data can be received at the present time. The requesting end of the connec-
tion will wait until the TCP header parameter indicates that data will be accepted.

The 2MSL waiting period for closing a socket is avoided by using this function.

The penalty of slower connection times on a controller that is processing a large number of con-
nections is offset by allowing the program to have less sockets and consequently less RAM us-
age.

PARAMETERS

port Port to use.

RETURN VALUE

None.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, tcp_listen, tcp_clearreserve
254 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

tcp_tick

int tcp_tick(void *s);

DESCRIPTION

This function is a single kernel routine designed to quickly process packets and return as soon
as possible. tcp_tick() performs processing on all sockets upon each invocation: checking
for new packets, processing those packets, and performing retransmissions on lost data. On
most other computer systems and other kernels, performing these required operations in the
background is often done by a task switch. DCRTCP.LIB does not use a tasker for its basic
operation, although it can adopt one for the user-level services.

Although you may ignore the returned value of tcp_tick(), it is the easiest method to de-
termine the status of the given socket.

PARAMETERS

s Pointer to a socket. If a NULL pointer is passed in the returned value
should be ignored.

RETURN VALUE

0: Connection reset or closed by other host or NULL was passed in.

!0: Connection is fine.

LIBRARY

TCP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

tcp_open, sock_close, sock_abort
TCP/IP Manual, Vol 1 rabbit.com 255

http://www.rabbit.com

udp_bypass_arp

void udp_bypass_arp(udp_Socket *s, eth_address *eth);

DESCRIPTION

Override the normal Address Resolution Protocol for this UDP socket. This is sometimes nec-
essary for special purposes such as if the Ethernet address is to remain fixed, or if the Ethernet
address is not obtainable using ARP. The great majority of applications should not use this func-
tion.

If ARP bypass is in effect for a UDP socket, then udp_sendto() will never return the -2 re-
turn code.

The destination interface is also forced to be IF_DEFAULT. If the supplied hardware address
is accessible from a non-default interface only, then you will need to manually set the s-
>iface field.

PARAMETERS

s UDP socket

eth Pointer to override address. If NULL, then resume normal operation i.e.,
use ARP to resolve Ethernet addresses. Note that the specified Ethernet ad-
dress must be in static storage, since only the pointer is stored.

LIBRARY

UDP.LIB

SEE ALSO

udp_sendto, udp_waitsend, sock_resolved
256 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_close

void udp_close(udp_Socket *ds);

DESCRIPTION

This function closes a UDP connection. Starting with Dynamic C 7.30, this function performs
the actions necessary to leave a host group when closing a multicast socket. It is IGMPv2 com-
pliant.

PARAMETERS

ds Pointer to socket’s data structure.

LIBRARY

UDP.LIB
TCP/IP Manual, Vol 1 rabbit.com 257

http://www.rabbit.com

udp_extopen

int udp_extopen(udp_Socket *s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, long buffer, int
buflen);

DESCRIPTION

This function is an extended version of udp_open(). It opens a socket on a given network
interface (iface) on a given local port (lport). If the remote IP address is specified
(remip), then only UDP datagrams from that host will be accepted.

The remote end of the connection is specified by remip and port. The following table ex-
plains the possible combinations and what they mean.

The buffer and buflen parameters allow a user to supply a socket buffer, instead of using
a socket buffer from the pool.

If remip is non-zero, then the process of resolving the correct destination hardware address is
started. Datagrams cannot be sent until sock_resolved() returns TRUE. If you attempt to
send datagrams before this, then the datagrams may not get sent. The exception to this is if
remip is -1 (broadcast) in which case datagrams may be sent immediately after calling this
function.

This function also works with multicast addresses. If remip is a multicast address, then pack-
ets sent with this function will go to the multicast address, and packets received will also be
from that multicast address. Also, if enabled, IGMP will be used to join the multicast groups.
The group will be left when the socket is closed. Note that if port is 0 and remip is a multicast
address, the port will not be filled in on the first received datagram (that is, the socket is non-
binding to the port).

REMIP Effect of REMIP value

 0

The connection completes when the first datagram is received,
supplying both the remote IP address and the remote port
number. Only datagrams received from that IP/port address will
be accepted.

-1
All remote hosts can send datagrams to the socket. All outgoing
datagrams will be sent to the broadcast address unless
udp_sendto() specifies otherwise.

>0

If the remote IP address is a valid IP address and the remote port
is 0, the connection will complete when the first datagram is
received, supplying the remote port number.
If the remote IP address and the remote port are both specified
when the function is called, the connection is complete at that
point.
258 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_extopen (cont.)

PARAMETERS

s Pointer to socket.

iface Local interface on which to open the socket. Use IF_ANY if the socket is
to accept datagrams from any interface. Otherwise, datagrams will be ac-
cepted only from the specified interface.

This parameter is supported as of Dynamic C 7.30. With earlier version of
DC, this parameter should be IF_DEFAULT.

lport Local port.

remip Acceptable remote IP, or 0 for all.

port Acceptable remote port, or 0 for all.

datahandler Function to call when data is received, NULL for placing data in the sock-
et’s receive buffer.

buffer Address of user-supplied socket buffer in xmem. If buffer is 0, the
socket buffer for this socket is pulled from the buffer pool defined by the
macro MAX_UDP_SOCKET_BUFFERS.

buflen Length of user-supplied socket buffer.

RETURN VALUE:

!0: Success.

0: Failure; error opening socket, e.g., a buffer could not be allocated.

LIBRARY

UDP.LIB

SEE ALSO

udp_open, sock_resolved
TCP/IP Manual, Vol 1 rabbit.com 259

http://www.rabbit.com

udp_open

int udp_open(udp_Socket *s, word lport, longword remip,
word port, dataHandler_t datahandler);

DESCRIPTION

This function opens a UDP socket on the given local port (lport). If the remote IP address is
specified (remip), then only UDP datagrams from that host will be accepted. The remote end
of the connection is specified by remip and port. The following table explains the possible
combinations and what they mean.

If the remote host is set to a particular address, either host may initiate traffic. Multiple calls to
udp_open() with remip set to zero is a useful way of accepting multiple incoming sessions.

Although multiple calls to udp_open() may normally be made with the same lport num-
ber, only one udp_open() should be made on a particular lport if the remip is set to -1.
Essentially, the broadcast and nonbroadcast protocols cannot co-exist.

Be sure that you have allocated enough UDP socket buffers with
MAX_UDP_SOCKET_BUFFERS. Note that this macro defaults to 0, so any usage of
udp_open() requires a definition of MAX_UDP_SOCKET_BUFFERS in your program.

REMIP Effect of REMIP value

 0

The connection completes when the first datagram is received,
supplying both the remote IP address and the remote port
number. Only datagrams received from that IP/port address will
be accepted.

-1
All remote hosts can send datagrams to the socket. All outgoing
datagrams will be sent to the broadcast address on the specified
port. The port parameter is ignored.

>0

If the remote IP address is a valid IP address and the remote port
is 0, the connection will complete when the first datagram is
received, supplying the remote port number.
If the remote IP address and the remote port are both specified
when the function is called, the connection is complete at that
point.
260 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_open (cont.)

This function also works with multicast addresses. If remip is a multicast address, then pack-
ets sent with this function will go to the multicast address, and packets received will also be
from that multicast address. Also, if enabled, IGMP will be used to join the multicast groups.
The group will be left when the socket is closed. Note that if port is 0 and remip is a multi-
cast address, the port will not be filled in on the first received datagram (that is, the socket is
non-binding to the port).

PARAMETERS

s Pointer to a UDP socket.

lport Local port

remip Acceptable remote IP, 0 to connect on first datagram, or -1 for broadcast.

port Acceptable remote port, or 0 to connect on first datagram.

datahandler Function to call when data is received. NULL for placing data in the sock-
et's receive buffer.

RETURN VALUE

0: Failure (e.g., a buffer could not be allocated).

!0: Success.

LIBRARY

UDP.LIB (Prior to DC 7.05, this was DCRTCP.LIB)

SEE ALSO

udp_extopen
TCP/IP Manual, Vol 1 rabbit.com 261

http://www.rabbit.com

udp_peek

int udp_peek(udp_Socket *s, _udp_datagram_info *udi);

DESCRIPTION

Look into the UDP socket receive buffer to see if there is a datagram ready to be read using
udp_recvfrom(). This function does not remove the datagram from the buffer, but it allows
the application to determine the full details about the next datagram, including whether the da-
tagram was broadcast.

The returned data is put in *udi. udi must point to a valid data structure, or be NULL. The
data structure is:

typedef struct {
longword remip; // Remote host IP address
word remport; // Remote host port number
int len; // Length of datagram
byte flags; // Bit mask (defined below)
byte iface; // Interface number

} _udp_datagram_info;

The flags field may have one of the following values:

UDI_ICMP_ERROR - This is an ICMP error entry.
UDI_TOS_MASK - Type-of-service bit mask.
UDI_BROADCAST_LL - Received on broadcast link layer address.
UDI_BROADCAST_IP - Received on broadcast network (IP) address.

PARAMETERS

s UDP socket to check

udi Where to store the returned information.

RETURN VALUE

1: A normal datagram is in the receive buffer.

0: No datagram waiting.

-3: ICMP error message in receive buffer - will only be returned if udi is not NULL.

LIBRARY

UDP.LIB

SEE ALSO

udp_recvfrom
262 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_recv

int udp_recv(udp_Socket *s, char *buffer, int len);

DESCRIPTION

Receives a single UDP datagram on a UDP socket. If the buffer is not large enough for the da-
tagram, the datagram is truncated, and the remainder discarded.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer where the UDP datagram will be stored.

len Maximum length of the buffer.

RETURN VALUE

0: Number of bytes received.

-1: No datagram waiting.

<-1: Error.

LIBRARY

UDP.LIB

SEE ALSO

udp_recvfrom, udp_send, udp_sendto, udp_open
TCP/IP Manual, Vol 1 rabbit.com 263

http://www.rabbit.com

udp_recvfrom

int udp_recvfrom(udp_Socket *s, char *buffer, int len,
longword *remip, word *remport);

DESCRIPTION

Receive a single UDP datagram on a UDP socket. remip and remport should be pointers to the
locations where the remote IP address and remote port from which the datagram originated are
placed. If the buffer is not large enough for the datagram, then the datagram will be truncated,
with the remainder being discarded.

If and only if the UDP_MODE_ICMP or UDP_MODE_DICMP modes are set for this socket, then
a return code of -3 indicates that an ICMP error message is being returned in the buffer instead
of a normal datagram. In this case, buffer will contain fixed data in the form of a structure of
type _udp_icmp_message. The definition of this structure is:

typedef struct {
word myport; // Originating port on this host
byte icmp_type; // One of the ICMPTYPE_* values
byte icmp_code; // The corresponding ICMP code
} _udp_icmp_message;

Please see sock_mode for more information about the modes UDP_MODE_ICMP and
UDP_MODE_DICMP.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer where the UDP datagram will be stored.

len Maximum length of the buffer.

remip IP address of the remote host of the received datagram.

remport Port number of the remote host of the received datagram.

RETURN VALUE

0: Number of bytes received.

-1: No datagram waiting.

-2: Error - not a UDP socket.

-3: The returned buffer contains an ICMP error which was queued previously.

LIBRARY

UDP.LIB

SEE ALSO

udp_recv, udp_send, udp_sendto, udp_open, udp_peek
264 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_send

int udp_send(udp_Socket *s, char *buffer, int len);

DESCRIPTION

Sends a single UDP datagram on a UDP socket. It will not work for a socket for which the
remip parameter to udp_open() was 0, unless a datagram has first been received on the
socket. If the remip parameter to udp_open() was -1, the datagram will be send to the
broadcast address.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer that contains the UDP datagram

len Length of the UDP datagram.

RETURN VALUE

0: Number of bytes sent.

-1: Failure.

-2: Failed because hardware address not resolved.

LIBRARY

UDP.LIB

SEE ALSO

udp_sendto, udp_recv, udp_recvfrom, udp_open
TCP/IP Manual, Vol 1 rabbit.com 265

http://www.rabbit.com

udp_sendto

int udp_sendto(udp_Socket *s, char *buffer, int len,
longword remip, word remport);

DESCRIPTION

Sends a single UDP datagram on a UDP socket. It will send the datagram to the IP address and
port specified by remip and remport. Note that this function can be used on a socket that
has been "connected" to a different remote host and port.

PARAMETERS

s Pointer to socket’s data structure.

buffer Buffer that contains the UDP datagram.

len Length of the UDP datagram.

remip IP address of the remote host.

remport Port number of the remote host.

RETURN VALUE

0: Success, number of bytes sent.

-1: Failure.

-2: Failed because hardware address not resolved.

LIBRARY

UDP.LIB

SEE ALSO

udp_send, udp_xsendto, udp_recv, udp_recvfrom, udp_open
266 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_waitopen

int udp_waitopen(udp_Socket *s, int iface, word lport, longword
remip, word port, dataHandler_t datahandler, long buffer,
int buflen, longword millisecs);

DESCRIPTION

This function is identical to udp_extopen(), except that it waits a specified amount of time
for the hardware address of the destination to be resolved.

While waiting, this function calls tcp_tick().

PARAMETERS

s Pointer to socket.

iface Local interface on which to open the socket.

This parameter is supported as of Dynamic C 7.30. With earlier version of
DC, this parameter should be IF_DEFAULT.

lport Local port.

remip Acceptable remote ip, or 0 for all.

port Acceptable remote port, or 0 for all.

datahandler Function to call when data is received, NULL for placing data in the sockets
receive buffer.

buffer Address of user-supplied socket buffer in xmem, 0 to use a buffer from the
socket buffer pool.

buflen Length of user-supplied socket buffer.

millisecs Maximum milliseconds to wait for the hardware address to be resolved.

RETURN VALUE

>0: Successfully opened socket.

0: Timed out without resolving address.

-1: Error opening socket (e.g., buffer could not be allocated).

LIBRARY

UDP.LIB

SEE ALSO

udp_extopen, sock_resolved
TCP/IP Manual, Vol 1 rabbit.com 267

http://www.rabbit.com

udp_waitsend

int udp_waitsend(udp_Socket *s, char *buffer, int len,
longword remip, word remport, word millisecs);

DESCRIPTION

This is identical to udp_sendto(), except that it will block for up to the specified amount of
time waiting for the hardware address to be resolved. Normally, you should not have to specify
more than 100 ms for the time out. If it takes longer than this, the destination is probably un-
available.

PARAMETERS

s UDP socket on which to send the datagram.

buffer Buffer that contains the UDP datagram.

len Length of the UDP datagram.

remip IP address of the remote host.

remport Port number of the remote host.

millisecs Number of milliseconds to wait for hardware address resolution. Reason-
able values are between 50 and 750 milliseconds.

RETURN VALUE

0: Number of bytes sent.

-1: Failure (invalid UDP socket etc.).

-2: Failure (timed out, no datagram sent).

LIBRARY

UDP.LIB

SEE ALSO

udp_sendto, udp_recvfrom, udp_bypass_arp
268 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

udp_xsendto

int udp_xsendto(udp_Socket *s, long buffer, int len, longword remip,
word remport);

DESCRIPTION

Send a single UDP datagram on a UDP socket. It will send the datagram to the IP address spec-
ified by remip, and the port specified by remport. Note that this function can be used even on a
socket that has been "connected" to a remote host and port.

This function is identical to udp_sendto() except that the data address is specified as a
physical address.

PARAMETERS

s UDP socket on which to send the datagram.

buffer Buffer that contains the UDP datagram.

len Length of the UDP datagram.

remip IP address of the remote host.

remport Port number of the remote host.

RETURN VALUE

0: Number of bytes sent.

-1: Failure.

-2: Failure (hardware address not resolved).

LIBRARY

UDP.LIB

SEE ALSO

 udp_send, udp_recv, udp_recvfrom, udp_open, udp_sendto
TCP/IP Manual, Vol 1 rabbit.com 269

http://www.rabbit.com

virtual_eth

int virtual_eth(word real_iface, longword ipaddr, longword
netmask, void * resv);

DESCRIPTION

Create a new virtual ethernet interface. You must #define VIRTUAL_ETH to a positive number
(1-6) for this function to work. The macro VIRTUAL_ETH gives the maximum number of vir-
tual interfaces.

Virtual ethernet interfaces have some restrictions:

• You cannot use DHCP.
• Broadcast/multicast packets are not received.
• Some ifconfig() settings (such as MTU size) are not settable.
• Once a virtual interface is created, it cannot be destroyed. In practice, this means that all

virtual interfaces should be created at boot time (after sock_init()).

The virtual interface will be created in the same up/down state as the real interface. Changes to
the up/down state of the real interface will affect all virtual interfaces tied to that interface.

The callback function for a virtual interface is set to NULL.

PARAMETERS

real_iface The real interface to use. This must be IF_ETH0, or may be IF_ETH1
for boards with two Ethernet chips.

ipaddr The IP address to assign this interface. This must not be the same as the IP
address of any other interface.

netmask Netmask to use. If zero, then the netmask of the real interface will be used.

resv Pointer reserved for future use. Pass as NULL.

RETURN VALUE

-1: Failed because VIRTUAL_ETH was not defined, or the number of virtual interfaces ex-
ceeds the value specified by VIRTUAL_ETH, or the real_iface parameter was not val-
id.

Otherwise: returns the interface number to use for this virtual interface. This should be passed
to any other function that requires the interface number to be specified.

LIBRARY

NET.LIB

SEE ALSO

 ifconfig
270 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

wifi_ssid_to_str

far char * wifi_ssid_to_str (char far *dest, char far *ssid, int len);

DESCRIPTION

This function creates a null-terminated string of printable characters from a given SSID. Since
the SSID can contain any byte (including nulls and characters > 0x7F), you can use
wifi_ssid_to_str() to create a printf-safe string.

PARAMETERS

dest Pointer to a 33-byte buffer to receive the printable string.

ssid Pointer to a 0 to 32-byte SSID.

len Length of SSID.

RETURN VALUE

Returns pointer to user-supplied 33-byte buffer (dest) containing printf-safe string.

NOTE:

To perform the conversion in place (re-use the buffer):

int i;
char b[33];
ifconfig (IF_WIFI0, IFG_WIFI_SSID, &i, b, IFS_END);
printf ("SSID: [%ls]\n", wifi_ssid_to_str (b, b, i));

LIBRARY

WIFI_WLN_API.LIB

SEE ALSO

ifconfig (IFG_WIFI_SSID option)
TCP/IP Manual, Vol 1 rabbit.com 271

http://www.rabbit.com

272 rabbit.com TCP/IP Manual, Vol. 1

http://www.rabbit.com

Index

Numerics

2MSL .. 266
3-way handshake .. 57

A

ARP_CONFLICT_CALLBACK 90
ARP_LONG_EXPIRY ... 89
ARP_NO_ANNOUNCE .. 90
ARP_PERSISTENCE .. 90
ARP_PURGE_TIME .. 89
ARP_ROUTER_TABLE_SIZE 41, 90
ARP_SHORT_EXPIRY ... 89
ARP_TABLE_SIZE ... 41, 90

B

bandwidth ... 77, 93
BOOTP/DHCP

_bootpdata ... 39
_bootpdone .. 38
_bootperror .. 39
_bootphost ... 38
_bootpon ... 37
_bootpsize ... 38
_bootptimeout ... 38
_dhcphost .. 38
_dhcplife ... 38
_dhcpt1 .. 38
_dhcpt2 .. 38
_smtpsrv .. 39
_survivebootp .. 37

broadcast packets 53, 61, 63, 270, 272, 274, 277
buffer sizes .. 56

C

callbacks
CGI .. 88
interface status .. 15
IP address conflict ... 90
TCP and UDP data handlers 69

checksums ... 225
communication channel .. 77

D

daemons
tcp_tick ... 267

data handler callbacks .. 69
DCRTCP_DEBUG ... 45
DCRTCP_VERBOSE .. 45
DHCP_CHECK .. 36
DHCP_CLASS_ID ... 37
DHCP_CLIENT_ID ... 37
DHCP_CLIENT_ID_LEN 37
DHCP_CLIENT_ID_MAC 37
DHCP_USE_BOOTP ... 36
DHCP_USE_TFTP .. 37
DISABLE_DNS ... 35, 91
DISABLE_TCP .. 35
DNS .. 91
DNS_MAX_DATAGRAM_SIZE 41, 91
DNS_MAX_NAME ... 41, 91
DNS_MAX_RESOLVES 41, 91
DNS_MIN_KEEP_COMPLETED 45, 92
DNS_NUMBER_RETRIES 45, 92
DNS_RETRY_TIMEOUT 45, 91
DNS_SOCK_BUF_SIZE 42, 92
drivers

link layer ... 6

E

ephemeral connection ... 54
error messages .. 227
ETH_MAXBUFS ... 41
ETH_MTU ... 40
Ethernet

ports .. 3
Ethernet Transmission Unit 216

F

Function Reference
Addressing

_arp_resolve ... 117
_arp_send_gratuitous 122
arp_getArpData 116
arp_getArpGateData 116
arpcache_create 108
arpcache_flush 109
arpcache_hwa ... 110
TCP/IP Manual, Vol 1 rabbit.com 273

http://www.rabbit.com

arpcache_ipaddr112
arpcache_load ...113
arpcache_search115
arpresolve_check118
arpresolve_ipaddr119
arpresolve_start120
arpresolve_start_iface121
dhcp_acquire ...125
dhcp_get_timezone126
dhcp_release ...127
getdomainname128
gethostid ..129
gethostname ..130
getpeername ..131
getsockname ...132
psocket ..186
resolve ...187
resolve_cancel ...188
resolve_name_check189
resolve_name_start190
router_add ...192
router_del_all ..193
router_delete ...193
router_for ..194
router_for_iface195
router_print ...197
router_printall ...198
setdomainname200
sethostid ..201
sethostname ...202
udp_bypass_arp268

Configuration
ifconfig ..135
tcp_config ...258
wifi_ioctl ...26

Data Conversion
aton ...123
htonl ..133
htons ..134
inet_addr ...163
inet_ntoa ...164
ntohl ..177
ntohs ..178
rip ..191

Ethernet
pd_getaddress ...179
pd_havelink ...180
pd_powerdown181
pd_powerup ..182

Initialization
sock_init ..222
sock_init_or_exit223
sock_tick ...247

Interface
ifdown ... 158
ifpending ... 159
ifstatus .. 160
ifup .. 161
ip_iface ... 165
ip_print_ifs ... 166
is_valid_iface .. 169
sock_iface ... 221
virtual_eth ... 282

Modem
ModemClose .. 170
ModemConnected 170
ModemExpect .. 171
ModemHangup 171
ModemInit .. 172
ModemOpen ... 172
ModemReady ... 173
ModemRinging 173
ModemSend .. 174
ModemStartPPP 174

Multicast
multicast_joingroup 175
multicast_leavegroup 176

Ping
_chk_ping ... 124
_ping ... 183
_send_ping .. 199

PPP
PPPactive .. 184
PPPnegotiateIP 184
PPPsetAuthenticatee 185
PPPsetAuthenticator 185
PPPshutdown .. 186

Socket Configuration
sock_mode .. 224
sock_set_tos .. 241
sock_set_ttl ... 242
tcp_clearreserve 257
tcp_reserveport 266

Socket Connection
_abort_socks ... 107
sock_abort .. 203
sock_close .. 210
sock_established 214
sock_waiting ... 250
tcp_keepalive .. 261

Socket I/O Buffer
sock_rbleft .. 231
sock_rbsize ... 232
sock_rbused .. 233
sock_tbleft .. 244
sock_tbsize ... 245
sock_tbused .. 246
274 rabbit.com Index

http://www.rabbit.com

Socket Status
ip_timer_expired 167
ip_timer_init ... 168
sock_alive ... 204
sock_bytesready 209
sock_dataready 211
sock_error ... 213
sock_perror ... 227
sock_readable ... 235
sock_resolved ... 240
sock_writable ... 252
sockerr .. 212
sockstate ... 243
tcp_tick ... 267

TCP Socket I/O
sock_aread .. 205
sock_awrite ... 206
sock_axread .. 207
sock_axwrite ... 208
sock_fastread .. 215
sock_fastwrite ... 216
sock_flush ... 217
sock_flushnext .. 218
sock_getc .. 219
sock_gets .. 220
sock_preread ... 228
sock_putc .. 229
sock_puts .. 230
sock_read .. 234
sock_write .. 253
sock_xfastread .. 254
sock_xfastwrite 255
sock_yield ... 256
tcp_extlisten ... 259
tcp_extopen .. 260
tcp_listen .. 262
tcp_open ... 264

TCP/IP Stack
sock_init ... 222
sock_init_or_exit 223
tcp_tick ... 267

UDP Socket I/O
udp_close .. 269
udp_extopen ... 270
udp_open .. 272
udp_peek .. 274
udp_recv ... 275
udp_recvfrom ... 276
udp_send ... 277
udp_sendto ... 278
udp_waitopen ... 279
udp_waitsend .. 280
udp_xsendto ... 281

UDP Socket I/O (pre-DC 7.05)

sock_fastread .. 215
sock_fastwrite .. 216
sock_read ... 234
sock_recv ... 236
sock_recv_from 238
sock_recv_init .. 239
sock_write .. 253
udp_close ... 269
udp_open .. 272

Wi-Fi
wifi_ioctl .. 26
wifi_ssid_to_str 283

H

host group ... 93

I

ICMP_TOS ... 47
IF_* .. 4
IFCONFIG_* .. 43
IGMP .. 93
interfaces

configuration ... 8–14
enable/disable support .. 5
single ... 7
sum of physical ... 6
supported types ... 3

IP addresses
broadcast packets .. 61, 63
default ... 9, 42
directed ping ... 13
dynamic configuration .. 11
last-used DHCP server .. 38
last-usedBOOTP/TFTP server 38
lease .. 11, 38
mail server .. 39
origin of received datagram 64
runtime configuration ... 12
setting to zero .. 56
sources of .. 9
Zconsole configuration 14

ISPs and MAC addresses 14

K

KEEPALIVE_NUMRETRYS 44
KEEPALIVE_WAITTIME 44

L

latency .. 78, 88
link layer drivers ... 6
TCP/IP Manual, Vol 1 rabbit.com 275

http://www.rabbit.com

M

MAC address ...14, 85
macros

ARP ...89
BOOTP/DHCP ..36
buffer/resource sizing ..39
DNS ...91
including additional functionality36
interface configuration ..4
interface configuration (7.30 and later)42
interface selection ..5
link layer driver ...7
miscellaneous ..46
network configuration (pre 7.30)42
program debugging ...45
removing unwanted functionality35
timers and counters ..44
TOS and TTL ..46

MAX_COOKIES ..41
MAX_DOMAIN_LENGTH42
MAX_NAMESERVERS ..41
MAX_RESERVEPORTS41
MAX_SOCKET_LOCKS39, 73
MAX_SOCKETS ..39
MAX_STRING ...41
MAX_TCP_SOCKET_BUFFERS39, 260
MAX_UDP_SOCKET_BUFFERS40
memmap ..65
modem library ...96
MSS (maximum segment size)40
MTU ..216
multicasting ...93, 270
multitasking ...73
MY_DOMAIN ..40, 42
MY_GATEWAY ..42
MY_IP_ADDRESS ..42
MY_NAMESERVER ...42
MY_NETMASK ...42

N

Nagle algorithm ...80, 224
NET_ADD_ENTROPY ..46
NET_COARSELOCK ..46
network addressing ...89

O

optimizations ...77

P

packet
acknowledgement ..78, 80
processing ..66
size ...79

TOS ... 85
performance optimizing .. 77
PKTDRV .. 7
port numbers ... 54
PPP driver ... 95
PPP_MTU ... 40

R

RETRAN_STRAT_TIME 44, 82
router ... 89, 90, 94
RTT ... 78

S

SOCK_BUF_SIZE .. 40
socket

abort all ... 107
buffers ... 55
data structure ... 54
default mode .. 60
definition ... 54
empty line vs empty buffer 209
locks .. 73, 224

stack
configuration ... 3–8
initialization .. 7

T

TCP socket .. 53
active open .. 57
control functions ... 58
I/O functions ... 60

blocking .. 69
non-blocking ... 68

listen queue ... 58
passive open .. 56

TCP/IP
initialization .. 66
skeleton program ... 65

TCP_BUF_SIZE ... 40
TCP_CONNTIMEOUT .. 44
TCP_FASTSOCKETS .. 46
TCP_LAZYUPD .. 45, 83
tcp_MaxBufSize ... 40
TCP_MAXPENDING .. 41
TCP_MAXRTO .. 44
TCP_MINRTO ... 45, 82
TCP_NO_CLOSE_ON_LAST_READ 46
TCP_OPENTIMEOUT ... 44
TCP_STATS ... 45
TCP_SYNQTIMEOUT .. 44
TCP_TOS .. 47
TCP_TTL .. 47
TCP_TWTIMEOUT ... 44, 83
276 rabbit.com Index

http://www.rabbit.com

TCPCONFIG .. 9, 42
throughput ... 77, 88
tick rates .. 66

U

UDP
broadcast packets .. 61
performance .. 61

UDP socket
checksum .. 61
functions .. 61
open and close ... 63
read .. 64
write .. 63

UDP_BUF_SIZE .. 40
UDP_TOS ... 47
UDP_TTL ... 47
USE_DHCP .. 36
USE_ETHERNET .. 5, 42
USE_PPOE ... 5
USE_PPP_SERIAL 5, 43, 99
USE_PPPOE ... 43, 98
USE_RESERVEDPORTS 58
USE_SNMP .. 36
USE_WIFI .. 5

W

Wi-Fi ... 16
TCP/IP Manual, Vol 1 rabbit.com 277

http://www.rabbit.com

278 rabbit.com Index

http://www.rabbit.com

Dynamic C TCP/IP Functions
Listed Alphabetically

Symbols
_abort_socks107
_arp_send_gratuitous122
_chk_ping124
_ping ..183
_send_ping199

A
arp_getArpData116
arp_getArpGateData116
arp_resolve117
arpcache_create108
arpcache_flush109
arpcache_hwa110
arpcache_iface111
arpcache_ipaddr112
arpcache_load113
arpcache_search115
arpresolve_check118
arpresolve_ipaddr119
arpresolve_start120
arpresolve_start_iface121
aton ..123

D
dhcp_acquire125
dhcp_get_timezone126
dhcp_release127

G
getdomainname128
gethostid129
gethostname130
getpeername131
getsockname132

H
htonl ...133
htons ...134

I
ifconfig ...135
ifdown ..158

ifpending159
ifstatus ..160
ifup ...161
inet_addr163
inet_ntoa164
ip_iface ...165
ip_print_ifs166
ip_timer_expired167
ip_timer_init168
is_valid_iface169

M
ModemClose170
ModemConnected170
ModemExpect171
ModemHangup171
ModemInit172
ModemOpen172
ModemReady173
ModemRinging173
ModemSend174
ModemStartPPP174
multicast_joingroup175
multicast_leavegroup176

N
ntohl ...177
ntohs ..178

P
pd_getaddress179
pd_havelink180
pd_powerdown181
pd_powerup182
PPPactive184
PPPnegotiateIP184
PPPsetAuthenticatee185
PPPsetAuthenticator185
PPPshutdown186
psocket ...186
TCP/IP Manual, Vol 1 rabbit.com 279

http://www.rabbit.com

R
resolve ..187
resolve_cancel188
resolve_name_check189
resolve_name_start190
rip ..191
router_add192
router_del_all193
router_delete193
router_for194
router_for_iface195
router_print197
router_printall198

S
setdomainname200
sethostid201
sethostname202
sock_abort203
sock_alive204
sock_aread205
sock_awrite206
sock_axread207
sock_axwrite208
sock_bytesready209
sock_close210
sock_dataready211
sock_error213
sock_established214
sock_fastread215
sock_fastwrite216
sock_flush217
sock_flushnext218
sock_getc219
sock_gets220
sock_iface221
sock_init222
sock_init_or_exit223
sock_mode224
sock_noflush226
sock_perror227
sock_preread228
sock_putc229
sock_puts230
sock_rbleft231
sock_rbsize232
sock_rbused233
sock_read234

sock_readable235
sock_recv236
sock_recv_from238
sock_recv_init239
sock_resolved240
sock_set_tos241
sock_set_ttl242
sock_tbleft244
sock_tbsize245
sock_tbused246
sock_tick247
sock_wait_closed248
sock_wait_established249
sock_wait_input251
sock_waiting250
sock_writable252
sock_write253
sock_xfastread254
sock_xfastwrite255
sock_yield256
sockerr ..212
sockstate243

T
tcp_clearreserve257
tcp_config258
tcp_extlisten259
tcp_extopen260
tcp_keepalive261
tcp_listen262
tcp_open264
tcp_reserveport266
tcp_tick ...267

U
udp_bypass_arp268
udp_close269
udp_extopen270
udp_open272
udp_peek274
udp_recv275
udp_recvfrom276
udp_send277
udp_sendto278
udp_waitopen279
udp_waitsend280
udp_xsendto281

V
virtual_eth282
280 rabbit.com

http://www.rabbit.com

W
wifi_ssid_to_str283
TCP/IP Manual, Vol 1 rabbit.com 281

http://www.rabbit.com

282 rabbit.com

http://www.rabbit.com

Dynamic C TCP/IP Functions
Listed by Category

Addressing

_arp_resolve ..117

_arp_send_gratuitous122

arp_getArpData116

arp_getArpGateData116

arpcache_create108

arpcache_flush109

arpcache_hwa110

arpcache_iface111

arpcache_ipaddr112

arpcache_load113

arpcache_search115

arpresolve_check118

arpresolve_ipaddr119

arpresolve_start120

arpresolve_start_iface121

dhcp_acquire125

dhcp_get_timezone126

dhcp_release127

getdomainname128

gethostid ...129

gethostname ..130

getpeername ..131

getsockname132

psocket ...186

resolve ..187

resolve_cancel188

resolve_name_check189

resolve_name_start190

router_add ...192

router_del_all193

router_delete193

router_for ..194

router_for_iface195

router_print ...197

router_printall198

setdomainname200

sethostid ...201

sethostname ..202

udp_bypass_arp268

Configuration

ifconfig ...135

tcp_config ...258

Data Conversion

aton ..123

htonl ...133

htons ..134

inet_addr ...163

inet_ntoa ...164

ntohl ...177

ntohs ..178

rip ..191

Ethernet

pd_getaddress179

pd_havelink ..180

pd_powerdown181

pd_powerup ..182

Initialization

sock_init ...222

sock_init_or_exit223
TCP/IP Manual, Vol 1 rabbit.com 283

http://www.rabbit.com

sock_tick ..247

Interface

ifdown ..158

ifpending ..159

ifstatus ..160

ifup ...161

ip_iface ...165

ip_print_ifs ...166

is_valid_iface169

sock_iface ...221

virtual_eth ...282

Modem

ModemClose170

ModemConnected170

ModemExpect171

ModemHangup171

ModemInit ..172

ModemOpen172

ModemReady173

ModemRinging173

ModemSend ..174

ModemStartPPP174

Multicast

multicast_joingroup175

multicast_leavegroup176

Ping

_chk_ping ...124

_ping ..183

_send_ping ..199

PPP

PPPactive ..184

PPPnegotiateIP184

PPPsetAuthenticatee185

PPPsetAuthenticator185

PPPshutdown186

Socket Configuration

sock_mode ..224

sock_set_tos ..241

sock_set_ttl ...242

tcp_clearreserve257

tcp_reserveport266

Socket Connection

_abort_socks107

sock_abort ..203

sock_close ..210

sock_established214

sock_waiting250

tcp_keepalive261

Socket I/O Buffer

sock_rbleft ..231

sock_rbsize ...232

sock_rbused ..233

sock_tbleft ..244

sock_tbsize ...245

sock_tbused ..246

Socket Status

ip_timer_expired167

ip_timer_init168

sock_alive ...204

sock_bytesready209

sock_dataready211

sock_error ...213

sock_perror ...227

sock_readable235

sock_resolved240

sock_writable252

sockerr ..212

sockstate ...243

tcp_tick ...267

TCP Socket I/O

sock_aread ..205
284 rabbit.com

http://www.rabbit.com

sock_awrite ...206

sock_axread ..207

sock_axwrite208

sock_fastread215

sock_fastwrite216

sock_flush ...217

sock_flushnext218

sock_getc ..219

sock_gets ..220

sock_noflush226

sock_preread228

sock_putc ..229

sock_puts ..230

sock_read ..234

sock_write ..253

sock_xfastread254

sock_xfastwrite255

sock_yield ...256

tcp_extlisten ..259

tcp_extopen ...260

tcp_listen ..262

tcp_open ...264

UDP Socket I/O

udp_close ..269

udp_extopen ..270

udp_open ..272

udp_peek ..274

udp_recv ...275

udp_recvfrom276

udp_send ..277

udp_sendto ..278

udp_waitopen279

udp_waitsend280

udp_xsendto ..281

UDP Socket I/O (pre-DC 7.05)

sock_recv ..236

sock_recv_from238

sock_recv_init239

Wi-Fi

wifi_ssid_to_str283
TCP/IP Manual, Vol 1 rabbit.com 285

http://www.rabbit.com

286 rabbit.com

http://www.rabbit.com

	1. Introduction
	2. TCP/IP Initialization
	2.1 TCP/IP Stack Configuration
	2.1.1 Multiple Interface Support
	IF_ETH0, IF_ETH1
	IF_PPPOE0, IF_PPPOE1
	IF_PPP0, IF_PPP1, IF_PPP2, IF_PPP3, IF_PPP4, IF_PPP5
	IF_PPPX
	IF_WIFI0, IF_WIFI1
	IF_DEFAULT
	IF_ANY

	2.1.2 Interface Selection Macros
	USE_ETHERNET
	USE_PPP_SERIAL
	USE_PPPOE
	USE_WIFI
	2.1.2.1 Link Layer Drivers

	2.1.3 Single Interface Support
	2.1.3.1 Configuration Macros for Link Layer Driver - Single Interface
	PKTDRV
	PPPOE

	2.1.4 TCP/IP Stack Initialization

	2.2 Interface Configuration
	2.2.1 Configuration Overview
	2.2.2 Sources of Configuration Information
	2.2.2.1 Predefined Configurations
	2.2.2.2 Static Configuration
	2.2.2.3 Dynamic Configuration via the Network
	2.2.2.4 Runtime Configuration Using ifconfig()
	2.2.2.5 Directed Ping
	2.2.2.6 Remote Configuration via Advanced Device Discovery Protocol (ADDP)
	2.2.2.7 Console Configuration Via Zconsole.lib

	2.2.3 Media Access Control (MAC) Address

	2.3 Dynamically Starting and Stopping Interfaces
	2.3.1 Testing Interface Status
	2.3.2 Bringing an Interface Up
	2.3.3 Bringing an Interface Down

	2.4 Setting Up Wi-Fi Interfaces
	2.4.1 Wi-Fi Compile Time Configuration
	2.4.1.1 Infrastructure, Open (No Encryption) Configuration
	2.4.1.2 Ad-hoc, Open (No Encryption) Configuration
	2.4.1.3 Infrastructure, WEP Encryption Configuration
	2.4.1.4 Infrastructure, WPA/TKIP Encryption Configuration, Pre-Shared Key
	2.4.1.5 Infrastructure, WPA2/CCMP Encryption Configuration, Pre-Shared Key
	2.4.1.6 Infrastructure, WPA Enterprise using EAP-TLS and CCMP Encryption
	2.4.1.7 Infrastructure, WPA Enterprise using PEAP and TKIP Encryption
	2.4.1.8 Specifying a Pre-Shared Key
	2.4.1.9 Ad-hoc, WPA/TKIP or WPA2/CCMP Encryption Configuration

	2.4.2 Wi-Fi Runtime Configuration
	2.4.2.1 Runtime Configuration Starting with Dynamic C 10.40

	2.5 Setting Up PPP Interfaces
	2.5.1 PPP over Asynchronous Serial
	2.5.2 PPP over Ethernet

	2.6 Configuration Macro Reference
	2.6.1 Removing Unnecessary Functions
	DISABLE_DNS
	DISABLE_UDP
	DISABLE_TCP

	2.6.2 Including Additional Functions
	USE_DHCP
	USE_SNMP
	USE_MULTICAST
	USE_IGMP
	USE_LINKLOCAL

	2.6.3 BOOTP/DHCP Control Macros
	USE_DHCP
	DHCP_CHECK
	DHCP_CLASS_ID “Rabbit2000-TCPIP:Rabbit:Test:1.0.0”
	DHCP_CLIENT_ID clientid_char_ptr DHCP_CLIENT_ID_LEN clientid_length
	DHCP_CLIENT_ID_MAC

	2.6.4 Buffer and Resource Sizing
	MAX_SOCKETS (deprecated)
	MAX_SOCKET_LOCKS
	MAX_TCP_SOCKET_BUFFERS
	MAX_UDP_SOCKET_BUFFERS
	SOCK_BUF_SIZE (deprecated)
	TCP_BUF_SIZE
	tcp_MaxBufSize (deprecated)
	UDP_BUF_SIZE
	ETH_MTU
	PPP_MTU
	ETH_MAXBUFS
	ARP_TABLE_SIZE
	ARP_ROUTER_TABLE_SIZE
	MAX_STRING
	MAX_NAMESERVERS
	MAX_COOKIES
	TCP_MAXPENDING
	MAX_RESERVEPORTS
	DNS_MAX_RESOLVES
	DNS_MAX_NAME
	DNS_MAX_DATAGRAM_SIZE
	DNS_SOCK_BUF_SIZE

	2.6.5 Network Configuration Prior to Dynamic C 7.30
	MY_DOMAIN
	MAX_DOMAIN_LENGTH
	MY_GATEWAY
	MY_IP_ADDRESS
	MY_NAMESERVER
	MY_NETMASK

	2.6.6 Network Configuration Starting with Dynamic C 7.30
	TCPCONFIG
	USE_ETHERNET
	USE_PPP_SERIAL
	USE_PPPOE
	USE_WIFI
	IFCONFIG_ALL IFCONFIG_DEFAULT IFCONFIG_ETH0 IFCONFIG_PPP0..5 IFCONFIG_PPPOE0 IFCONFIG_WIFI0

	2.6.7 Time-Outs and Retry Counters
	RETRAN_STRAT_TIME
	TCP_OPENTIMEOUT
	TCP_CONNTIMEOUT
	TCP_SYNQTIMEOUT
	TCP_TWTIMEOUT
	KEEPALIVE_NUMRETRYS
	KEEPALIVE_WAITTIME
	TCP_MAXRTO
	TCP_MINRTO
	TCP_LAZYUPD
	DNS_RETRY_TIMEOUT
	DNS_NUMBER_RETRIES
	DNS_MIN_KEEP_COMPLETED

	2.6.8 Program Debugging
	TCP_STATS
	DCRTCP_DEBUG
	DCRTCP_VERBOSE

	2.6.9 Miscellaneous Macros
	TCP_FASTSOCKETS
	NET_ADD_ENTROPY
	NET_COARSELOCK
	TCP_NO_CLOSE_ON_LAST_READ
	2.6.9.1 TOS and TTL
	TCP_TTL
	TCP_TOS
	UDP_TTL
	UDP_TOS
	ICMP_TOS

	2.6.10 Wi-Fi Configuration Macros
	TCPCONFIG
	IFC_WIFI_SSID (default "rabbitTest")
	IFC_WIFI_ROAM_ENABLE (default 1)
	IFC_WIFI_ROAM_BEACON_MISS (default 20)
	IFC_WIFI_MODE (default IFPARAM_WIFI_INFRASTRUCTURE)
	IFC_WIFI_CHANNEL
	IFC_WIFI_REGION (default IFPARAM_WIFI_REGION_AMERICAS)
	IFC_WIFI_ENCRYPTION (default IFPARAM_WIFI_ENCR_NONE)
	IFC_WIFI_WEP_KEYNUM (default 0)
	IFC_WIFI_WEP_KEY0_BIN IFC_WIFI_WEP_KEY1_BIN IFC_WIFI_WEP_KEY2_BIN IFC_WIFI_WEP_KEY3_BIN
	IFC_WIFI_WEP_KEY0_HEXSTR IFC_WIFI_WEP_KEY1_HEXSTR IFC_WIFI_WEP_KEY2_HEXSTR IFC_WIFI_WEP_KEY3_HEXSTR
	IFC_WIFI_WPA_PSK_PASSPHRASE
	IFC_WIFI_WPA_PSK_HEXSTR
	IFC_WIFI_WPA_PROTOCOL
	IFC_WIFI_CLIENT_CERT_XIM
	IFC_WIFI_CA_CERT_XIM root_ca_cert
	IFC_WIFI_IDENTITY
	IFC_WIFI_PASSWORD
	IFC_WIFI_AUTHENTICATION (default IFPARAM_WIFI_AUTH_ANY)
	IFC_WIFI_FRAG_THRESHOLD (default 0)
	IFC_WIFI_RTS_THRESHOLD (default 0)
	SSL_USE_AES
	WIFI_USE_WPA
	WPA_USE_EAP

	3. TCP and UDP Socket Interface
	3.1 What is a Socket?
	3.1.1 Port Numbers

	3.2 Allocating TCP and UDP Sockets
	3.2.1 Allocating Socket Buffers
	MAX_TCP_SOCKET_BUFFERS
	MAX_UDP_SOCKET_BUFFERS

	3.2.2 Socket Buffer Sizes
	TCP_BUF_SIZE
	UDP_BUF_SIZE
	3.2.2.1 User-Supplied Buffers

	3.3 Opening TCP Sockets
	3.3.1 Passive Open
	3.3.2 Active Open
	3.3.3 Waiting for Connection Establishment
	3.3.4 Specifying a Listen Queue

	3.4 TCP Socket Functions
	3.4.1 Control Functions for TCP Sockets
	3.4.2 Status Functions for TCP Sockets
	3.4.3 I/O Functions for TCP Sockets

	3.5 UDP Socket Overview
	3.6 UDP Socket Functions (7.05 and later)
	3.6.1 Control Functions for UDP Sockets
	3.6.2 Status Function for UDP Sockets
	3.6.3 I/O Functions for UDP Sockets

	3.7 UDP Socket Functions (pre 7.05)
	3.7.1 I/O Functions for UDP Sockets
	3.7.2 Opening and Closing a UDP Socket
	3.7.3 Writing to a UDP Socket
	3.7.4 Reading From a UDP Socket
	3.7.5 Porting Programs from the older UDP API to the new UDP API

	3.8 Skeleton Program
	3.8.1 TCP/IP Stack Initialization
	3.8.2 Packet Processing

	3.9 TCP/IP Daemon: tcp_tick()
	3.9.1 tcp_tick() for Robust Applications
	3.9.2 Global Timer Variables

	3.10 State-Based Program Design
	3.10.1 Blocking vs. Non-Blocking
	3.10.1.1 Non-Blocking Functions
	3.10.1.2 Blocking Functions

	3.11 TCP and UDP Data Handlers
	3.11.1 UDP Data Handler
	3.11.2 TCP Data Handler

	3.12 Multitasking and TCP/IP
	3.12.1 µC/OS-II
	3.12.1.1 Interrupt-Driven or DMA-Driven Network Interface(s)
	3.12.1.2 Polled-Mode Only Network Interface(s)

	3.12.2 Cooperative Multitasking

	4. Optimizing TCP/IP Performance
	4.1 DBP and Sizing of TCP Buffers
	4.2 TCP Performance Tuning
	4.2.1 The Nagle Algorithm
	4.2.2 Time-Out Settings
	4.2.2.1 Time-Out Setting Constants
	RETRAN_STRAT_TIME
	TCP_MINRTO
	TCP_TWTIMEOUT
	TCP_LAZYUPD

	4.2.3 Reserved Ports
	4.2.4 Type of Service (TOS)
	4.2.5 ARP Cache Considerations

	4.3 Writing a Fast UDP Request/Response Server
	4.4 Tips and Tricks for TCP Applications
	4.4.1 Bulk Loader Applications
	4.4.2 Casual Server Applications
	4.4.3 Master Controller Applications
	4.4.4 Web Server Applications
	4.4.5 Protocol Translator Applications

	5. Network Addressing: ARP & DNS
	5.1 ARP Functions
	5.2 Configuration Macros for ARP
	ARP_LONG_EXPIRY
	ARP_SHORT_EXPIRY
	ARP_PURGE_TIME
	ARP_PERSISTENCE
	ARP_NO_ANNOUNCE
	ARP_CONFLICT_CALLBACK
	ARP_TABLE_SIZE
	ARP_ROUTER_TABLE_SIZE

	5.3 DNS Functions
	5.4 Configuration Macros for DNS Lookups
	DISABLE_DNS
	DNS_MAX_RESOLVES
	DNS_MAX_NAME
	DNS_MAX_DATAGRAM_SIZE
	DNS_RETRY_TIMEOUT
	DNS_NUMBER_RETRIES
	DNS_MIN_KEEP_COMPLETED
	DNS_SOCK_BUF_SIZE

	6. IGMP and Multicasting
	6.1 Multicasting
	6.1.1 Multicast Addresses
	6.1.2 Host Group Membership

	6.2 IGMP
	6.3 Multicast Macros
	USE_MULTICAST
	USE_IGMP
	IGMP_V1_ROUTER_PRESENT_TIMEOUT
	IGMP_UNSOLICITED_REPORT_INTERVAL

	7. PPP Driver
	7.1 PPP Libraries
	PPP.LIB
	PPPLINK.LIB
	PPPOE.LIB

	7.2 External Modem Library
	7.3 Operation Details for PPP over Serial
	7.3.1 The Modem Interface
	7.3.1.1 Rabbit Pin Connections to Modem

	7.3.2 Flow Control

	7.4 Operation Details for PPPoE
	7.5 Link Control Protocol Options
	7.6 Configuring PPP
	7.6.1 Serial Port Selection
	7.6.2 PPPoE Port Selection
	7.6.3 ifconfig() Options for PPP
	7.6.4 ifconfig() Options for Serial PPP
	7.6.4.1 Additional Rules for Send/Expect Scripts

	7.6.5 Starting and Stopping PPP Interfaces

	8. Function Reference
	_abort_socks
	arpcache_create
	arpcache_flush
	arpcache_hwa
	arpcache_iface
	arpcache_ipaddr
	arpcache_load
	arpcache_search
	arp_getArpData
	arp_getArpGateData
	_arp_resolve
	arpresolve_check
	arpresolve_ipaddr
	arpresolve_start
	arpresolve_start_iface
	_arp_send_gratuitous
	aton
	_chk_ping
	dhcp_acquire
	dhcp_get_timezone
	dhcp_release
	getdomainname
	gethostid
	gethostname
	getpeername
	getsockname
	htonl
	htons
	ifconfig
	ifdown
	ifpending
	ifstatus
	ifup
	inet_addr
	inet_ntoa
	ip_iface
	ip_print_ifs
	ip_timer_expired
	ip_timer_init
	is_valid_iface
	ModemClose
	ModemConnected
	ModemExpect
	ModemHangup
	ModemInit
	ModemOpen
	ModemReady
	ModemRinging
	ModemSend
	ModemStartPPP
	multicast_joingroup
	multicast_leavegroup
	ntohl
	ntohs
	pd_getaddress
	pd_havelink
	pd_powerdown
	pd_powerup
	_ping
	PPPactive
	PPPnegotiateIP
	PPPsetAuthenticatee
	PPPsetAuthenticator
	PPPshutdown
	psocket
	resolve
	resolve_cancel
	resolve_name_check
	resolve_name_start
	rip
	router_add
	router_del_all
	router_delete
	router_for
	router_for_iface
	router_print
	router_printall
	_send_ping
	setdomainname
	sethostid
	sethostname
	sock_abort
	sock_alive
	sock_aread
	sock_awrite
	sock_axread
	sock_axwrite
	sock_bytesready
	sock_close
	sock_dataready
	sockerr
	sock_error
	sock_established
	sock_fastread
	sock_fastwrite
	sock_flush
	sock_flushnext
	sock_getc
	sock_gets
	sock_iface
	sock_init
	sock_init_or_exit
	sock_mode
	sock_noflush
	sock_perror
	sock_preread
	sock_putc
	sock_puts
	sock_rbleft
	sock_rbsize
	sock_rbused
	sock_read
	sock_readable
	sock_recv
	sock_recv_from
	sock_recv_init
	sock_resolved
	sock_set_tos
	sock_set_ttl
	sockstate
	sock_tbleft
	sock_tbsize
	sock_tbused
	sock_tick
	sock_wait_closed
	sock_wait_established
	sock_waiting
	sock_wait_input
	sock_writable
	sock_write
	sock_xfastread
	sock_xfastwrite
	sock_yield
	tcp_clearreserve
	tcp_config
	tcp_extlisten
	tcp_extopen
	tcp_keepalive
	tcp_listen
	tcp_open
	tcp_reserveport
	tcp_tick
	udp_bypass_arp
	udp_close
	udp_extopen
	udp_open
	udp_peek
	udp_recv
	udp_recvfrom
	udp_send
	udp_sendto
	udp_waitopen
	udp_waitsend
	udp_xsendto
	virtual_eth
	wifi_ssid_to_str

	Index

