
ZigBee RF4CE Stack
User Guide

JN-UG-3074

Revision 1.1

6 December 2012

ZigBee RF4CE Stack
User Guide

2 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Contents

About this Manual 7
Pre-requisites 7

Organisation 7

Conventions 8

Acronyms and Abbreviations 8

Related Documents 9

Trademarks 9

Part I: Concept and Operational Information

1. Introduction to ZigBee RF4CE 13
1.1 Features 13

1.2 Node Types and Network Topologies 14

1.3 Radio Channels and Frequency Agility 15

1.4 RC PAN Formation 16
1.4.1 Initialisation 16

1.4.2 Discovery 17

1.4.3 Pairing 17

1.5 Communications 18

1.6 Application Profiles 18

1.7 Power Saving 19

1.8 Stack Architecture 20

2. Using the ZigBee RF4CE API 23
2.1 RF4CE API Installation and Contents 23

2.2 Application Overview 24
2.2.1 Tasks and Contexts 24

2.2.2 Calling Protocol 26

2.2.3 Network Information Base (NIB) 26

2.2.4 Event Handling 27

2.3 PAN Formation 28
2.3.1 Stack Initialisation 28

2.3.2 Service Discovery 30

2.3.3 Pairing (and Unpairing) 31

2.4 Low-power Modes 32
2.4.1 Power-saving Mode 32

2.4.2 Sleep Mode 33
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 3

Contents
2.5 Using Application Profile Commands 34

Part II: Reference Information

3. ZigBee RF4CE API Functions 37
3.1 Implementation-specific Functions 37

bRF4CE_ImpInit 38

vRF4CE_ImpSaveSettings 39

vRF4CE_ImpDestroySettings 40

3.2 NLDE Function 41
vRF4CE_NldeDataReq 42

3.3 NLME Functions 44
vRF4CE_NlmeAutoDiscoveryReq 45

vRF4CE_NlmeDiscoveryReq 46

vRF4CE_NlmeDiscoveryResp 48

eRF4CE_NlmeGetReq 49

vRF4CE_NlmePairReq 50

vRF4CE_NlmePairResp 51

vRF4CE_NlmeResetReq 52

eRF4CE_NlmeRxEnableReq 53

eRF4CE_NlmeSetReq 54

vRF4CE_NlmeStartReq 55

vRF4CE_NlmeUnpairReq 56

vRF4CE_NlmeUnpairResp 57

eRF4CE_NlmeUpdateKeyReq 58

3.4 Callback Function 59
vRF4CE_StackEvent 60

3.5 ZRC Command Frame Functions 61
vZRC_SendUserControlPressed 62

vZRC_SendUserControlRepeated 63

vZRC_SendUserControlReleased 64

vZRC_SendCmdDiscRequest 65

vZRC_SendCmdDiscResponse 66

3.6 ZID Command Frame Functions 67
vZID_SendGetReport 68

vZID_SendReportData 69

4. ZigBee RF4CE API Resources 71
4.1 Enumerations 71

4.1.1 teRF4CE_Status 71

4.1.2 teRF4CE_NibAttrib 72

4.1.3 tePairState 72

4.1.4 teRF4CE_EventType 73
4 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.1.5 teSaveMode 73

4.2 Structures and Unions 74
4.2.1 tsIeeeAddr 74

4.2.2 tsRF4CE_LinkKey 74

4.2.3 tsRF4CE_AppCap 74

4.2.4 tsRF4CE_NodeDesc 75

4.2.5 tsRF4CE_PairingTableEntry 76

4.2.6 tuRF4CE_NibValue 77

4.2.7 tuAddr 77

4.2.8 tsRF4CE_NldeDataInd 78

4.2.9 tsRF4CE_NldeDataCfm 78

4.2.10 tsRF4CE_NlmeAutoDiscoveryCfm 78

4.2.11 tsRF4CE_NlmeCommStatusInd 79

4.2.12 tsRF4CE_NlmeDiscoveryInd 79

4.2.13 tsRF4CE_NlmeDiscoveryCfm 80

4.2.14 tsRF4CE_NlmePairInd 80

4.2.15 tsRF4CE_NlmePairCfm 81

4.2.16 tsRF4CE_NlmeStartCfm 81

4.2.17 tsRF4CE_NlmeUnpairInd 81

4.2.18 tsRF4CE_NlmeUnpairCfm 81

4.2.19 tuRF4CE_EventParam 82

4.3 Constants 83
4.3.1 RF4CE Implicit Constants 83

4.3.2 RF4CE Constants 83

4.3.3 Node Capability Constants 84

4.3.4 Transmit Option Constants 84

4.3.5 Device Type Constants 85

Part III: Appendices

A. Enumerations 89
A.1 teRF4CE_Status 89
A.2 teRF4CE_NibAttrib 90
A.3 tePairState 90
A.4 teRF4CE_EventType 91
A.5 teSaveMode 91

B. Structures and Unions 92
B.1 tsIeeeAddr 92
B.2 tsRF4CE_LinkKey 92
B.3 tsRF4CE_AppCap 92
B.4 tsRF4CE_NodeDesc 93
B.5 tsRF4CE_PairingTableEntry 94
B.6 tuRF4CE_NibValue 95
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 5

Contents
B.7 tuAddr 95
B.8 tsRF4CE_NldeDataInd 96
B.9 tsRF4CE_NldeDataCfm 96
B.10 tsRF4CE_NlmeAutoDiscoveryCfm 96
B.11 tsRF4CE_NlmeCommStatusInd 97
B.12 tsRF4CE_NlmeDiscoveryInd 97
B.13 tsRF4CE_NlmeDiscoveryCfm 98
B.14 tsRF4CE_NlmePairInd 98
B.15 tsRF4CE_NlmePairCfm 99
B.16 tsRF4CE_NlmeStartCfm 99
B.17 tsRF4CE_NlmeUnpairInd 99
B.18 tsRF4CE_NlmeUnpairCfm 99
B.19 tuRF4CE_EventParam 100

C. Constants 101
C.1 RF4CE Implicit Constants 101
C.2 RF4CE Constants 101
C.3 Node Capability Constants 102
C.4 Transmit Option Constants 102
C.5 Device Type Constants 103
6 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
About this Manual

This manual provides a reference point for information relating to the ZigBee RF4CE
network stack which can be implemented on the NXP JN516x device. The manual
provides both conceptual and practical information concerning the NXP ZigBee
RF4CE stack software. Guidance is provided on use of the Application Programming
Interface (API) for ZigBee RF4CE, and the API functions and associated resources
(enumerations, structures and constants) are described. The manual should be used
as a reference resource throughout ZigBee RF4CE application development.

Pre-requisites

The reader is expected to be familiar with:

 C programming

 JN516x Software Developer's Kit (SDK)

Organisation

This manual is divided into two parts:

 Part I: Concept and Operational Information comprises two chapters:

 Chapter 1 introduces ZigBee RF4CE networks.

 Chapter 2 describes the essential principles of the ZigBee RF4CE stack
implementation and use of the ZigBee RF4CE API functions.

 Part II: Reference Information comprises two chapters:

 Chapter 3 provides detailed descriptions of the ZigBee RF4CE API
functions.

 Chapter 4 lists the enumerations, structures and constants used in the
ZigBee RF4CE API.

 Part III: Appendices describes the enumerations, structures and constants
used in the ZigBee RF4CE API. These resources are defined in the header file
RF4CE_API.h.

Note: ZigBee RF4CE is built on the IEEE 802.15.4
wireless network standard. Knowledge of IEEE 802.15.4
may therefore be beneficial when developing ZigBee
RF4CE applications using the supplied API. The
essential background concepts are covered in the IEEE
802.15.4 Wireless Networks User Guide (JN-UG-3024),
available from the Support section of the NXP web site
(www.nxp.com/jennic/support).
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 7

About this Manual
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

API Application Programming Interface

CE Consumer Electronics

CERC Consumer Electronics Remote Control

MAC Medium Access Controller

NIB Network Information Base

NLDE NWK Layer Data Entity

NLME NWK Layer Management Entity

NWK Network (layer)

PAN Personal Area Network

PHY Physical (layer)

RC Remote Control

RF4CE Radio Frequency for Consumer Electronics

ZRC ZigBee Remote Control

ZID ZigBee Input Device

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
8 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Related Documents

JN-UG-3024 IEEE 802.15.4 Wireless Networks User Guide

JN-UG-3064 SDK Installation and User Guide

JN-UG-3087 JN516x Integrated Peripherals API User Guide

094945r00ZB ZigBee RF4CE Specification [ZigBee Alliance document]

094950r00ZB ZigBee RF4CE Device Type List [ZigBee Alliance document]

094951r00ZB ZigBee RF4CE Profile ID List [ZigBee Alliance document]

Trademarks

All trademarks are the property of their respective owners.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 9

About this Manual
10 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Part I:
Concept and Operational

Information
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 11

12 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
1. Introduction to ZigBee RF4CE

ZigBee RF4CE is a wireless network standard designed specifically for Remote
Control (RC) products in the Consumer Electronics (CE) domain. The standard was
jointly devised by the ZigBee Alliance and the “Radio Frequency for Consumer
Electronics” (RF4CE) consortium. The aim was to establish a simple, robust and low-
cost radio communication standard for remote control in consumer products. The
standard is built on the well-established IEEE 802.15.4 wireless network protocol.

In a ZigBee RF4CE network, one or more remote control units may be wirelessly
networked to control one or more devices. For example, the standard can be used to
achieve a comprehensive and flexible remote control solution for an audio-visual
system that may include one or more of the following: TV, HDD recorder, Blu-ray
player, DVD player, CD player, amplifier.

1.1 Features

The main features of the ZigBee RF4CE standard are:

 Operates in one of 3 channels of the 2.4-GHz radio band

 Frequency agility over the 3 channels

 Multiple Star topology with inter-PAN communication

 Flexible transmission options

 Service discovery mechanism

 Device pairing mechanism

 Power saving mechanism

 Key-based security mechanism utilising industry-standard AES-128 scheme

 Simple RC profile for CE products, with option to add further standard or
vendor-specific profiles

Note: A more detailed account of ZigBee RF4CE can be
found in the ZigBee RF4CE Specification
(094945r00ZB), available from the ZigBee Alliance web
site. An introduction to IEEE 802.15.4 can be found in
the IEEE 802.15.4 Wireless Networks User Guide
(JN-UG-3024), available from the Support section of the
Jennic web site.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 13

Chapter 1
Introduction to ZigBee RF4CE

1.2 Node Types and Network Topologies

In the ZigBee RF4CE standard, two or more devices are organised into an RC
Personal Area Network (PAN) with a Star topology. Multiple RC PANs can then form
an RC network, allowing communication between PANs (as well as inside PANs).

An RC PAN consists of two node types:

 Target node: This node type is incorporated in a device to be controlled, e.g. a
TV. The node acts as a PAN Co-ordinator and therefore creates a PAN. There
must be only one Target node per RC PAN.

 Controller node: This node type sends or passes on control messages. It is
incorporated in remote control units and in devices that relay control messages
(e.g. a TV that passes control messages to a DVD player). An RC PAN can
have multiple Controller nodes.

A simple RC PAN is illustrated in the figure below, consisting of a TV (Target node and
PAN Co-ordinator) and a TV RC (Controller node).

Extending the example, this RC PAN (PAN 1) is combined with another RC PAN (PAN
2) consisting of a DVD player (Target Node and PAN Co-ordinator) and a DVD RC
(Controller node), as illustrated in the figure below.

In this RC network, the DVD player from PAN 2 also joins PAN 1 as a Controller node
- this allows the DVD player to relay control messages from the DVD RC to the TV (for
example, to use the DVD RC to adjust the volume level of the TV). Thus, the DVD
player acts as a Target node (and PAN Co-ordinator) in PAN2 and as a Controller
node in PAN 1.

Figure 1: Example RC PAN

Figure 2: Example RC Network Formed from PAN 1 and PAN 2

TV
TV RC Target node

Controller node

TV
TV RC

Target node

Controller node

DVD player
DVD RC

PAN 1 PAN 2
14 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Extending the example further, a third RC PAN (PAN 3) is added to the RC network,
where PAN 3 consists of a Hi-Fi system (Target node and PAN Co-ordinator) and an
Hi-Fi RC (Controller node), as well as a multi-function RC (Controller node). The multi-
function RC also joins PAN 1 and PAN 2, allowing it to control all three Target nodes.
The resulting RC network is illustrated in the figure below.

1.3 Radio Channels and Frequency Agility

The ZigBee RF4CE standard employs the 2.4-GHz radio frequency band which is
available in the IEEE 802.15.4 standard. However, only three of the sixteen channels
in this band (numbered 11-26) are available in ZigBee RF4CE. The available channels
are numbers 15, 20 and 25, which are centred on the frequencies 2425 MHz, 2450
MHz and 2475 MHz, respectively.

When a PAN Co-ordinator (Target node) forms a PAN, it will scan the three channels
for activity and select the quietest channel for the PAN. The RC PANs within an RC
network can operate in different channels but it is possible for two or more RC PANs
to operate in the same channel. In the latter case, the PANs are distinguished by their
PAN IDs, which is a unique 16-bit value for each PAN in the operating neighbourhood
(see Section 1.4.1).

If a node of an RC network is a member of two (or more) PANs that operate in different
channels, it will be necessary for the common node to change channels when relaying
control messages from one PAN to another.

Figure 3: Example RC Network Formed from PAN 1, PAN 2 and PAN 3

TV
TV RC

Target node

Controller node

DVD player
DVD RC

PAN 1 PAN 2

Hi-Fi RCHi-Fi
System

Multi-
function

RC

PAN 3
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 15

Chapter 1
Introduction to ZigBee RF4CE

ZigBee RF4CE provides a frequency agility option which, when enabled, allows the
Target node of an RC PAN to automatically change channel if the initial channel
chosen becomes increasingly busy (with traffic from other PANs or radio sources) and
therefore problematic. A Controller node of the RC PAN will then detect the channel
change when its transmissions to the Target node are unacknowledged (frequency
agility requires acknowledgements to be enabled). In this case, the Controller node
will transmit in all three channels until it finds the Target node again.

1.4 RC PAN Formation

An RC PAN is created by a Target node, which acts as the PAN Co-ordinator. The
created PAN goes through the following formation process:

1. Target node initialises itself as a Target node and PAN Co-ordinator, and then
selects a radio channel and PAN ID (see Section 1.4.1).

2. Each Controller node initialises itself as a Controller node.

3. Target node or each Controller node performs a 'service discovery' to find
nodes with which it can be paired (see Section 1.4.2).

4. Target node or each Controller node pairs itself with suitable node(s) which it
has discovered (see Section 1.4.3).

1.4.1 Initialisation

When the Target node is started, it performs the following initialisation tasks:

1. The node initialises itself as a Target node and PAN Co-ordinator.

2. The node searches for a suitable radio channel for its PAN by performing an
'energy detection scan' in the three available radio channels (see Section 1.3).
It selects the channel with the least detected activity.

3. The node then performs an 'active scan' in all three radio channels to detect
any other IEEE 802.15.4-based PANs that are operating in these channels.
Based on the scan results, the node generates a random 16-bit PAN ID that
does not clash with the PAN IDs of any detected PANs.

When started, each Controller node simply initialises itself as a Controller node.

A 'service discovery' is then performed, as described in Section 1.4.2.
16 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
1.4.2 Discovery

A 'service discovery' can be performed by a node to find other suitable nodes with
which it can be paired and therefore communicate (see Section 1.4.3). Typically, the
Controller nodes perform this discovery.

A 'service discovery' is implemented by broadcasting discovery requests in all three
ZigBee RF4CE radio channels. This broadcast can be performed repeatedly for a
fixed duration or until a certain number of discovery responses have been received
from suitable nodes (these options are selected through the NIB - see Section 2.2.3).

A node will respond (under application control - see Section 2.3.2) depending on the
information sent out by the requesting node, which is as follows:

 Node capabilities: Node type (Target or Controller), power source (mains or
battery) and security supported (yes or no)

 Vendor information: Vendor ID assigned by ZigBee RF4CE and a vendor-
specific identifier string (e.g. serial number)

 Application information: User-defined descriptor for node (e.g. "Lounge TV
RC"), list of supported device types (e.g. "TV", "DVD") and a list of profile
identifiers indicating supported application profiles (e.g. "CERC")

 Requested device: Device type requested through the discovery (e.g. TV)

The responding node will also return the above information (about itself), except the
requested device.

1.4.3 Pairing

Before two nodes of an RC network can communicate during normal network
operation (i.e. Controller node can send control messages to the Target node), they
must be 'paired'. The pairing mechanism is described below:

1. Once a node has received responses to its 'service discovery' (see Section
1.4.2), it uses the returned information to decide which responding node(s) to
pair with - for example, a DVD RC may be looking for a DVD player from a
certain vendor.

2. The node sends a 'pairing request' to the node(s) that it wishes to pair with.

3. If the receiving node accepts the pairing request, it confirms the pairing by
sending a pairing response back to the requesting node.

Both nodes also add the 'pairing link' to their respective pairing tables.

A pairing table entry contains the following information: pairing reference (index in
table), source network (short) address, destination logical channel, destination IEEE
(MAC) address, destination PAN ID, recipient node capabilities, recipient frame
counter, security link key.

Thus, the use of pairing avoids the need for the application on a node to be concerned
with node addressing. The application can indicate a destination node for a control
message simply by specifying the index of the relevant entry in the local pairing table.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 17

Chapter 1
Introduction to ZigBee RF4CE

1.5 Communications

Communications in an established RC network generally consist of control messages
sent from Controller nodes to Target nodes, and optional acknowledgements from
Target nodes to Controller nodes.

A number of transmission options are available for the control messages:

 Acknowledged: Receipt of message is confirmed by destination node

 Unacknowledged: Receipt of message is not confirmed by destination node

 Unicast: Message sent to specific destination node

 Broadcast: Message sent to all possible destination nodes

 Multiple channel: Message sent on all three radio channels in turn

 Single channel: Message sent on expected radio channel

Some of the above options can be combined (e.g. acknowledged unicast in single
channel).

A message can be routed between two RC PANs by a node that is a member of both
PANs. This node will be a Target node in the source PAN but a Controller node in the
destination PAN. If the two PANs operate in different radio channels, it will be
necessary for the node to change channels between receiving and re-transmitting the
message.

1.6 Application Profiles

The ZigBee RF4CE standard uses application profiles in issuing control messages. An
application profile consists of a command set, comprising commands that can be
incorporated in the control messages (e.g. increment TV channel). Profiles can be
standard or vendor-specific:

 A standard profile contains a standard command set but can also incorporate a
vendor-specific command set.

 A vendor-specific profile contains a vendor-specific command set only.

The Generic Device Profile (GDP) is a foundation for the RF4CE profiles defining
mandatory policies which all profiles must adopt and a toolbox of commands and
procedures to enable generic functionality within a profile.

The ZigBee Remote Control (ZRC) profile defines commands and procedures
enabling the control of consumer electronic products such as TVs, DVD players as
well as CD players.

The ZigBee Input Device (ZID) interfaces to the ZigBee RF4CE network layer. The
ZID profile defines commands and procedures to enable devices such as mice,
touchpads, keyboards, wands, Riva wheels and RC pointers.
18 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
1.7 Power Saving

The nodes of an RC network need not be fully powered all of the time. Principally, a
battery-powered Controller node, such as a remote control unit, should not be
permanently active as it may be required only occasionally and it is important to
maximise battery life. Additionally, it is important to minimise the power consumption
of a Target node, such as a TV, while in the stand-by state.

Power savings in an RC network can be achieved by carefully controlling the time for
which the radio receivers in the nodes are active. The following power options may be
implemented by the application:

 Enable receiver until further notice - for example, for a fully operating TV
(receiver can be enabled in this mode on power-up or coming out of stand-by)

 Enable receiver for fixed period - for example, before engaging full ‘power-
saving mode’ (see below) when a TV enters the stand-by state

 Disable receiver until further notice - for example, to put a remote control unit
into a dormant state until it is woken by a button-press

ZigBee RF4CE also provides a power-saving mode in which the receiver on a node is
disabled for most of the time but is periodically enabled for a short time. Thus, to
communicate with a Target node in power-saving mode, the Controller node must
transmit during the Target node's active periods.

The JN516x device can also be put into sleep mode, which provides the most
significant power saving. A timeout can be applied to the sleep duration or the device
can be woken as the result of a user action, such as pressing a button.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 19

Chapter 1
Introduction to ZigBee RF4CE

1.8 Stack Architecture

The software that runs on each node of a ZigBee RF4CE network is organised in the
stack structure shown in Figure 4.

ZigBee RF4CE is built on the IEEE 802.15.4 wireless network standard, which sits at
the bottom of the stack. The vendor's application sits at the top of the stack with the
ZigBee RF4CE networking software sitting in the intermediate stack layers.

The layers of the ZigBee RF4CE stack are described below (from top to bottom):

 End Application: This layer contains the vendor-designed applications that
run on the node. An application gives the device its functionality. A single node
may run several applications.

 Application Profiles: This layer contains the standard and vendor-specific
profiles used by the application(s) - see Section 1.6.

 ZigBee RF4CE Network (NWK) layer: This layer provides the ZigBee
networking functionality and provides the application's interface to the IEEE
802.15.4 layers (see below). The NWK layer contains two services:

 NWK data service: Provides interface to the NWK Layer Data Entity
(NLDE) concerned with the packing and unpacking of control messages in
NWK frames (which are encapsulated in IEEE 802.15.4 MAC frames for
transport across the network - see below).

 NWK management service: Provides interface to the NWK Layer
Management Entity (NLME) concerned with network issues such as

Figure 4: ZigBee RF4CE Stack Architecture

IEEE 802.15.4

IEEE 802.15.4 MAC layer

IEEE 802.15.4 PHY layer

ZigBee RF4CE Network (NWK) layer

Application Profiles
(standard and vendor-specific)

End Application
20 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
initialisation, discovery and pairing, as well as maintenance of the Network
Information Base (NIB).

 IEEE 802.15.4 layer: This layer is sub-divided into two further layers:

 MAC layer: This layer (also known as the Data Link layer) is responsible
for addressing, and is responsible for assembling the IEEE 802.15.4 MAC
frames to be transmitted and disassembling the received frames.

 PHY layer: This layer (also known as the Physical layer) is concerned with
the interface to the physical transmission medium (radio, in this case),
exchanging data bits with this medium as well as exchanging data bits with
the MAC layer above.

The NIB, which is managed by the NWK layer, contains a set of attributes detailing
certain network properties (see Section 2.2.3).

Note: The stack is not responsible for relaying control
messages between PANs (e.g. a TV passing control
messages to a DVD player). The relaying functionality is
the responsibility of the application.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 21

Chapter 1
Introduction to ZigBee RF4CE

22 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
2. Using the ZigBee RF4CE API

A ZigBee RF4CE Application Programming Interface (API) is available for developing
application code for the JN516x device. This chapter describes key operational
aspects of this API before the functions of the API are detailed in Chapter 3.

2.1 RF4CE API Installation and Contents

The ZigBee RF4CE API is supplied in ZigBee RF4CE SDK (JN-SW-4060). The SDK
must be installed on the development machine.

The ZigBee RF4CE SDK is installed simply by extracting the contents of the file JN-
SW-4060-ZigBee-RF4CE-SDK.zip into the Jennic directory (C:\Jennic, by default)
and put the required components to build RF4CE-based application.

 The ZigBee RF4CE library libRF4CE_JN516x.a will be installed into the
Components\Library folder

 The header files RF4CE_API.h and NIB.h will be installed into the
Components\RF4CE\Include folder

The ZigBee RF4CE API contains C functions which allow the application to interact
with the ZigBee RF4CE Network (NWK) layer of the software stack - for stack details,
refer to Section 1.8. The API functions are divided into four sets, as follows:

 Implementation-specific functions: Used to configure and save stack
settings that depend on the individual application (detailed in Section 3.1)

 NLDE function: Used to interact with the NWK Layer Data Entity (NLDE)
services (detailed in Section 3.2)

 NLME functions: Used to interact with the NWK Layer Management Entity
(NLME) services (detailed in Section 3.3)

 Callback function: Deals with stack events (detailed in Section 3.4)

JN516x Integrated Peripherals API

The JN516x Integrated Peripherals API can be used at the same time as the ZigBee
RF4CE stack. This API is provided in SDK and is described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087). In addition, the Board API (provided for
use with evaluation kits) can be used.

It should be noted that the ZigBee RF4CE stack uses Flash memory and the JN516x
Wake Timer 1 to store information.

If the JN516x peripherals are configured to generate interrupts, the application must
register callback functions as described in the Integrated Peripherals API
documentation.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 23

Chapter 2
Using the ZigBee RF4CE API

ZRC and ZID Application Profile Functions

ZRC and ZID application profile functions are provided for application use. Please
refer to ZigBee RF4CE Demonstration Application note (JN-AN-1158) for the source
code and corresponding header files ZRC.h and ZID.h. Refer Section 3.5 and Section
3.6 for more details.

2.2 Application Overview

An RF4CE application must first perform the necessary initialisation and network
formation activities that are required following a cold start or reset:

 The Target node acts as a PAN Co-ordinator and must be started first. The
application which runs on this node must initialise itself as a Co-ordinator/
Target node. During this initialisation, the ZigBee RF4CE stack selects a radio
channel and a PAN ID for the PAN (see Section 1.4.1).

 A Controller node application must first initialise itself as a Controller node. The
application must then perform a ‘service discovery’ to find a Target node with
which to communicate (see Section 1.4.2) and initiate a ‘pairing’ with the
selected node (see Section 1.4.3).

Once a PAN has been set up, the applications are mainly concerned with user-
initiated activities - for example, a button press on a TV remote control unit (Controller
node) to change the channel on a TV (Target node).

An RF4CE application is largely event-driven and therefore reacts to events generated
either internally or by user actions. The operational aspects of an RF4CE application
are described in the sub-sections below before use of the RF4CE API functions is
described in Section 2.3.

2.2.1 Tasks and Contexts

This implementation of the ZigBee RF4CE stack does not require a Real-time
Operating System (RTOS) or task scheduler, which keeps the implementation small
and efficient. All processing is performed in one of two CPU operating contexts:
application and interrupt.

Normally, the application runs in the application context and makes calls into the
ZigBee RF4CE stack, which therefore also runs in application context to perform the
requested operation or to configure a hardware activity. This is shown in Figure 1.
24 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
On completion of a hardware activity (such as a frame transmission), the hardware
generates an interrupt and the processor suspends whatever it is doing in application
context in order to service the interrupt. This will result in the ZigBee RF4CE stack
running in interrupt context, perhaps calling back to the application with the result of
any activity. This is shown in Figure 2.

It can be seen that the call back to the application is also performed in the interrupt
context and therefore the application-supplied callback function should be kept as
small as possible. Once the interrupt processing has completed, the application
continues from where it left off.

s

Figure 1: Application Context

Figure 2: Application and Interrupt Context

Note: If the application requests the ZigBee RF4CE
stack to perform more than one activity at the same
time, such as another data request while one is still in
progress or a pairing request during a discovery
operation, the later requests will be rejected with error
code E_RF4CE_STATUS_NOT_PERMITTED. This is
an implementation-specific feature.

Application RF4CE Stack 802.15.4 MAC

Application context

Application RF4CE Stack 802.15.4 MAC

Application context
Interrupt context

Application
interrupted

Application
continues
where it left off

Request

Request

Return
Return

Return
Return

Callback

Callback

In
te

rr
up

t
ge

ne
ra

te
d

JN-UG-3074 v1.1 © NXP Laboratories UK 2012 25

Chapter 2
Using the ZigBee RF4CE API

2.2.2 Calling Protocol

Calls from the Application to the Stack

All function calls into the stack from the application are non-blocking (that is, they will
never wait in a busy loop for an external action to complete).

Some calls may cause actions in the hardware that could take a relatively long time,
such as transmitting a frame. In these cases, the function will return before the action
has completed and the stack will subsequently call an application-supplied function (a
callback function - see below) when the action does complete.

The rules for return values from calls into the stack are as follows:

 Calls to functions that will always produce a result quickly will return the result
as a return value from the call.

 Calls to functions that may take a while will always return void and the stack will
call the application callback function (see below) when the result occurs. Note
that if the function completes quickly (e.g. when the input parameters are
invalid), the callback function may be called before the original call returns.

Calls from the Stack to the Application

The application must provide a callback function, which is called by the stack on
completion of various actions (see Section 2.2.1). This function is
vRF4CE_StackEvent() and is detailed in Section 3.4.

2.2.3 Network Information Base (NIB)

A Network Information Base (NIB) is maintained which contains a set of attributes
relating to various network properties/operations, including:

 Radio channel

 Scan duration for network search

 Frame counter

 Pairing table

 Timeout for responses

The full list of NIB attributes is provided in Appendix A.2 and the attributes are
described in the ZigBee RF4CE Specification.

Two functions are provided which allow the application to access the NIB:

 eRF4CE_NlmeSetReq() can be used to set the value of a NIB attribute

 eRF4CE_NlmeGetReq() can be used to obtain the value of a NIB attribute

In addition, the function vRF4CE_ImpSaveSettings() can be used to save the NIB
settings to non-volatile memory so that they can later be retrieved following a device
reset.
26 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
2.2.4 Event Handling

The stack forces an event-driven approach to application development. For example,
a typical Target node such as a television might go through the following set of states
from first being started to being fully operational:

An event-driven system implies an idle loop for periods when there are no events to
process.

The callback function vRF4CE_StackEvent() receives all stack events. Peripheral
events are received through callback functions that the application registers with the
JN516x Integrated Peripherals API. The most efficient way of running the application
is often for these callback events to be queued or flagged within the callback function,
and for the idle loop to process them after the callback function has returned. In this
way, the time spent in interrupt context is minimised, plus the idle loop can be set to
doze the processor when processing has finished, reducing power consumption.

Figure 3: Typical Sequence of Start-up States for Target Node

Reset bRF4CE_ImpInit(...)
vRF4CE_ResetReq(TRUE)
vRF4CE_StartReq()

Started
event

Start.cfm

Discovering

Key press

Discovered

vRF4CE_AutoDiscReq(...)

AutoDisc.cfm

Pairing

Pair.ind

vRF4CE_PairRsp(...)

Paired

CommStatus.ind

State Actions

Key:

Running

Data.ind

vRF4CE_ImpSaveSettings(E_SAVE_MODE_FULL)
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 27

Chapter 2
Using the ZigBee RF4CE API

2.3 PAN Formation

This section describes use of the ZigBee RF4CE API functions to code the
initialisation and PAN formation parts of an RF4CE application:

 Stack initialisation is described in Section 2.3.1

 Service discovery is described in Section 2.3.2

 Pairing is described in Section 2.3.3

The ZigBee RF4CE API functions are individually detailed in Chapter 3.

2.3.1 Stack Initialisation

This section describes how to initialise the ZigBee RF4CE stack on a Target node or
Controller node. The AppColdStart() function, in which the application is defined,
must allow for the possibilities of a first-time cold start and a device reset.

During normal operation, as defined in the ZigBee RF4CE Specification, a node stores
its configuration so that the settings can be recovered after a reset. This means that
nodes will continue to operate following a power cycle without any further set-up being
required. The implementation-specific initialisation functions (see Section 3.1) are
designed to operate in a specific way in order to achieve this.

The application code should follow the stack initialisation process outlined below:

1. Upon a cold start, the JN516x Integrated Peripherals API and any peripherals,
if required, should be initialised first.

2. An optional feature (for development, at least) is to have a way to clear any
previous stack configuration. To do this, vRF4CE_ImpDestroySettings()
should be called.

3. bRF4CE_ImpInit() should then be called to configure the stack. The return
value from this function indicates whether the stack has previously been
configured.

4. If the stack has previously been configured, vRF4CE_NlmeResetReq()
should be called with the parameter FALSE. This will reset the stack into the
most recently saved configuration, including activation of the receiver if
appropriate.

If the stack has not been previously configured, vRF4CE_NlmeResetReq()
should be called with the parameter TRUE and then vRF4CE_StartReq()
should be called to start the network. At this point, the application may initialise
the NIB settings using eRF4CE_NlmeSetReq() - see Section 2.2.3.

5. The program flow should then go into an idle loop awaiting events, as
described in Section 2.2.4.

When the stack is started on the Co-ordinator/Target node, it will perform the
necessary scans to select a radio channel and PAN ID (see Section 1.4.1).

If the stack was started with an unknown configuration then once the configuration is
complete (network started and devices paired), the configuration should be saved by
calling vRF4CE_ImpSaveSettings() with the parameter E_SAVE_MODE_FULL.

An example start-up function, illustrating Steps 1 to 5, is shown below.
28 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
#define FLASH_SECTOR (3)

#define FLASH_START (FLASH_SECTOR * 0x08000)

#define NODE_CAPABILITY (RF4CE_NODECAP_TYPE_CONTROLLER \

 | RF4CE_NODECAP_PWRSRC_MAINS \

 | RF4CE_NODECAP_CHANNORM_CAPABLE)

#define VENDOR_ID (0xfff1)

PUBLIC void AppColdStart(void)

{

 /* Initialise Peripheral API and any peripherals */

 (void)u32AHI_Init();

 vButtonInitFfd();

 /* Check if flash should be erased */

 if (u8ButtonReadFfd() == (BUTTON_0_MASK | BUTTON_3_MASK))

 {

 vRF4CE_ImpDestroySettings(FLASH_START);

 }

 /* Initialise stack (implementation-specific command) */

 if (bRF4CE_ImpInit(NODE_CAPABILITY, VENDOR_ID,

 (uint8 *)"Jennic ", FLASH_START,

 FLASH_SECTOR))

 {

 /* Cold start: reset and clear NIB, then start stack */

 vRF4CE_NlmeResetReq(TRUE);

 vRF4CE_StartReq();

 /* The start request will generate an event when done */

 }

 else

 {

 /* Warm start: reset without clearing NIB */

 vRF4CE_NlmeResetReq(FALSE);

 /* The stack is now running */

 }

 /* Go to idle loop to await events */

 vIdleLoop();

}

JN-UG-3074 v1.1 © NXP Laboratories UK 2012 29

Chapter 2
Using the ZigBee RF4CE API

2.3.2 Service Discovery

Service discovery is the mechanism by which a Controller node finds a Target node
with which it can communicate (see Section 1.4.2). Once a Controller node has been
initialised (see Section 2.3.1), its application must send out a service discovery
request using the function vRF4CE_NlmeDiscoveryReq(), which may be called as
the result of a user action such as a button-press. This function allows the search to
be restricted by specifying:

 Particular PAN ID, or no preference

 Particular Target node (through address), or no preference

 Particular device type (to find), or no preference

 Profile IDs of interest

 Timeout period for response to request

The arrival of a service discovery request can be handled manually or automatically
by the Target node:

 Manual Service Discovery: The request results in a discovery indication event
(E_RF4CE_EV_DISC_IND) which is handled by the callback function
vRF4CE_StackEvent(). This callback function calls the function
vRF4CE_NlmeDiscoveryResp() to respond to an individual service discovery
request.

 Automatic Service Discovery: The application calls the function
vRF4CE_NlmeAutoDiscoveryReq() once to automatically respond to all
subsequent service discovery requests received within a specified time period.
This function is called in the main application.

When the response is received by the Controller node, a discovery confirmation event
(E_RF4CE_EV_DISC_CFM) or auto-discovery confirmation (E_RF4CE_EV_
AUTODISC_CFM) is generated, as appropriate, which is handled by the callback
function vRF4CE_StackEvent(). In addition, a confirmation of receipt is sent back to
the Target node, where it triggers a comm-status indication event
(E_RF4CE_EV_COMMSTATUS_IND).

The response includes information on the capabilities, device types and profile IDs of
the responding Target node. If more than one response is received, the Controller
node will use this information to select the Target node(s) to pair with (see Section
2.3.3).
30 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
2.3.3 Pairing (and Unpairing)

In order to send a control message to a node, a Controller node must first be paired
with a Target node (see Section 1.4.3). This pairing is initiated by the application on
the Controller node. The Target node is selected on the basis of the results of a service
discovery (see Section 2.3.2).

1. The application on the Controller node must request the required pairing using
the function vRF4CE_NlmePairReq().

2. The arrival of the pairing request at the Target node results in a pairing
indication event (E_RF4CE_EV_PAIR_IND), which is handled by the callback
function vRF4CE_StackEvent().

3. This callback function must call the function vRF4CE_NlmePairResp() to
respond to the pairing request.

4. When the response is received by the Controller node, a pairing confirmation
event (E_RF4CE_EV_PAIR_CFM) is generated, which is handled by the
callback function vRF4CE_StackEvent().

5. In addition, a confirmation of receipt is sent back to the Target node, where it
yields a comm-status indication event (E_RF4CE_EV_COMMSTATUS_IND),
which is handled by the callback function vRF4CE_StackEvent().

The response will indicate whether the pairing has been accepted or rejected by the
Target node. If successful, the response will also include a pairing reference number,
and the pairing will be added to the pairing tables on both the Controller node and
Target node - the pairing reference number serves as the index of the entry in the
pairing table.

Functions also exist to unpair two nodes. The function vRF4CE_NlmeUnpairReq()
must be called on one node to request that the relevant entry is removed from the local
pairing table - the index of the entry in the pairing table must be provided. The function
also notifies the paired node that it is being unpaired - the successful transmission of
this notification results in an unpairing confirmation event
(E_RF4CE_EV_UNPAIR_CFM) on the sending node. On the receiving node, an
unpairing indication event (E_RF4CE_EV_UNPAIR_IND) is generated, which is
handled by the callback function vRF4CE_StackEvent(). This callback function must
call the function vRF4CE_NlmeUnpairResp() to instruct the stack to remove the
relevant entry from the local pairing table.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 31

Chapter 2
Using the ZigBee RF4CE API

2.4 Low-power Modes

A battery-powered ZigBee RF4CE node, such as a remote control unit, should spend
most of its time in a low-power mode to save energy. A number of low-power modes
are available on a ZigBee RF4CE node, as introduced in Section 1.7.

Power savings can be made by carefully controlling when the radio receiver of the
node is active (powered and ready to receive transmissions). The function
eRF4CE_NlmeRxEnableReq() can be used to implement this control and provides
three options:

 enable the receiver until further notice

 enable the receiver for a specified period of time (multiple of 16 µs)

 disable the receiver until further notice

In addition, the receiver can be put into a special ‘power-saving’ mode using this
function (see Section 2.4.1). Alternatively, the JN516x device can be put into sleep
mode (see Section 2.4.2) using the JN516x Integrated Peripherals API.

2.4.1 Power-saving Mode

In power-saving mode, the receiver is disabled most of the time but is periodically
enabled for a short time:

 The auto-enable duty cycle is configured through the NIB attribute
nwkDutyCycle.

 The duration for which the receiver is active during the duty cycle is configured
through the NIB attribute nwkActivePeriod.

Both of these times must be specified as a number of MAC symbols, where a MAC
symbol represents 16 µs. NIB attributes are listed in Appendix A.2 and are set using
the function eRF4CE_NlmeSetReq().

Power-saving mode is enabled using the function eRF4CE_NlmeRxEnableReq() by
setting the duration parameter to be equal to the configured value of the NIB attribute
nwkActivePeriod.

Note: Traditionally, a remote control unit is only
considered to be a transmitter. However, in a ZigBee
RF4CE system, the unit may also need to receive - for
example, control message acknowledgements or data
to be displayed on an integrated LCD screen.
32 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
2.4.2 Sleep Mode

The JN516x device can be put into sleep mode, which provides the largest possible
power saving for a ZigBee RF4CE node. This low-power mode is implemented using
the JN516x Integrated Peripherals API. The device may leave sleep mode
automatically (using a wake timer) or as the result of a user action, such as a button-
press (linked to a DIO input).

To put a node to sleep, the application should incorporate the following steps:

1. Wait for any ongoing stack activity to complete (a confirmation or comm-status
indication for a previous request or response).

2. If appropriate, switch off the radio receiver by calling
eRF4CE_NlmeRxEnableReq() with parameter 0.

3. If not already done, configure the peripherals that will be used to wake the
JN516x device, such as DIO pins or Wake Timer 0.

4. Call vRF4CE_ImpSaveSettings() with parameter E_SAVE_MODE_MINIMAL
to store the frame counter value to non-volatile memory (Wake Timer 1 is
used for this). It is not normally desirable to call this function with parameter
E_SAVE_MODE_FULL for every sleep episode of a remote control unit, as
this would cause a Flash memory erase and program cycle.

5. Call the Integrated Peripherals API function vAHI_Sleep(), specifying the
required sleep mode:

 E_AHI_SLEEP_OSCON_RAMOFF if the device will be woken by Wake
Timer 0.

 E_AHI_SLEEP_OSCOFF_RAMOFF if the device will not be woken by a
wake timer - this is the lowest power sleep mode with the DIOs and wake
timers still powered (Wake Timer 1 is still required for frame counter
storage).

When the device wakes, it will enter the cold start function AppColdStart(), described
in Section 2.3.1.

Note: For more information on sleep mode, refer to the
Integrated Peripherals API User Guide (JN-UG-3066).
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 33

Chapter 2
Using the ZigBee RF4CE API

2.5 Using Application Profile Commands

A ZigBee RF4CE application can use the ZigBee Remote Control (ZRC) and ZigBee
Input Device (ZID) application profiles, which both interface to the ZigBee RF4CE
network layer. Please refer to ZigBee RF4CE Demonstration Application note (JN-AN-
1158) for the implementation details of ZRC and ZID commands.

 ZigBee Remote Control (ZRC): This profile defines commands and
procedures to be used by consumer electronics remote control applications.
The ZRC commands can be used by an application to send HDMI CEC
command codes to a paired receiver. Refer to Section 3.5 for the
implementation details of the ZRC commands.

 ZigBee Input Device (ZID): This profile defines commands and procedures to
facilitate the use of Human Interface Devices such as mice, touchpads and
keyboards. The ZID commands can be used by an application to report the
Human Interface Device communication messages to a paired receiver. Refer
to Section 3.6 for the implementation details of the ZID commands.
34 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Part II:
Reference Information
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 35

36 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
3. ZigBee RF4CE API Functions

This chapter details the C functions of the ZigBee RF4CE API. The functions are
categorised into four groups:

 Implementation-specific functions - see Section 3.1

 NLDE functions - see Section 3.2

 NLME function - see Section 3.3

 Callback function - see Section 3.4

All of the above functions are defined in the header file RF4CE_API.h.

3.1 Implementation-specific Functions

This section details the functions in the implementation-specific part of the API. These
functions are concerned with initialising the ZigBee RF4CE stack and saving the stack
settings in Flash memory.

The Implementation-specific functions are listed below, along with their page
references:

Function Page

bRF4CE_ImpInit 38

vRF4CE_ImpSaveSettings 39

vRF4CE_ImpDestroySettings 40

Note: The resources (constants, structures,
enumerations) used by the API functions are defined in
the same header file and detailed in the appendices of
this manual.
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 37

Chapter 3
ZigBee RF4CE API Functions

bRF4CE_ImpInit

Description

This function initialises the ZigBee RF4CE and IEEE 802.15.4 stack layers for
operation. Note that before the stack can be used, a start request must be
subsequently submitted by calling the function vRF4CE_NlmeStartReq().

The function requires certain node and vendor information, as well as the location in
Flash memory where the stack configuration settings will be stored when the function
vRF4CE_ImpSaveSettings() is called.

The node's capabilities must be specified as a bitmap in the following format:

On returning, the function indicates whether any record was found in Flash memory
indicating that the node was a member of a previous pairing or network.

Parameters

u8NodeCapabilities Node's ZigBee RF4CE capabilities (see table above)

u16VendorId Node's vendor ID

pu8VendorString Pointer to node's vendor string (assumed to be 7 bytes long)

u32FlashBaseAddr Start address in Flash memory where the stack configuration
settings will be stored

u8FlashSector Flash sector in which stack configuration settings will be
stored (both address and sector are required, to support
different sector sizes)

Returns

TRUE: No record of any previous pairing or network was found

FALSE: Information on previous pairing or network was found

bool_t bRF4CE_ImpInit(uint8 u8NodeCapabilities,
 uint16 u16VendorId,
 uint8 *pu8VendorString,
 uint32 u32FlashBaseAddr,
 uint8 u8FlashSector);

Bits Field Name Values

0 Node type 1 = Target node, 0 = Controller node

1 Power source 1 = AC mains supply, 0 = Other power source

2 Security capable 1 = Frame encryption available, 0 = No encryption

3 Channel normalisation
capable

1 = Able to react to channel change request (sub-
mitted through channel designator in frame)
0 = Unable to react to channel change request

4-7 Reserved
38 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vRF4CE_ImpSaveSettings

Description

This function saves the current stack configuration settings. There are two levels of
save:

 Full save that stores all current values (NIB attributes, etc) to Flash memory

 Basic save that saves just the frame counter to non-volatile memory

Normally, the full save is used after the network and pairings have been set up, and
the basic save is used for Controller nodes just before going to sleep.

Note that Wake Timer 1 on the JN516x device is used for the non-volatile storage of
the frame counter in the basic save.

Parameters

eSaveMode The level of the data save to perform:

E_SAVE_MODE_FULL: All stack information to be written to
Flash memory

E_SAVE_MODE_MINIMAL: Only the frame counter to be
saved to non-volatile memory

Returns

None

void vRF4CE_ImpSaveSettings(teSaveMode eSaveMode);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 39

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_ImpDestroySettings

Description

This function invalidates the currently saved stack configuration settings in Flash
memory.

If called before bRF4CE_ImpInit(), this allows the application to completely reset the
device.

Parameters

u32FlashBaseAddr Start address in Flash memory where the stack configuration
settings are stored

Returns

None

void vRF4CE_ImpDestroySettings(
uint32 u32FlashBaseAddr);
40 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
3.2 NLDE Function

This section describes the function in the NLDE part of the API.

The NLDE function is listed below, along with its page reference:

Function Page

vRF4CE_NldeDataReq 42
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 41

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NldeDataReq

Description

This function is used to send data to a paired peer node or broadcast to all peer
nodes (all nodes that are able to receive the radio broadcast).

The data to be sent must be stored in memory as an array of bytes and a pointer must
be provided to the start of this array. The pointer and memory buffer can be discarded
once the call has completed, even if the transmission has not yet completed.

The transmission options include those described in Section 1.5 and also include the
following: option to use destination IEEE (MAC) address or network (short) address;
secured or unsecured transmission; option to include channel number in
transmission; option to include vendor-specific data or no vendor-specific data. The
options can be used in any combination.

Parameters

u8PairingRef Index of pairing table entry for the destination node
(ignored if the data is to be broadcast)

u8ProfileId ZigBee RF4CE Profile ID

u16VendorId Vendor ID for a vendor-specific frame
(ignored if not a vendor-specific frame)

u8NsduLength Length, in bytes, of the data to be sent

pu8Nsdu Pointer to the array of data bytes to be sent.

u8TxOptions Transmission options (the following values can be combined
in a bitwise OR operation):

RF4CE_TX_OPT_BROADCAST

 Included: Transmission is broadcast
Excluded: Transmission is unicast to paired device

RF4CE_TX_OPT_DEST_IEEE

 Included: Use IEEE (MAC) destination address
Excluded: Use network (short) destination address

RF4CE_TX_OPT_ACKNOWLEDGE

 Included: Request IEEE 802.15.4 acknowledgement
Excluded: Unacknowledged transmission

RF4CE_TX_OPT_SECURITY

 Included: Secured transmission
Excluded: Unsecured transmission

Continued

void vRF4CE_NldeDataReq(uint8 u8PairingRef,
 uint8 u8ProfileId,
 uint16 u16VendorId,
 uint8 u8NsduLength,
 uint8 *pu8Nsdu,
 uint8 u8TxOptions);
42 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
RF4CE_TX_OPT_SINGLE_CHAN

 Included: Transmit in single channel only
Excluded: Transmit in all channels, if appropriate

RF4CE_TX_OPT_SPECIFY_CHAN

 Included: Include channel designator in transmission
Excluded: Do not include channel designator

RF4CE_TX_OPT_VENDOR_DATA

 Included: Data is vendor-specific
Excluded: Data is not vendor-specific

Returns

Immediate: None

Callback Event: E_RF4CE_EV_NLDE_CFM

Callback Return Status

E_RF4CE_STATUS_SUCCESS

E_RF4CE_STATUS_NOT_PERMITTED

E_RF4CE_STATUS_INVALID_PARAMETER

E_RF4CE_STATUS_FRAME_COUNTER_EXPIRED

E_RF4CE_STATUS_NO_PAIRING

E_RF4CE_STATUS_NO_RESPONSE

802.15.4 error status
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 43

Chapter 3
ZigBee RF4CE API Functions

3.3 NLME Functions

This section describes the functions in the NLME part of the API.

The NLME functions are listed below, along with their page references:

Function Page

vRF4CE_NlmeAutoDiscoveryReq 45

vRF4CE_NlmeDiscoveryReq 46

vRF4CE_NlmeDiscoveryResp 48

eRF4CE_NlmeGetReq 49

vRF4CE_NlmePairReq 50

vRF4CE_NlmePairResp 51

vRF4CE_NlmeResetReq 52

eRF4CE_NlmeRxEnableReq 53

eRF4CE_NlmeSetReq 54

vRF4CE_NlmeStartReq 55

vRF4CE_NlmeUnpairReq 56

vRF4CE_NlmeUnpairResp 57

eRF4CE_NlmeUpdateKeyReq 58
44 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vRF4CE_NlmeAutoDiscoveryReq

Description

This function puts the node into auto-discovery mode. In this mode, the node will
automatically respond to discovery requests that meet the supplied criteria.

The information that must be provided to this function includes a list of supported
device types (e.g. television, set-top box) and a list of supported application profiles
(e.g. CERC). In addition, the length of time that the node will remain in auto-discovery
mode must be specified (as a multiple of 16 µs).

Parameters

psRecAppCapabilities Pointer to the application capabilities structure for this node
(structure is detailed in Appendix B.3)

au8RecDevTypeList[] List of device types supported by this node. The device
types are defined in the ZigBee RF4CE Device Type List.
The number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_DEVICE_TYPE_LIST_LEN entries

au8RecProfileIdList[] List of IDs of profiles supported by this node. The profile
IDs are defined in the ZigBee RF4CE Profile ID List. The
number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_PROFILE_ID_LIST_LEN entries

u32AutoDiscDuration Maximum length of time that the node will stay in auto-
discovery mode, in units of MAC symbols, where a MAC
symbol represents 16 µs

Returns

Immediate: None

Callback Event: E_RF4CE_EV_AUTODISC_CFM

void vRF4CE_NlmeAutoDiscoveryReq(
tsRF4CE_AppCap *psRecAppCapabilities,
uint8 au8RecDevTypeList[],
uint8 au8RecProfileIdList[],
uint32 u32AutoDiscDuration);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 45

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NlmeDiscoveryReq

Description

This function requests the start of a 'service discovery' operation.

The resulting discovery request can be sent to a particular PAN or to any PAN. The
discovery request can also be sent to a particular node or to any node. In addition,
the device type(s) to be searched for can be specified.

Concerning the subsequent responses, the length of time that the local node will wait
for discovery responses (in each channel) must be specified (as a multiple of 16 µs).
A list of application profiles is also required, against which the profile IDs in the
received responses will be compared.

Parameters

u16DstPanId PAN ID of the node(s) to search for. Can be set to 0xFFFF
to indicate no preference

u16DstNwkAddr Network (short) address of the node to search for. Can be
set to 0xFFFF to indicate no preference

psOrgAppCapabilities Pointer to the application capabilities structure for this node
(structure is detailed in Appendix B.3)

au8OrgDevTypeList[] List of device types supported by this node. The device
types are defined in the ZigBee RF4CE Device Type List.
The number of entries in the list is supplied in
psOrgAppCapabilities and can be up to
RF4CE_MAX_DEVICE_TYPE_LIST_LEN entries

au8OrgProfileIdList[] List of IDs of profiles supported by this node. The number
of entries in the list is supplied in psOrgAppCapabilities
and can be up to RF4CE_MAX_PROFILE_ID_LIST_LEN
entries

u8SearchDevType Device type to discover, or 0xFF for no preference

u8DiscProfileIdListSize Size of the list pu8DiscProfileIdList. This should not exceed
RF4CE_MAX_DISC_PROFILE_ID_LIST_LEN. This is an
implementation-specific limitation

pu8DiscProfileIdList List of profile IDs to match with those in received discovery
responses. The profile IDs are defined in the ZigBee
RF4CE Profile ID List

void vRF4CE_NlmeDiscoveryReq(
uint16 u16DstPanId,
uint16 u16DstNwkAddr,
tsRF4CE_AppCap *psOrgAppCapabilities,
uint8 au8OrgDevTypeList[],
uint8 au8OrgProfileIdList[],
uint8 u8SearchDevType,
uint8 u8DiscProfileIdListSize,
uint8 *pu8DiscProfileIdList,
uint32 u32DiscDuration);
46 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
u32DiscDuration Maximum length of time that the node will wait for
discovery responses on each channel, in units of MAC
symbols, where a MAC symbol represents 16 µs

Returns

Immediate: None

Callback Event: E_RF4CE_EV_DISC_CFM
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 47

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NlmeDiscoveryResp

Description

This function is called to send a response to a received discovery request. It is not
used if auto-discovery is operating.

The information that must be specified in this function, for inclusion in the discovery
response, includes a list of supported device types (e.g. television, set-top box) and
a list of supported application profiles (e.g. CERC). The perceived radio signal
strength of the received discovery request is also specified.

Parameters

eStatus Outcome of the request (success or no capacity).

psDstIeeeAddr IEEE (MAC) address of the device that sent the discovery
request

psRecAppCapabilities Pointer to the application capabilities structure for the local
node (structure is detailed in Appendix B.3)

au8RecDevTypeList[] List of device types supported by the local node. The
device types are defined in the ZigBee RF4CE Device
Type List. The number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_DEVICE_TYPE_LIST_LEN entries

au8RecProfileIdList[] List of IDs of profiles supported by the local node. The
number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_PROFILE_ID_LIST_LEN entries

u8DiscReqLqi LQI value (radio signal strength) of the received discovery
request frame

Returns

Immediate: None

Callback Event: E_RF4CE_EV_COMMSTATUS_IND

void vRF4CE_NlmeDiscoveryResp(
teRF4CE_Status eStatus,
tsIeeeAddr *psDstIeeeAddr,
tsRF4CE_AppCap *psRecAppCapabilities,
uint8 au8RecDevTypeList[],
uint8 au8RecProfileIdList[],
uint8 u8DiscReqLqi);
48 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
eRF4CE_NlmeGetReq

Description

This function retrieves the value of a NIB attribute from the stack.

The relevant attribute may be a table or array, in which case an index to the required
entry must be specified.

Parameters

eNibAttribute Identifier of the NIB attribute to read (enumerations are listed
in Appendix A.2)

u8NibAttributeIndex For attributes that are tables or arrays, this is the index of the
table/array entry containing the value to be read. For other
attributes, this parameter has no meaning

puNibAttributeValue Pointer to a union of values for storing the read value (union
is detailed in Appendix B.6)

Returns

E_RF4CE_STATUS_SUCCESS

E_RF4CE_STATUS_INVALID_INDEX

E_RF4CE_STATUS_UNSUPPORTED_ATTRIBUTE

teRF4CE_Status eRF4CE_NlmeGetReq(
teRF4CE_NibAttrib eNibAttribute,
uint8 u8NibAttributeIndex,
tuRF4CE_NibValue *puNibAttributeValue);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 49

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NlmePairReq

Description

This function initiates a pairing operation between the local node and the specified
node - that is, sends a pairing request to the remote node.

The function is normally called following a 'service discovery'.

When the pairing request arrives, an E_RF4CE_EV_PAIR_IND event is generated
on the remote node. The vRF4CE_StackEvent() callback function, which handles
this event, must then call vRF4CE_NlmePairResp() to respond to the pairing
request. When the response is received, an E_RF4CE_EV_PAIR_CFM event is
generated on the requesting node.

Parameters

u8LogicalChannel Channel used by node with which to pair (15, 20 or 25)

u16DstPanId PAN ID of the node with which to pair

psDstIeeeAddr IEEE (MAC) address of the node with which to pair

psOrgAppCapabilities Pointer to the application capabilities structure for the local
node (structure is detailed in Appendix B.3)

pu8OrgDevTypeList List of device types supported by the local node. The
device types are defined in the ZigBee RF4CE Device
Type List. The number of entries in the list is supplied in
psOrgAppCapabilities and can be up to
RF4CE_MAX_DEVICE_TYPE_LIST_LEN entries

pu8OrgProfileIdList List of IDs of the profiles supported by the local node. The
number of entries in the list is supplied in
psOrgAppCapabilities and can be up to
RF4CE_MAX_PROFILE_ID_LIST_LEN entries

u8KeyExTransferCount The number of transfers to be used during the link key
exchange sequence, if security is required for this link

Returns

Immediate: None

Callback Event: E_RF4CE_EV_PAIR_CFM

void vRF4CE_NlmePairReq(
uint8 u8LogicalChannel,
uint16 u16DstPanId,
tsIeeeAddr *psDstIeeeAddr,
tsRF4CE_AppCap *psOrgAppCapabilities,
uint8 *pu8OrgDevTypeList,
uint8 *pu8OrgProfileIdList,
uint8 u8KeyExTransferCount);
50 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vRF4CE_NlmePairResp

Description

This function initiates a reply to a received pairing request (from a remote node) by
sending back a pairing response.

The function must be called by the callback function vRF4CE_StackEvent(), in order
to handle an E_RF4CE_EV_PAIR_IND event which is generated when a pairing
request is received.

When the response is received, an E_RF4CE_EV_PAIR_CFM event is generated on
the requesting node, which confirms receipt of the response by returning a
confirmation which, on arrival, produces an E_RF4CE_EV_COMMSTATUS_IND
event.

Parameters

eStatus Outcome of the request (success, no capacity or not
permitted)

u16DstPanId PAN ID of the node with which to pair

psDstIeeeAddr IEEE (MAC) address of the node with which to pair

psRecAppCapabilities Pointer to the application capabilities structure for the local
node (structure is detailed in Appendix B.3)

pu8RecDevTypeList List of device types supported by the local node. The
device types are defined in the ZigBee RF4CE Device
Type List. The number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_DEVICE_TYPE_LIST_LEN entries

pu8RecProfileIdList List of IDs of profiles supported by the local node. The
number of entries in the list is supplied in
psRecAppCapabilities and can be up to
RF4CE_MAX_PROFILE_ID_LIST_LEN entries.

u8ProvPairingRef Provisional pairing entry reference number (index of entry
in pairing table) if the pairing was accepted, or 0xFF
otherwise

Returns

Immediate: None

Callback Event: E_RF4CE_EV_COMMSTATUS_IND

void vRF4CE_NlmePairResp(
teRF4CE_Status eStatus,
uint16 u16DstPanId,
tsIeeeAddr *psDstIeeeAddr,
tsRF4CE_AppCap *psRecAppCapabilities,
uint8 *pu8RecDevTypeList,
uint8 *pu8RecProfileIdList,
uint8 u8ProvPairingRef);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 51

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NlmeResetReq

Description

This function resets the ZigBee RF4CE Network layer and the IEEE 802.15.4 MAC
layer to their initial states.

The function provides the option to reset the NIB as well as the stack. If the NIB is
not reset, a saved copy of the NIB will be retrieved from Flash memory.

Parameters

bSetDefaultNib Indicates whether NIB is to be reset:
TRUE: Stack and NIB are both reset, and all pairing
entries are discarded
FALSE: Stack is reset but not the NIB

Returns

None

void vRF4CE_NlmeResetReq(bool_t bSetDefaultNib);
52 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
eRF4CE_NlmeRxEnableReq

Description

This function allows the radio receiver on the local node to be enabled/disabled. A
number of enable/disable options are available. The receiver can also be enabled in
power-saving mode.

The enable/disable options are:

 enable the receiver until further notice

 enable the receiver for a specified period of time (multiple of 16 µs)

 disable the receiver until further notice

For more information on the above options and power-saving mode, refer to Section
1.7 and Section 2.4.

Parameters

u32RxOnDuration Indicates the option/mode to be implemented:

0x000000: Disable receiver until further notice

0xFFFFFF: Enable receiver until further notice

Any other value: Enable receiver for specified time -
value is interpreted as a number of MAC symbols,
where a MAC symbol represents 16 µs. However, if
specified value matches the value of the NIB attribute
nwkActivePeriod, power-saving mode is enabled

Returns

E_RF4CE_STATUS_NOT_PERMITTED

E_RF4CE_STATUS_INVALID_PARAMETER

MAC status code

teRF4CE_Status eRF4CE_NlmeRxEnableReq(
uint32 u32RxOnDuration);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 53

Chapter 3
ZigBee RF4CE API Functions

eRF4CE_NlmeSetReq

Description

This function sets the value of a NIB attribute in the stack.

The relevant attribute may be a table or array, in which case an index to the required
entry must be specified.

Parameters

eNibAttribute Identifier of the NIB attribute to set (enumerations are listed
in Appendix A.2)

u8NibAttributeIndex For attributes that are tables or arrays, this is the index of
the table/array entry to be written. For other attributes, this
parameter has no meaning

puNibAttributeValue Pointer to a union of values that holds the value to write
(union is detailed in Appendix B.6)

Returns

E_RF4CE_STATUS_SUCCESS

E_RF4CE_STATUS_INVALID_INDEX

E_RF4CE_STATUS_UNSUPPORTED_ATTRIBUTE

teRF4CE_Status eRF4CE_NlmeSetReq(
teRF4CE_NibAttrib eNibAtribute,
uint8 u8NibAttributeIndex,
tuRF4CE_NibValue *puNibAttributeValue);
54 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vRF4CE_NlmeStartReq

Description

This function starts the local node. The actions taken depend on whether the node is
a Controller node or a Target node, as defined by the device capabilities stored in the
NIB.

Once initialisation has completed, an E_RF4CE_EV_START_CFM event is
generated.

For information on node initialisation, refer to Section 1.4.1.

Parameters

None

Returns

Immediate: None

Callback Event: E_RF4CE_EV_START_CFM

void vRF4CE_NlmeStartReq(void);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 55

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_NlmeUnpairReq

Description

This function requests that a paired node is removed from the local pairing table and
that the equivalent pairing table entry is removed on the remote node.

Once the unpairing request has been successfully sent to the remote node, an
E_RF4CE_EV_UNPAIR_CFM event is generated on the local node. To complete the
unpairing, vRF4CE_NlmeUnpairResp() must be called on the remote node.

Note that once a pairing table entry has been removed, its index may be re-used for
the next new entry in the table.

Parameters

u8PairingRef Index of pairing table entry that is to be removed

Returns

Immediate: None

Callback Event: E_RF4CE_EV_UNPAIR_CFM

void vRF4CE_NlmeUnpairReq(uint8 u8PairingRef);
56 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vRF4CE_NlmeUnpairResp

Description

This function allows the application to inform the ZigBee RF4CE stack that the
specified entry must be removed from the local pairing table.

The function must be called by the callback vRF4CE_StackEvent(), in order to
handle an E_RF4CE_EV_UNPAIR_IND event which is generated when an unpairing
request is received.

Note that once a pairing table entry has been removed, its index may be re-used for
the next new entry in the table.

Parameters

u8PairingRef Index of the entry to be removed from the pairing table. If
there is no corresponding entry, the request is ignored

Returns

None

void vRF4CE_NlmeUnpairResp(uint8 u8PairingRef);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 57

Chapter 3
ZigBee RF4CE API Functions

eRF4CE_NlmeUpdateKeyReq

Description

This function performs an update of the security key associated with a local pairing
table entry.

Parameters

u8PairingRef Index of relevant pairing table entry

psNewLinkKey Pointer to new key to be used for the specified pairing
entry. The data can be discarded after the call has
completed

Returns

E_RF4CE_STATUS_NO_PAIRING

E_RF4CE_STATUS_NOT_PERMITTED

E_RF4CE_STATUS_SUCCESS

teRF4CE_Status eRF4CE_NlmeUpdateKeyReq(
uint8 u8PairingRef,
tsRF4CE_LinkKey *psNewLinkKey);
58 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
3.4 Callback Function

This section describes the callback function that is used to pass events back to the
application.

The callback function is listed below, along with its page reference:

Function Page

vRF4CE_StackEvent 60
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 59

Chapter 3
ZigBee RF4CE API Functions

vRF4CE_StackEvent

Description

This callback function is supplied by the application and is called by the stack when
a stack event has occurred.

The function is usually called in interrupt context and the application should ensure
that it processes events quickly or queues them for later processing. The stack is
designed to clean up after itself before calling the callback function. It is therefore
possible for a request into the stack to be made from within the callback function.

Parameters

eEvent Type of event that has occurred (enumerations are listed in
Appendix A.4)

puParam Pointer to a union of structures containing further details
about the event (union is detailed in Appendix B.19)

Returns

None

void vRF4CE_StackEvent(teRF4CE_EventType eEvent,
tuRF4CE_EventParam *puParam);
60 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
3.5 ZRC Command Frame Functions

The following functions are provided in the ZRC.c/h file to send ZRC commands for
application use.

Function Page

vZRC_SendUserControlPressed 62

vZRC_SendUserControlRepeated 63

vZRC_SendUserControlReleased 64

vZRC_SendCmdDiscRequest 65

vZRC_SendCmdDiscResponse 66
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 61

Chapter 3
ZigBee RF4CE API Functions

vZRC_SendUserControlPressed

Description

This function can be used to send a “user control pressed” command frame allowing
a node to request a remote node to perform the specified RC (HDMI CEC) command.
This command, containing the RC command code and payload, should be sent when
a button is pressed. There should be a pairing reference available for the remote
node in the pairing table of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

eRC_CmdCode RC command code which shall contain the HDMI
CEC operand that corresponds to the user
control being pressed

u8RC_CmdPayloadLen Length of the RC command payload in bytes

pau8RC_CmdPayload Pointer to the array containing the RC command
payload (of variable size)

Returns

None

void vZRC_SendUserControlPressed(
uint8 u8ReceiverPairingRef,
teRC_CmdCode eRC_CmdCode,
uint8 u8RC_CmdPayloadLen,
uint8 *pau8RC_CmdPayload);
62 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vZRC_SendUserControlRepeated

Description

This function can be used to send a “user control repeated” command frame to the
receiver. This command, containing the RC command code and payload, should be
sent when a button is held down. There should be a pairing reference available for
the remote node in the pairing table of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

eRC_CmdCode RC command code which shall contain the HDMI
CEC operand that corresponds to the user
control being pressed

u8RC_CmdPayloadLen Length of the RC command payload in bytes

pau8RC_CmdPayload Pointer to the array containing the RC command
payload (of variable size)

Returns

None

void vZRC_SendUserControlRepeated(
uint8 u8ReceiverPairingRef,
teRC_CmdCode eRC_CmdCode,
uint8 u8RC_CmdPayloadLen,
int8 *pau8RC_CmdPayload);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 63

Chapter 3
ZigBee RF4CE API Functions

vZRC_SendUserControlReleased

Description

This function can be used to send a “user control released” command frame allowing
a node to notify a remote node that an RC command should be terminated following
a “user control repeated” command frame. This command, containing the RC
command code, should be sent when a button is released.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

eRC_CmdCode RC command code which shall contain the HDMI
CEC operand that corresponds to the user
control being pressed

Returns

None

void vZRC_SendUserControlReleased(
uint8 u8ReceiverPairingRef,
teRC_CmdCode eRC_CmdCode);
64 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vZRC_SendCmdDiscRequest

Description

This function can be used to send a “command discovery request” command frame
allowing a node to query which user control commands are supported on a remote
node. There should be a pairing reference available for the remote node in the pairing
table of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

Returns

None

void vZRC_SendCmdDiscRequest(
uint8 u8ReceiverPairingRef);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 65

Chapter 3
ZigBee RF4CE API Functions

vZRC_SendCmdDiscResponse

Description

This function can be used to send a “command discovery response” command frame
allowing a node to respond to a “command discovery” request from a remote node,
indicating which user control commands are supported. There should be a pairing
reference available for the remote node in the pairing table of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

pau8CmdsSupported Pointer to the array of 32 bytes containing
commands supported on the node

Returns

None

void vZRC_SendCmdDiscResponse(
uint8 u8ReceiverPairingRef,
uint8 *pau8CmdsSupported);
66 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
3.6 ZID Command Frame Functions

The following functions are provided in the ZID.c/h file to send ZID commands for
application use.

Function Page

vZID_SendGetReport 68

vZID_SendReportData 69
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 67

Chapter 3
ZigBee RF4CE API Functions

vZID_SendGetReport

Description

This function can be used to send a “get report” command frame allowing the HID
adaptor to request a report from a HID class device. There should be a pairing
reference available for the remote node in the pairing table of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

eReportType Specifies the type of the record to be sent

eReportId Specifies the report ID of the report being
requested. Payload of variable size

Returns

None

void vZID_SendGetReport(
uint8 u8ReceiverPairingRef,
teZID_ReportType eReportType,
uint8 u8ReportId);
68 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
vZID_SendReportData

Description

This function can be used to send a “report data” command frame allowing a remote
node to send an unsolicited report or to respond to a “get report” command frame.
The implementation permits a single report data record to be sent of a fixed size.
There should be a pairing reference available for the remote node in the pairing table
of the sending device.

Parameters

u8ReceiverPairingRef Sender's pairing reference in pairing table

u8ReportSize Specifies the combined length of the
eReportType, eReportID and eReportData
parameters within the report data record

eReportType Specifies the type of the record to be sent

eReportId Specifies the report ID of the report being
requested. Payload of variable size

eReportData Contains the report data payload

Returns

None

void vZID_SendReportData(
uint8 u8ReceiverPairingRef,
uint8 u8ReportSize,
teZID_ReportType eReportType,
teZID_ReportID eReportId,
teZID_ReportData eReportData);
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 69

Chapter 3
ZigBee RF4CE API Functions

70 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4. ZigBee RF4CE API Resources

This chapter describe the enumerations, structures and constants used in the ZigBee
RF4CE API. These resources are defined in the header file RF4CE_API.h.

4.1 Enumerations

4.1.1 teRF4CE_Status

Return values for calls into the ZigBee RF4CE stack:

Name Value Meaning

E_RF4CE_STATUS_SUCCESS 0x00 The requested operation was completed successfully

E_RF4CE_STATUS_NO_ORG_
CAPACITY

0xb0 A pairing link cannot be established since the originator node
has reached its maximum number of entries in its pairing table

E_RF4CE_STATUS_NO_REC_
CAPACITY

0xb1 A pairing link cannot be established since the recipient node
has reached its maximum number of entries in its pairing table

E_RF4CE_STATUS_NO_PAIRING 0xb2 A pairing table entry could not be found that corresponds to
the supplied pairing reference (index)

E_RF4CE_STATUS_NO_
RESPONSE

0xb3 A response frame was not received within the timeout period
defined by the NIB attribute nwkResponseWaitTime

E_RF4CE_STATUS_NOT_
PERMITTED

0xb4 A pairing request was denied by the recipient node or an
attempt to update a security link key was not possible due to
one or more nodes not supporting security

E_RF4CE_STATUS_DUPLICATE_
PAIRING

0xb5 A duplicate pairing table entry was detected following the
receipt of a pairing request command frame

E_RF4CE_STATUS_FRAME_
COUNTER_EXPIRED

0xb6 The frame counter has reached its maximum value

E_RF4CE_STATUS_DISCOVERY_
ERROR

0xb7 Too many unique matched discovery request or valid
response command frames were received than requested

E_RF4CE_STATUS_DISCOVERY_
TIMEOUT

0xb8 No discovery request or response command frames were
received during discovery

E_RF4CE_STATUS_SECURITY_
TIMEOUT

0xb9 The security link key exchange or recovery procedure did not
complete within the required time

E_RF4CE_STATUS_SECURITY_
FAILURE

0xba A security link key was not successfully established between
both ends of a pairing link

E_RF4CE_STATUS_INVALID_
PARAMETER

0xe8 A parameter in the primitive is either not supported or is out of
the valid range

E_RF4CE_STATUS_
UNSUPPORTED_ATTRIBUTE

0xf4 A Set/Get request was issued with the identifier of a NIB
attribute that is not supported

E_RF4CE_STATUS_INVALID_INDEX 0xf9 An attempt to write to a NIB attribute that is in a table failed
because the specified table index was out of range
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 71

Chapter 4
ZigBee RF4CE API Resources

4.1.2 teRF4CE_NibAttrib

Attribute IDs for the NIB entries:

4.1.3 tePairState

Pairing state for pairing entries in the NIB:

Name Value Meaning (from ZigBee RF4CE Spec)

E_RF4CE_NIB_ATTR_ACTIVE_PERIOD 0x60 nwkActivePeriod

E_RF4CE_NIB_ATTR_BASE_CHANNEL 0x61 nwkBaseChannel

E_RF4CE_NIB_ATTR_DISC_LQI_THRESHOLD 0x62 nwkDiscoveryLQIThreshold

E_RF4CE_NIB_ATTR_DISP_REP_INTERVAL 0x63 nwkDiscoveryRepetitionInterval

E_RF4CE_NIB_ATTR_DUTY_CYCLE 0x64 nwkDutyCycle

E_RF4CE_NIB_ATTR_FRAME_COUNTER 0x65 nwkFrameCounter

E_RF4CE_NIB_ATTR_IND_DISC_REQUESTS 0x66 nwkIndicateDiscoveryRequests

E_RF4CE_NIB_ATTR_IN_POWER_SAVE 0x67 nwkInPowerSave

E_RF4CE_NIB_ATTR_PAIRING_TABLE 0x68 nwkPairingTable

E_RF4CE_NIB_ATTR_MAX_DISC_REPETITIONS 0x69 nwkMaxDiscoveryRepetitions

E_RF4CE_NIB_ATTR_MAX_FIRST_CSMA_BACKOFFS 0x6a nwkMaxFirstAttemptCSMABackoffs

E_RF4CE_NIB_ATTR_MAX_FIRST_RETRIES 0x6b nwkMaxFirstAttemptFrameRetries

E_RF4CE_NIB_ATTR_MAX_REPORTED_NODE_DESCS 0x6c nwkMaxReportedNodeDescriptors

E_RF4CE_NIB_ATTR_RESPONSE_WAIT_TIME 0x6d nwkResponseWaitTime

E_RF4CE_NIB_ATTR_SCAN_DURATION 0x6e nwkScanDuration

E_RF4CE_NIB_ATTR_USER_STRING 0x6f nwkUserString

Name Value Meaning

E_PAIR_EMPTY 0 Pairing entry is empty or invalid

E_PAIR_PROVISIONAL 1 Pairing entry is involved in the process of pairing

E_PAIR_ACTIVE 2 Pairing entry is valid and active
72 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.1.4 teRF4CE_EventType

Event types, as passed up to the callback function:

4.1.5 teSaveMode

Save mode options, for use with the function vRF4CE_ImpSaveSettings():

Name Value Meaning Parameter structure to use

E_RF4CE_EV_NLDE_IND 0x00 NLDE indication tsRF4CE_NldeDataInd

E_RF4CE_EV_NLDE_CFM 0x01 NLDE confirmation tsRF4CE_NldeDataCfm

E_RF4CE_EV_AUTODISC_CFM 0x02 NLME Auto-discovery
confirmation

tsRF4CE_NlmeAutoDiscoveryCfm

E_RF4CE_EV_COMMSTATUS_IND 0x03 NLME Comm-status
indication

tsRF4CE_NlmeCommStatusInd

E_RF4CE_EV_DISC_IND 0x04 NLME Discovery indica-
tion

tsRF4CE_NlmeDiscoveryInd

E_RF4CE_EV_DISC_CFM 0x05 NLME Discovery confir-
mation

tsRF4CE_NlmeDiscoveryCfm

E_RF4CE_EV_PAIR_IND 0x06 NLME Pair indication tsRF4CE_NlmePairInd

E_RF4CE_EV_PAIR_CFM 0x07 NLME Pair confirmation tsRF4CE_NlmePairCfm

E_RF4CE_EV_START_CFM 0x08 NLME Start confirmation tsRF4CE_NlmeStartCfm

E_RF4CE_EV_UNPAIR_IND 0x09 NLME Unpair indication tsRF4CE_NlmeUnpairInd

E_RF4CE_EV_UNPAIR_CFM 0x0a NLME Unpair confirma-
tion

tsRF4CE_NlmeUnpairCfm

Name Value Meaning

E_SAVE_MODE_FULL 0 Save all settings to Flash memory

E_SAVE_MODE_MINIMAL 1 Save frame counter only to non-volatile RAM
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 73

Chapter 4
ZigBee RF4CE API Resources

4.2 Structures and Unions

Note that elements in structures are not necessarily in the same order as found in the
ZigBee RF4CE Specification. This is intentional as it allows the structures to be
packed more efficiently to reduce RAM consumption.

4.2.1 tsIeeeAddr

IEEE (MAC) address:

4.2.2 tsRF4CE_LinkKey

Link key for use with secured paired links:

4.2.3 tsRF4CE_AppCap

Application capabilities, as described in the ZigBee RF4CE Specification:

Element Meaning

uint32 u32H Most significant 32 bits of the address

uint32 u32L Least significant 32 bits of the address

Element Meaning

uint8 au8Key[16] Array of sixteen 8-bit values containing the link key

Element Meaning

uint u1UserStringSpecified 1 if user string is specified, 0 if not (1-bit field)

uint u2NumSupportedDevTypes Number of supported device types (2-bit field)

uint u1Reserved1 Unused (for padding)

uint u3NumSupportedProfTypes Number of supported profile IDs (3-bit field)

uint u1Reserved2 Unused (for padding)
74 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.2.4 tsRF4CE_NodeDesc

Node descriptor, as described in the ZigBee RF4CE Specification and as used during
discovery:

Element Meaning

tsIeeeAddr sIeeeAddr IEEE address of the node

tsRF4CE_AppCap sAppCapabilities Application capabilities of the node

uint16 u16PanId PAN ID of the node

uint16 u16VendorId Vendor ID of the node

uint8 au8VendorString[RF4CE_VENDOR_STRING_LEN] Vendor string of the node

uint8 au8UserString[RF4CE_USER_STRING_LEN] User defined string of the node. If the
u1UserStringSpecified sub-field of sAppCapabilites
is 0, this element is undefined

uint8
au8DevTypeList[RF4CE_MAX_DEVICE_TYPE_LIST_LEN]

List of supported devices of the node

uint8
au8ProfileIdList[RF4CE_MAX_PROFILE_ID_LIST_LEN]

List of supported profile IDs of the node

uint8 u8LogicalChannel Logical channel used by the node

uint8 u8NodeCapabilities Capabilities of the node. The values in this field can
be interpreted using the RF4CE_NODECAP_xxx
constant definitions

uint8 u8DiscReqLqi LQI of the discovery request frame from the node

teRF4CE_Status eStatus Status of the discovery request
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 75

Chapter 4
ZigBee RF4CE API Resources

4.2.5 tsRF4CE_PairingTableEntry

Pairing table entry, as described in the ZigBee RF4CE Specification and as used in
the NIB pairing table:

Element Meaning

tsIeeeAddr sDstIeeeAddr IEEE address of the destination device

tsRF4CE_LinkKey sSecurityLinkKey Link key used to secure this link

uint32 u32RecFrameCounter Frame counter most recently received from recipient node

uint16 u16SrcNwkAddr Network address to be used by the source device

uint16 u16DstPanId PAN ID of the destination device

uint16 u16DstNwkAddr Network address of the destination device

uint8 u8DestLogicalChan Logical channel used by the destination device

uint8 u8RecNodeCapabilities Node capabilities of the recipient device. The values in this field can be
interpreted using the RF4CE_NODECAP_xxx constant definitions.

tePairState eState Status of the pairing entry (implementation-specific feature)
76 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.2.6 tuRF4CE_NibValue

Union of types used for NIB values (for passing values using the NIB 'Get' and 'Set'
functions):

4.2.7 tuAddr

Union of IEEE (MAC) and network (short) addresses:

Element Meaning (from ZigBee RF4CE Spec)

uint32 u32ActivePeriod nwkActivePeriod

uint8 u8BaseChannel nwkBaseChannel

uint8 u8DiscoveryLqiThreshold nwkDiscoveryLQIThreshold

uint32 u32DiscoveryRepetitionInterval nwkDiscoveryRepetitionInterval

uint32 u32DutyCycle nwkDutyCycle

uint32 u32FrameCounter nwkFrameCounter

bool_t bIndicateDiscoveryRequests nwkIndicateDiscoveryRequests

bool_t bInPowerSave nwkInPowerSave

tsRF4CE_PairingTableEntry sPairingTableEntry nwkPairingTable. The NIB Get and Set functions only
allow access to one table entry at a time

uint8 u8MaxDiscoveryRepetitions nwkMaxDiscoveryRepetitions

uint8 u8MaxFirstAttemptCsmaBackoffs nwkMaxFirstAttemptCSMABackoffs

uint8 u8MaxFirstAttemptFrameRetries nwkMaxFirstAttemptFrameRetries

uint8 u8MaxReportedNodeDescriptors nwkMaxReportedNodeDescriptors

uint32 u32ResponseWaitTime nwkResponseWaitTime

uint8 u8ScanDuration nwkScanDuration

uint8 au8UserString[RF4CE_USER_STRING_LEN] nwkUserString

Element Meaning

tsIeeeAddr sIeeeAddr IEEE address

uint16 u16NwkAddr Network address
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 77

Chapter 4
ZigBee RF4CE API Resources

4.2.8 tsRF4CE_NldeDataInd

Structure containing data for NLDE data indication events:

4.2.9 tsRF4CE_NldeDataCfm

Structure containing data for NLDE data confirm events:

4.2.10 tsRF4CE_NlmeAutoDiscoveryCfm

Structure containing data for NLME auto-discovery confirm events:

Element Meaning

uint8 *pu8Nsdu Pointer to the payload. This ceases to be valid after returning from the callback

uint16 u16VendorId Vendor ID of the source node

uint8 u8PairingRef Pairing reference for the node

uint8 u8ProfileId Profile ID of the data frame

uint8 u8NsduLength Payload length

uint8 u8RxLinkQuality Link quality of the frame

uint8 u8RxFlags Received frame characteristics. The values in this field can be interpreted using the
RF4CE_NLDE_RXFLAGS_xxx constant definitions

Element Meaning

uint8 u8PairingRef Pairing reference of the destination of the transmitted frame

teRF4CE_Status eStatus Status of the transmission attempt

Element Meaning

tsIeeeAddr *psSrcIeeeAddr Pointer to the IEEE address of the node that sent a discovery request to which this
node responded

teRF4CE_Status eStatus Status of the auto-discovery
78 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.2.11 tsRF4CE_NlmeCommStatusInd

Structure containing data for NLME comm-status indication events:

4.2.12 tsRF4CE_NlmeDiscoveryInd

Structure containing data for NLME discovery indication events:

Element Meaning

tuAddr uDstAddr Address of the destination device

uint16 u16DstPanId PAN ID of the destination device

uint8 u8PairingRef Pairing table entry for the recipient node, or 0xff in the case that this comm-status
is the result of a discovery response

uint8 u8DstAddrMode Addressing mode of uDstAddr. 0 means network address, 1 means IEEE address

teRF4CE_Status eStatus Status of the transmission

Element Meaning

tsRF4CE_AppCap sOrgAppCapabilities Application capabilities of the discovery request originator

tsIeeeAddr *psSrcIeeeAddr IEEE address of the discovery request originator

uint8 *pu8OrgVendorString Vendor string of the discovery request originator. Length is
RF4CE_VENDOR_STRING_LEN bytes

uint8 *pu8OrgUserString User string of the discovery request originator. Length is
RF4CE_USER_STRING_LEN bytes, and string is only valid if indi-
cated in the sOrgAppCapabilities element

uint8 *pu8OrgDevTypeList Supported device types of the discovery request originator

uint8 *pu8OrgProfileIdList Supported profile IDs of the discovery request originator

uint16 u16OrgVendorId Vendor ID of the discovery request originator

uint8 u8OrgNodeCapabilities Node capabilities of the discovery request originator. The values in this
field can be interpreted using the RF4CE_NODECAP_xxx constant
definitions

uint8 u8SearchDevType Device type being discovered, or 0xff if no preference has been indi-
cated

uint8 u8RxLinkQuality LQI value of the received discovery request frame

teRF4CE_Status eStatus Status of the pairing table
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 79

Chapter 4
ZigBee RF4CE API Resources

4.2.13 tsRF4CE_NlmeDiscoveryCfm

Structure containing data for NLME discovery confirm events:

4.2.14 tsRF4CE_NlmePairInd

Structure containing data for NLME pair indication events:

Element Meaning

tsRF4CE_NodeDesc *psNodeDescList Pointer to an array of node descriptors. The array will have no more
than RF4CE_NWKC_MAX_NODE_DESC_LIST_SIZE entries

uint8 u8NumNodes Number of entries in the psNodeDescList array

teRF4CE_Status eStatus Status of the discovery attempt

Element Meaning

tsRF4CE_AppCap sOrgAppCapabilities Application capabilities of the pair request originator

tsIeeeAddr *psSrcIeeeAddr IEEE address of the pair request originator

uint16 u16SrcPanId PAN ID of the pair request originator

uint16 u16OrgVendorId Vendor ID of the pair request originator

uint8 *pu8OrgVendorString Vendor string of the pair request originator

uint8 *pu8OrgUserString User string of the pair request originator, if indicated in the sOrgApp-
Capabilities element

uint8 *pu8OrgDevTypeList Supported device type list of the pair request originator

uint8 *pu8OrgProfileIdList Supported profile ID list of the pair request originator

uint8 u8OrgNodeCapabilities Node capabilities of the pair request originator. The values in this
field can be interpreted using the RF4CE_NODECAP_xxx constant
definitions

uint8 u8KeyExTransferCount The pairing originator’s desired number of exchanges to perform dur-
ing key exchange

uint8 u8ProvPairingRef Provisional pairing reference, or 0xff if pairing table is full

teRF4CE_Status eStatus Status of the provisional pairing
80 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.2.15 tsRF4CE_NlmePairCfm

Structure containing data for NLME pair confirm events:

4.2.16 tsRF4CE_NlmeStartCfm

Structure containing data for NLME start confirm events:

4.2.17 tsRF4CE_NlmeUnpairInd

Structure containing data for NLME unpair indication events:

4.2.18 tsRF4CE_NlmeUnpairCfm

Structure containing data for NLME unpair confirm events:

Element Meaning

tsRF4CE_AppCap sRecAppCapabilities Application capabilities of the originator of the pair response

uint16 u16RecVendorId Vendor ID of the originator of the pair response

uint8 u8PairingRef Pairing reference for this pairing, or 0xff if pairing was unsuccessful

uint8 *pu8RecVendorString Vendor string of the originator of the pair response

uint8 *pu8RecUserString User string of the originator of the pair response, if indicated in sRe-
cAppCapabilities element

uint8 *pu8RecDevTypeList Supported device type list of the originator of the pair response

uint8 *pu8RecProfileIdList Supported profile ID list of the originator of the pair response

teRF4CE_Status eStatus Status of the pairing attempt

Element Meaning

teRF4CE_Status eStatus Status of the start attempt

Element Meaning

uint8 u8PairingRef Pairing table entry that has been unpaired

Element Meaning

teRF4CE_Status eStatus Status of the unpair attempt

uint8 u8PairingRef Pairing table entry that has been unpaired
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 81

Chapter 4
ZigBee RF4CE API Resources

4.2.19 tuRF4CE_EventParam

Union of the structures that may be returned in the callback function when a stack
event occurs:

Element Meaning

tsRF4CE_NldeDataInd sNldeDataInd Structure to use with E_RF4CE_EV_NLDE_IND
event

tsRF4CE_NldeDataCfm sNldeDataCfm Structure to use with E_RF4CE_EV_NLDE_CFM
event

tsRF4CE_NlmeAutoDiscoveryCfm sNlmeAutoDiscoveryCfm Structure to use with
E_RF4CE_EV_AUTODISC_CFM event

tsRF4CE_NlmeCommStatusInd sNlmeCommStatusInd Structure to use with
E_RF4CE_EV_COMMSTATUS_IND event

tsRF4CE_NlmeDiscoveryInd sNlmeDiscoveryInd Structure to use with E_RF4CE_EV_DISC_IND
event

tsRF4CE_NlmeDiscoveryCfm sNlmeDiscoveryCfm Structure to use with E_RF4CE_EV_DISC_CFM
event

tsRF4CE_NlmePairInd sNlmePairInd Structure to use with E_RF4CE_EV_PAIR_IND
event

tsRF4CE_NlmePairCfm sNlmePairCfm Structure to use with E_RF4CE_EV_PAIR_CFM
event

tsRF4CE_NlmeStartCfm sNlmeStartCfm Structure to use with
E_RF4CE_EV_START_CFM event

tsRF4CE_NlmeUnpairInd sNlmeUnpairInd Structure to use with
E_RF4CE_EV_UNPAIR_IND event

tsRF4CE_NlmeUnpairCfm sNlmeUnpairCfm Structure to use with
E_RF4CE_EV_UNPAIR_CFM event
82 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.3 Constants

4.3.1 RF4CE Implicit Constants

Constants defined throughout the ZigBee RF4CE Specification and used in the API:

4.3.2 RF4CE Constants

Constants explicitly defined by the ZigBee RF4CE Specification:

* Implementation-specific value

Name Value Meaning

RF4CE_VENDOR_STRING_LEN 7 Length of vendor string, in bytes

RF4CE_USER_STRING_LEN 15 Length of user string, in bytes

RF4CE_MAX_DEVICE_TYPE_LIST_LEN 3 Maximum length of device type list

RF4CE_MAX_PROFILE_ID_LIST_LEN 7 Maximum length of profile ID list

RF4CE_MAX_DISC_PROFILE_ID_LIST_LEN 7 Maximum length of discovery profile ID list. Implemen-
tation-specific: the ZigBee RF4CE Specification sug-
gests that this should be 255 but it has been limited for
resource reasons

Name Value Meaning (from ZigBee RF4CE Spec)

RF4CE_NWKC_CHANNEL_MASK 0x2108000 nwkcChannelMask

RF4CE_NWKC_FRAME_CNT_WINDOW 1024 nwkcFrameCounterWindow

RF4CE_NWKC_MAC_BCN_PAYLOAD_LEN 2 nwkcMACBeaconPayloadLength

RF4CE_NWKC_MAX_DUTY_CYCLE 62500 nwkcMaxDutyCycle

RF4CE_NWKC_MAX_KEY_SEED_WAIT_TIME 3750 nwkcMaxKeySeedWaitTime

RF4CE_NWKC_MAX_NODE_DESC_LIST_SIZE 8* nwkcMaxNodeDescListSize

RF4CE_NWKC_MAX_PAIRING_TABLE_ENTRIES 8* nwkcMaxPairingTableEntries

RF4CE_NWKC_MAX_SECURITY_TX_POWER -15 nwkcMaxSecCmdTxPower

RF4CE_NWKC_MIN_ACTIVE_PERIOD 1050 nwkcMinActivePeriod

RF4CE_NWKC_MIN_CONT_PAIRING_TABLE_SIZE 1 nwkcMinControllerPairingTableSize

RF4CE_NWKC_MIN_NODE_DESC_LIST_SIZE 3 nwkcMinNodeDescListSize

RF4CE_NWKC_MIN_NWK_HDR_OVERHEAD 5 nwkcMinNWKHeaderOverhead

RF4CE_NWKC_MIN_TARG_PAIRING_TABLE_SIZE 5 nwkcMinTargetPairingTableSize

RF4CE_NWKC_PROTOCOL_ID 0xce nwkcProtocolIdentifier

RF4CE_NWKC_PROTOCOL_VERSION 1 nwkcProtocolVersion
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 83

Chapter 4
ZigBee RF4CE API Resources

4.3.3 Node Capability Constants

Bit-field definitions for node capability values (constants should be bitwise ORed
together to create the desired node capability value):

4.3.4 Transmit Option Constants

Bit-field definitions for transmit options (constants should be bitwise ORed together to
create the desired transmit option for use with an NLDE data request):

Name Value Meaning

RF4CE_NODECAP_TYPE_CONTROLLER 0 Node is a controller

RF4CE_NODECAP_TYPE_TARGET 1 Node is a target

RF4CE_NODECAP_PWRSRC_MAINS 2 Node has a mains power source

RF4CE_NODECAP_PWRSRC_NOT_MAINS 0 Node does not have a mains power source

RF4CE_NODECAP_SECURITY_CAPABLE 4 Node is capable of security

RF4CE_NODECAP_SECURITY_INCAPABLE 0 Node is not capable of security

RF4CE_NODECAP_CHANNORM_CAPABLE 8 Node is capable of performing channel normalisa-
tion

RF4CE_NODECAP_CHANNORM_INCAPABLE 0 Node is not capable of performing channel normali-
sation

Name Value Meaning

RF4CE_TX_OPT_BROADCAST 1 Broadcast instead of unicast transmission

RF4CE_TX_OPT_DEST_IEEE 2 Use the destination node’s IEEE address instead of
its network address

RF4CE_TX_OPT_ACKNOWLEDGE 4 Request an 802.15.4-level acknowledgement

RF4CE_TX_OPT_SECURITY 8 Use security

RF4CE_TX_OPT_SINGLE_CHAN 16 Transmit only on a single channel, instead of trying
all channels if the first channel fails

RF4CE_TX_OPT_SPECIFY_CHAN 32 Specify the preferred channel in the frame header

RF4CE_TX_OPT_VENDOR_DATA 64 Format frame as vendor-specific rather than stand-
ard RF4CE
84 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
4.3.5 Device Type Constants

Device type constants taken from the ZigBee RF4CE Device Type List:

Name Value

RF4CE_DEVICE_TYPE_REMOTE_CONTROL 0x01

RF4CE_DEVICE_TYPE_TELEVISION 0x02

RF4CE_DEVICE_TYPE_PROJECTOR 0x03

RF4CE_DEVICE_TYPE_PLAYER 0x04

RF4CE_DEVICE_TYPE_RECORDER 0x05

RF4CE_DEVICE_TYPE_VIDEO_PLAYER_RECORDER 0x06

RF4CE_DEVICE_TYPE_AUDIO_PLAYER_RECORDER 0x07

RF4CE_DEVICE_TYPE_AUDIO_VIDEO_RECORDER 0x08

RF4CE_DEVICE_TYPE_SET_TOP_BOX 0x09

RF4CE_DEVICE_TYPE_HOME_THEATER 0x0a

RF4CE_DEVICE_TYPE_MEDIA_CENTER 0x0b

RF4CE_DEVICE_TYPE_GAME_CONSOLE 0x0c

RF4CE_DEVICE_TYPE_SATELLITE_RADIO 0x0d

RF4CE_DEVICE_TYPE_IR_EXTENDER 0x0e

RF4CE_DEVICE_TYPE_MONITOR 0x0f

RF4CE_DEVICE_TYPE_GENERIC 0xfe
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 85

Chapter 4
ZigBee RF4CE API Resources

86 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Part III:
Appendices
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 87

88 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
A. Enumerations

A.1 teRF4CE_Status

Return values for calls into the ZigBee RF4CE stack:

Name Value Meaning

E_RF4CE_STATUS_SUCCESS 0x00 The requested operation was completed successfully

E_RF4CE_STATUS_NO_ORG_
CAPACITY

0xb0 A pairing link cannot be established since the originator node
has reached its maximum number of entries in its pairing table

E_RF4CE_STATUS_NO_REC_
CAPACITY

0xb1 A pairing link cannot be established since the recipient node
has reached its maximum number of entries in its pairing table

E_RF4CE_STATUS_NO_PAIRING 0xb2 A pairing table entry could not be found that corresponds to
the supplied pairing reference (index)

E_RF4CE_STATUS_NO_
RESPONSE

0xb3 A response frame was not received within the timeout period
defined by the NIB attribute nwkResponseWaitTime

E_RF4CE_STATUS_NOT_
PERMITTED

0xb4 A pairing request was denied by the recipient node or an
attempt to update a security link key was not possible due to
one or more nodes not supporting security

E_RF4CE_STATUS_DUPLICATE_
PAIRING

0xb5 A duplicate pairing table entry was detected following the
receipt of a pairing request command frame

E_RF4CE_STATUS_FRAME_
COUNTER_EXPIRED

0xb6 The frame counter has reached its maximum value

E_RF4CE_STATUS_DISCOVERY_
ERROR

0xb7 Too many unique matched discovery request or valid
response command frames were received than requested

E_RF4CE_STATUS_DISCOVERY_
TIMEOUT

0xb8 No discovery request or response command frames were
received during discovery

E_RF4CE_STATUS_SECURITY_
TIMEOUT

0xb9 The security link key exchange or recovery procedure did not
complete within the required time

E_RF4CE_STATUS_SECURITY_
FAILURE

0xba A security link key was not successfully established between
both ends of a pairing link

E_RF4CE_STATUS_INVALID_
PARAMETER

0xe8 A parameter in the primitive is either not supported or is out of
the valid range

E_RF4CE_STATUS_
UNSUPPORTED_ATTRIBUTE

0xf4 A Set/Get request was issued with the identifier of a NIB
attribute that is not supported

E_RF4CE_STATUS_INVALID_INDEX 0xf9 An attempt to write to a NIB attribute that is in a table failed
because the specified table index was out of range
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 89

Appendices
A.2 teRF4CE_NibAttrib

Attribute IDs for the NIB entries:

A.3 tePairState

Pairing state for pairing entries in the NIB:

Name Value Meaning (from ZigBee RF4CE Spec)

E_RF4CE_NIB_ATTR_ACTIVE_PERIOD 0x60 nwkActivePeriod

E_RF4CE_NIB_ATTR_BASE_CHANNEL 0x61 nwkBaseChannel

E_RF4CE_NIB_ATTR_DISC_LQI_THRESHOLD 0x62 nwkDiscoveryLQIThreshold

E_RF4CE_NIB_ATTR_DISP_REP_INTERVAL 0x63 nwkDiscoveryRepetitionInterval

E_RF4CE_NIB_ATTR_DUTY_CYCLE 0x64 nwkDutyCycle

E_RF4CE_NIB_ATTR_FRAME_COUNTER 0x65 nwkFrameCounter

E_RF4CE_NIB_ATTR_IND_DISC_REQUESTS 0x66 nwkIndicateDiscoveryRequests

E_RF4CE_NIB_ATTR_IN_POWER_SAVE 0x67 nwkInPowerSave

E_RF4CE_NIB_ATTR_PAIRING_TABLE 0x68 nwkPairingTable

E_RF4CE_NIB_ATTR_MAX_DISC_REPETITIONS 0x69 nwkMaxDiscoveryRepetitions

E_RF4CE_NIB_ATTR_MAX_FIRST_CSMA_BACKOFFS 0x6a nwkMaxFirstAttemptCSMABackoffs

E_RF4CE_NIB_ATTR_MAX_FIRST_RETRIES 0x6b nwkMaxFirstAttemptFrameRetries

E_RF4CE_NIB_ATTR_MAX_REPORTED_NODE_DESCS 0x6c nwkMaxReportedNodeDescriptors

E_RF4CE_NIB_ATTR_RESPONSE_WAIT_TIME 0x6d nwkResponseWaitTime

E_RF4CE_NIB_ATTR_SCAN_DURATION 0x6e nwkScanDuration

E_RF4CE_NIB_ATTR_USER_STRING 0x6f nwkUserString

Name Value Meaning

E_PAIR_EMPTY 0 Pairing entry is empty or invalid

E_PAIR_PROVISIONAL 1 Pairing entry is involved in the process of pairing

E_PAIR_ACTIVE 2 Pairing entry is valid and active
90 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
A.4 teRF4CE_EventType

Event types, as passed up to the callback function:

A.5 teSaveMode

Save mode options, for use with the function vRF4CE_ImpSaveSettings():

Name Value Meaning Parameter structure to use

E_RF4CE_EV_NLDE_IND 0x00 NLDE indication tsRF4CE_NldeDataInd

E_RF4CE_EV_NLDE_CFM 0x01 NLDE confirmation tsRF4CE_NldeDataCfm

E_RF4CE_EV_AUTODISC_CFM 0x02 NLME Auto-discovery
confirmation

tsRF4CE_NlmeAutoDiscoveryCfm

E_RF4CE_EV_COMMSTATUS_IND 0x03 NLME Comm-status
indication

tsRF4CE_NlmeCommStatusInd

E_RF4CE_EV_DISC_IND 0x04 NLME Discovery indica-
tion

tsRF4CE_NlmeDiscoveryInd

E_RF4CE_EV_DISC_CFM 0x05 NLME Discovery confir-
mation

tsRF4CE_NlmeDiscoveryCfm

E_RF4CE_EV_PAIR_IND 0x06 NLME Pair indication tsRF4CE_NlmePairInd

E_RF4CE_EV_PAIR_CFM 0x07 NLME Pair confirmation tsRF4CE_NlmePairCfm

E_RF4CE_EV_START_CFM 0x08 NLME Start confirmation tsRF4CE_NlmeStartCfm

E_RF4CE_EV_UNPAIR_IND 0x09 NLME Unpair indication tsRF4CE_NlmeUnpairInd

E_RF4CE_EV_UNPAIR_CFM 0x0a NLME Unpair confirma-
tion

tsRF4CE_NlmeUnpairCfm

Name Value Meaning

E_SAVE_MODE_FULL 0 Save all settings to Flash memory

E_SAVE_MODE_MINIMAL 1 Save frame counter only to non-volatile RAM
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 91

Appendices
B. Structures and Unions

Note that elements in structures are not necessarily in the same order as found in the
ZigBee RF4CE Specification. This is intentional as it allows the structures to be
packed more efficiently to reduce RAM consumption.

B.1 tsIeeeAddr

IEEE (MAC) address:

B.2 tsRF4CE_LinkKey

Link key for use with secured paired links:

B.3 tsRF4CE_AppCap

Application capabilities, as described in the ZigBee RF4CE Specification:

Element Meaning

uint32 u32H Most significant 32 bits of the address

uint32 u32L Least significant 32 bits of the address

Element Meaning

uint8 au8Key[16] Array of sixteen 8-bit values containing the link key

Element Meaning

uint u1UserStringSpecified 1 if user string is specified, 0 if not (1-bit field)

uint u2NumSupportedDevTypes Number of supported device types (2-bit field)

uint u1Reserved1 Unused (for padding)

uint u3NumSupportedProfTypes Number of supported profile IDs (3-bit field)

uint u1Reserved2 Unused (for padding)
92 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
B.4 tsRF4CE_NodeDesc

Node descriptor, as described in the ZigBee RF4CE Specification and as used during
discovery:

Element Meaning

tsIeeeAddr sIeeeAddr IEEE address of the node

tsRF4CE_AppCap sAppCapabilities Application capabilities of the node

uint16 u16PanId PAN ID of the node

uint16 u16VendorId Vendor ID of the node

uint8 au8VendorString[RF4CE_VENDOR_STRING_LEN] Vendor string of the node

uint8 au8UserString[RF4CE_USER_STRING_LEN] User defined string of the node. If the
u1UserStringSpecified sub-field of sAppCapabilites
is 0, this element is undefined

uint8
au8DevTypeList[RF4CE_MAX_DEVICE_TYPE_LIST_LEN]

List of supported devices of the node

uint8
au8ProfileIdList[RF4CE_MAX_PROFILE_ID_LIST_LEN]

List of supported profile IDs of the node

uint8 u8LogicalChannel Logical channel used by the node

uint8 u8NodeCapabilities Capabilities of the node. The values in this field can
be interpreted using the RF4CE_NODECAP_xxx
constant definitions

uint8 u8DiscReqLqi LQI of the discovery request frame from the node

teRF4CE_Status eStatus Status of the discovery request
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 93

Appendices
B.5 tsRF4CE_PairingTableEntry

Pairing table entry, as described in the ZigBee RF4CE Specification and as used in
the NIB pairing table:

Element Meaning

tsIeeeAddr sDstIeeeAddr IEEE address of the destination device

tsRF4CE_LinkKey sSecurityLinkKey Link key used to secure this link

uint32 u32RecFrameCounter Frame counter most recently received from recipient node

uint16 u16SrcNwkAddr Network address to be used by the source device

uint16 u16DstPanId PAN ID of the destination device

uint16 u16DstNwkAddr Network address of the destination device

uint8 u8DestLogicalChan Logical channel used by the destination device

uint8 u8RecNodeCapabilities Node capabilities of the recipient device. The values in this field can be
interpreted using the RF4CE_NODECAP_xxx constant definitions.

tePairState eState Status of the pairing entry (implementation-specific feature)
94 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
B.6 tuRF4CE_NibValue

Union of types used for NIB values (for passing values using the NIB 'Get' and 'Set'
functions):

B.7 tuAddr

Union of IEEE (MAC) and network (short) addresses:

Element Meaning (from ZigBee RF4CE Spec)

uint32 u32ActivePeriod nwkActivePeriod

uint8 u8BaseChannel nwkBaseChannel

uint8 u8DiscoveryLqiThreshold nwkDiscoveryLQIThreshold

uint32 u32DiscoveryRepetitionInterval nwkDiscoveryRepetitionInterval

uint32 u32DutyCycle nwkDutyCycle

uint32 u32FrameCounter nwkFrameCounter

bool_t bIndicateDiscoveryRequests nwkIndicateDiscoveryRequests

bool_t bInPowerSave nwkInPowerSave

tsRF4CE_PairingTableEntry sPairingTableEntry nwkPairingTable. The NIB Get and Set functions only
allow access to one table entry at a time

uint8 u8MaxDiscoveryRepetitions nwkMaxDiscoveryRepetitions

uint8 u8MaxFirstAttemptCsmaBackoffs nwkMaxFirstAttemptCSMABackoffs

uint8 u8MaxFirstAttemptFrameRetries nwkMaxFirstAttemptFrameRetries

uint8 u8MaxReportedNodeDescriptors nwkMaxReportedNodeDescriptors

uint32 u32ResponseWaitTime nwkResponseWaitTime

uint8 u8ScanDuration nwkScanDuration

uint8 au8UserString[RF4CE_USER_STRING_LEN] nwkUserString

Element Meaning

tsIeeeAddr sIeeeAddr IEEE address

uint16 u16NwkAddr Network address
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 95

Appendices
B.8 tsRF4CE_NldeDataInd

Structure containing data for NLDE data indication events:

B.9 tsRF4CE_NldeDataCfm

Structure containing data for NLDE data confirm events:

B.10 tsRF4CE_NlmeAutoDiscoveryCfm

Structure containing data for NLME auto-discovery confirm events:

Element Meaning

uint8 *pu8Nsdu Pointer to the payload. This ceases to be valid after returning from the callback

uint16 u16VendorId Vendor ID of the source node

uint8 u8PairingRef Pairing reference for the node

uint8 u8ProfileId Profile ID of the data frame

uint8 u8NsduLength Payload length

uint8 u8RxLinkQuality Link quality of the frame

uint8 u8RxFlags Received frame characteristics. The values in this field can be interpreted using the
RF4CE_NLDE_RXFLAGS_xxx constant definitions

Element Meaning

uint8 u8PairingRef Pairing reference of the destination of the transmitted frame

teRF4CE_Status eStatus Status of the transmission attempt

Element Meaning

tsIeeeAddr *psSrcIeeeAddr Pointer to the IEEE address of the node that sent a discovery request to which this
node responded

teRF4CE_Status eStatus Status of the auto-discovery
96 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
B.11 tsRF4CE_NlmeCommStatusInd

Structure containing data for NLME comm-status indication events:

B.12 tsRF4CE_NlmeDiscoveryInd

Structure containing data for NLME discovery indication events:

Element Meaning

tuAddr uDstAddr Address of the destination device

uint16 u16DstPanId PAN ID of the destination device

uint8 u8PairingRef Pairing table entry for the recipient node, or 0xff in the case that this comm-status
is the result of a discovery response

uint8 u8DstAddrMode Addressing mode of uDstAddr. 0 means network address, 1 means IEEE address

teRF4CE_Status eStatus Status of the transmission

Element Meaning

tsRF4CE_AppCap sOrgAppCapabilities Application capabilities of the discovery request originator

tsIeeeAddr *psSrcIeeeAddr IEEE address of the discovery request originator

uint8 *pu8OrgVendorString Vendor string of the discovery request originator. Length is
RF4CE_VENDOR_STRING_LEN bytes

uint8 *pu8OrgUserString User string of the discovery request originator. Length is
RF4CE_USER_STRING_LEN bytes, and string is only valid if indi-
cated in the sOrgAppCapabilities element

uint8 *pu8OrgDevTypeList Supported device types of the discovery request originator

uint8 *pu8OrgProfileIdList Supported profile IDs of the discovery request originator

uint16 u16OrgVendorId Vendor ID of the discovery request originator

uint8 u8OrgNodeCapabilities Node capabilities of the discovery request originator. The values in this
field can be interpreted using the RF4CE_NODECAP_xxx constant
definitions

uint8 u8SearchDevType Device type being discovered, or 0xff if no preference has been indi-
cated

uint8 u8RxLinkQuality LQI value of the received discovery request frame

teRF4CE_Status eStatus Status of the pairing table
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 97

Appendices
B.13 tsRF4CE_NlmeDiscoveryCfm

Structure containing data for NLME discovery confirm events:

B.14 tsRF4CE_NlmePairInd

Structure containing data for NLME pair indication events:

Element Meaning

tsRF4CE_NodeDesc *psNodeDescList Pointer to an array of node descriptors. The array will have no more
than RF4CE_NWKC_MAX_NODE_DESC_LIST_SIZE entries

uint8 u8NumNodes Number of entries in the psNodeDescList array

teRF4CE_Status eStatus Status of the discovery attempt

Element Meaning

tsRF4CE_AppCap sOrgAppCapabilities Application capabilities of the pair request originator

tsIeeeAddr *psSrcIeeeAddr IEEE address of the pair request originator

uint16 u16SrcPanId PAN ID of the pair request originator

uint16 u16OrgVendorId Vendor ID of the pair request originator

uint8 *pu8OrgVendorString Vendor string of the pair request originator

uint8 *pu8OrgUserString User string of the pair request originator, if indicated in the sOrgApp-
Capabilities element

uint8 *pu8OrgDevTypeList Supported device type list of the pair request originator

uint8 *pu8OrgProfileIdList Supported profile ID list of the pair request originator

uint8 u8OrgNodeCapabilities Node capabilities of the pair request originator. The values in this
field can be interpreted using the RF4CE_NODECAP_xxx constant
definitions

uint8 u8KeyExTransferCount The pairing originator’s desired number of exchanges to perform dur-
ing key exchange

uint8 u8ProvPairingRef Provisional pairing reference, or 0xff if pairing table is full

teRF4CE_Status eStatus Status of the provisional pairing
98 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
B.15 tsRF4CE_NlmePairCfm

Structure containing data for NLME pair confirm events:

B.16 tsRF4CE_NlmeStartCfm

Structure containing data for NLME start confirm events:

B.17 tsRF4CE_NlmeUnpairInd

Structure containing data for NLME unpair indication events:

B.18 tsRF4CE_NlmeUnpairCfm

Structure containing data for NLME unpair confirm events:

Element Meaning

tsRF4CE_AppCap sRecAppCapabilities Application capabilities of the originator of the pair response

uint16 u16RecVendorId Vendor ID of the originator of the pair response

uint8 u8PairingRef Pairing reference for this pairing, or 0xff if pairing was unsuccessful

uint8 *pu8RecVendorString Vendor string of the originator of the pair response

uint8 *pu8RecUserString User string of the originator of the pair response, if indicated in sRe-
cAppCapabilities element

uint8 *pu8RecDevTypeList Supported device type list of the originator of the pair response

uint8 *pu8RecProfileIdList Supported profile ID list of the originator of the pair response

teRF4CE_Status eStatus Status of the pairing attempt

Element Meaning

teRF4CE_Status eStatus Status of the start attempt

Element Meaning

uint8 u8PairingRef Pairing table entry that has been unpaired

Element Meaning

teRF4CE_Status eStatus Status of the unpair attempt

uint8 u8PairingRef Pairing table entry that has been unpaired
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 99

Appendices
B.19 tuRF4CE_EventParam

Union of the structures that may be returned in the callback function when a stack
event occurs:

Element Meaning

tsRF4CE_NldeDataInd sNldeDataInd Structure to use with E_RF4CE_EV_NLDE_IND
event

tsRF4CE_NldeDataCfm sNldeDataCfm Structure to use with E_RF4CE_EV_NLDE_CFM
event

tsRF4CE_NlmeAutoDiscoveryCfm sNlmeAutoDiscoveryCfm Structure to use with
E_RF4CE_EV_AUTODISC_CFM event

tsRF4CE_NlmeCommStatusInd sNlmeCommStatusInd Structure to use with
E_RF4CE_EV_COMMSTATUS_IND event

tsRF4CE_NlmeDiscoveryInd sNlmeDiscoveryInd Structure to use with E_RF4CE_EV_DISC_IND
event

tsRF4CE_NlmeDiscoveryCfm sNlmeDiscoveryCfm Structure to use with E_RF4CE_EV_DISC_CFM
event

tsRF4CE_NlmePairInd sNlmePairInd Structure to use with E_RF4CE_EV_PAIR_IND
event

tsRF4CE_NlmePairCfm sNlmePairCfm Structure to use with E_RF4CE_EV_PAIR_CFM
event

tsRF4CE_NlmeStartCfm sNlmeStartCfm Structure to use with
E_RF4CE_EV_START_CFM event

tsRF4CE_NlmeUnpairInd sNlmeUnpairInd Structure to use with
E_RF4CE_EV_UNPAIR_IND event

tsRF4CE_NlmeUnpairCfm sNlmeUnpairCfm Structure to use with
E_RF4CE_EV_UNPAIR_CFM event
100 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
C. Constants

C.1 RF4CE Implicit Constants

Constants defined throughout the ZigBee RF4CE Specification and used in the API:

C.2 RF4CE Constants

Constants explicitly defined by the ZigBee RF4CE Specification:

* Implementation-specific value

Name Value Meaning

RF4CE_VENDOR_STRING_LEN 7 Length of vendor string, in bytes

RF4CE_USER_STRING_LEN 15 Length of user string, in bytes

RF4CE_MAX_DEVICE_TYPE_LIST_LEN 3 Maximum length of device type list

RF4CE_MAX_PROFILE_ID_LIST_LEN 7 Maximum length of profile ID list

RF4CE_MAX_DISC_PROFILE_ID_LIST_LEN 7 Maximum length of discovery profile ID list. Implemen-
tation-specific: the ZigBee RF4CE Specification sug-
gests that this should be 255 but it has been limited for
resource reasons

Name Value Meaning (from ZigBee RF4CE Spec)

RF4CE_NWKC_CHANNEL_MASK 0x2108000 nwkcChannelMask

RF4CE_NWKC_FRAME_CNT_WINDOW 1024 nwkcFrameCounterWindow

RF4CE_NWKC_MAC_BCN_PAYLOAD_LEN 2 nwkcMACBeaconPayloadLength

RF4CE_NWKC_MAX_DUTY_CYCLE 62500 nwkcMaxDutyCycle

RF4CE_NWKC_MAX_KEY_SEED_WAIT_TIME 3750 nwkcMaxKeySeedWaitTime

RF4CE_NWKC_MAX_NODE_DESC_LIST_SIZE 8* nwkcMaxNodeDescListSize

RF4CE_NWKC_MAX_PAIRING_TABLE_ENTRIES 8* nwkcMaxPairingTableEntries

RF4CE_NWKC_MAX_SECURITY_TX_POWER -15 nwkcMaxSecCmdTxPower

RF4CE_NWKC_MIN_ACTIVE_PERIOD 1050 nwkcMinActivePeriod

RF4CE_NWKC_MIN_CONT_PAIRING_TABLE_SIZE 1 nwkcMinControllerPairingTableSize

RF4CE_NWKC_MIN_NODE_DESC_LIST_SIZE 3 nwkcMinNodeDescListSize

RF4CE_NWKC_MIN_NWK_HDR_OVERHEAD 5 nwkcMinNWKHeaderOverhead

RF4CE_NWKC_MIN_TARG_PAIRING_TABLE_SIZE 5 nwkcMinTargetPairingTableSize

RF4CE_NWKC_PROTOCOL_ID 0xce nwkcProtocolIdentifier

RF4CE_NWKC_PROTOCOL_VERSION 1 nwkcProtocolVersion
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 101

Appendices
C.3 Node Capability Constants

Bit-field definitions for node capability values (constants should be bitwise ORed
together to create the desired node capability value):

C.4 Transmit Option Constants

Bit-field definitions for transmit options (constants should be bitwise ORed together to
create the desired transmit option for use with an NLDE data request):

Name Value Meaning

RF4CE_NODECAP_TYPE_CONTROLLER 0 Node is a controller

RF4CE_NODECAP_TYPE_TARGET 1 Node is a target

RF4CE_NODECAP_PWRSRC_MAINS 2 Node has a mains power source

RF4CE_NODECAP_PWRSRC_NOT_MAINS 0 Node does not have a mains power source

RF4CE_NODECAP_SECURITY_CAPABLE 4 Node is capable of security

RF4CE_NODECAP_SECURITY_INCAPABLE 0 Node is not capable of security

RF4CE_NODECAP_CHANNORM_CAPABLE 8 Node is capable of performing channel normalisa-
tion

RF4CE_NODECAP_CHANNORM_INCAPABLE 0 Node is not capable of performing channel normali-
sation

Name Value Meaning

RF4CE_TX_OPT_BROADCAST 1 Broadcast instead of unicast transmission

RF4CE_TX_OPT_DEST_IEEE 2 Use the destination node’s IEEE address instead of
its network address

RF4CE_TX_OPT_ACKNOWLEDGE 4 Request an 802.15.4-level acknowledgement

RF4CE_TX_OPT_SECURITY 8 Use security

RF4CE_TX_OPT_SINGLE_CHAN 16 Transmit only on a single channel, instead of trying
all channels if the first channel fails

RF4CE_TX_OPT_SPECIFY_CHAN 32 Specify the preferred channel in the frame header

RF4CE_TX_OPT_VENDOR_DATA 64 Format frame as vendor-specific rather than stand-
ard RF4CE
102 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
C.5 Device Type Constants

Device type constants taken from the ZigBee RF4CE Device Type List:

Name Value

RF4CE_DEVICE_TYPE_REMOTE_CONTROL 0x01

RF4CE_DEVICE_TYPE_TELEVISION 0x02

RF4CE_DEVICE_TYPE_PROJECTOR 0x03

RF4CE_DEVICE_TYPE_PLAYER 0x04

RF4CE_DEVICE_TYPE_RECORDER 0x05

RF4CE_DEVICE_TYPE_VIDEO_PLAYER_RECORDER 0x06

RF4CE_DEVICE_TYPE_AUDIO_PLAYER_RECORDER 0x07

RF4CE_DEVICE_TYPE_AUDIO_VIDEO_RECORDER 0x08

RF4CE_DEVICE_TYPE_SET_TOP_BOX 0x09

RF4CE_DEVICE_TYPE_HOME_THEATER 0x0a

RF4CE_DEVICE_TYPE_MEDIA_CENTER 0x0b

RF4CE_DEVICE_TYPE_GAME_CONSOLE 0x0c

RF4CE_DEVICE_TYPE_SATELLITE_RADIO 0x0d

RF4CE_DEVICE_TYPE_IR_EXTENDER 0x0e

RF4CE_DEVICE_TYPE_MONITOR 0x0f

RF4CE_DEVICE_TYPE_GENERIC 0xfe
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 103

Appendices
104 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

 ZigBee RF4CE Stack
User Guide
Revision History

Version Date Comments

1.0 27-Oct-2010 First release

1.1 06-Dec-2012 - Updated for the JN516x device
- Added support for ZRC and ZID application profile commands
JN-UG-3074 v1.1 © NXP Laboratories UK 2012 105

ZigBee RF4CE Stack
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com/jennic
106 © NXP Laboratories UK 2012 JN-UG-3074 v1.1

	Contents
	About this Manual
	Pre-requisites
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Trademarks

	Part I: Concept and Operational Information
	1. Introduction to ZigBee RF4CE
	1.1 Features
	1.2 Node Types and Network Topologies
	1.3 Radio Channels and Frequency Agility
	1.4 RC PAN Formation
	1.4.1 Initialisation
	1.4.2 Discovery
	1.4.3 Pairing

	1.5 Communications
	1.6 Application Profiles
	1.7 Power Saving
	1.8 Stack Architecture

	2. Using the ZigBee RF4CE API
	2.1 RF4CE API Installation and Contents
	2.2 Application Overview
	2.2.1 Tasks and Contexts
	2.2.2 Calling Protocol
	2.2.3 Network Information Base (NIB)
	2.2.4 Event Handling

	2.3 PAN Formation
	2.3.1 Stack Initialisation
	2.3.2 Service Discovery
	2.3.3 Pairing (and Unpairing)

	2.4 Low-power Modes
	2.4.1 Power-saving Mode
	2.4.2 Sleep Mode

	2.5 Using Application Profile Commands

	Part II: Reference Information
	3. ZigBee RF4CE API Functions
	3.1 Implementation-specific Functions
	bRF4CE_ImpInit
	vRF4CE_ImpSaveSettings
	vRF4CE_ImpDestroySettings

	3.2 NLDE Function
	vRF4CE_NldeDataReq

	3.3 NLME Functions
	vRF4CE_NlmeAutoDiscoveryReq
	vRF4CE_NlmeDiscoveryReq
	vRF4CE_NlmeDiscoveryResp
	eRF4CE_NlmeGetReq
	vRF4CE_NlmePairReq
	vRF4CE_NlmePairResp
	vRF4CE_NlmeResetReq
	eRF4CE_NlmeRxEnableReq
	eRF4CE_NlmeSetReq
	vRF4CE_NlmeStartReq
	vRF4CE_NlmeUnpairReq
	vRF4CE_NlmeUnpairResp
	eRF4CE_NlmeUpdateKeyReq

	3.4 Callback Function
	vRF4CE_StackEvent

	3.5 ZRC Command Frame Functions
	vZRC_SendUserControlPressed
	vZRC_SendUserControlRepeated
	vZRC_SendUserControlReleased
	vZRC_SendCmdDiscRequest
	vZRC_SendCmdDiscResponse

	3.6 ZID Command Frame Functions
	vZID_SendGetReport
	vZID_SendReportData

	4. ZigBee RF4CE API Resources
	4.1 Enumerations
	4.1.1 teRF4CE_Status
	4.1.2 teRF4CE_NibAttrib
	4.1.3 tePairState
	4.1.4 teRF4CE_EventType
	4.1.5 teSaveMode

	4.2 Structures and Unions
	4.2.1 tsIeeeAddr
	4.2.2 tsRF4CE_LinkKey
	4.2.3 tsRF4CE_AppCap
	4.2.4 tsRF4CE_NodeDesc
	4.2.5 tsRF4CE_PairingTableEntry
	4.2.6 tuRF4CE_NibValue
	4.2.7 tuAddr
	4.2.8 tsRF4CE_NldeDataInd
	4.2.9 tsRF4CE_NldeDataCfm
	4.2.10 tsRF4CE_NlmeAutoDiscoveryCfm
	4.2.11 tsRF4CE_NlmeCommStatusInd
	4.2.12 tsRF4CE_NlmeDiscoveryInd
	4.2.13 tsRF4CE_NlmeDiscoveryCfm
	4.2.14 tsRF4CE_NlmePairInd
	4.2.15 tsRF4CE_NlmePairCfm
	4.2.16 tsRF4CE_NlmeStartCfm
	4.2.17 tsRF4CE_NlmeUnpairInd
	4.2.18 tsRF4CE_NlmeUnpairCfm
	4.2.19 tuRF4CE_EventParam

	4.3 Constants
	4.3.1 RF4CE Implicit Constants
	4.3.2 RF4CE Constants
	4.3.3 Node Capability Constants
	4.3.4 Transmit Option Constants
	4.3.5 Device Type Constants

	Part III: Appendices
	A. Enumerations
	B. Structures and Unions
	C. Constants

