
JN516x Integrated Peripherals API
User Guide

JN-UG-3087

Revision 1.1

22 August 2013

JN516x Integrated Peripherals API
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Contents

About this Manual 15
Organisation 15

Conventions 17

Acronyms and Abbreviations 17

Related Documents 18

Support Resources 18

Trademarks 18

Part I: Concept and Operational Information

1. Overview 21
1.1 JN516x Integrated Peripherals 21

1.2 JN516x Integrated Peripherals API 22

1.3 Using this Manual 23

2. General Functions 25
2.1 API Initialisation 25

2.2 Radio Transmission Power 25

2.3 Antenna Diversity 26

2.4 Random Number Generator 27

2.5 Accessing Internal NVM 28

3. System Controller 29
3.1 Clock Management 29

3.1.1 System Clock Start-up and Source Selection 30

3.1.2 System Clock Start-up Following Sleep 31

3.1.3 CPU Clock Frequency Selection 31

3.1.4 32kHz Clock Selection 32

3.2 Power Management 33
3.2.1 Power Domains 33

3.2.2 Wireless Transceiver Clock 34

3.2.3 Low-Power Modes 35

3.2.4 Power Status 36

3.3 Supply Voltage Monitor (SVM) 37
3.3.1 Configuring SVM 37

3.3.2 Monitoring Voltage 38

3.4 Resets 38
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 3

Contents
3.5 System Controller Interrupts 39

4. Analogue Peripherals 41
4.1 ADC 41

4.1.1 Single-Shot Mode 44

4.1.2 Continuous Mode 44

4.1.3 Accumulation Mode 45

4.2 ADC with DMA Engine (Sample Buffer Mode) 45
4.2.1 Preparing for Sample Buffer Mode 46

4.2.2 Sample Buffer Mode Operation 46

4.3 Comparator 48
4.3.1 Comparator Interrupts and Wake-up 50

4.3.2 Comparator Low-Power Mode 50

4.4 Analogue Peripheral Interrupts 51

5. Digital Inputs/Outputs (DIOs) 53
5.1 Using the DIOs 53

5.1.1 Setting the Directions of the DIOs 53

5.1.2 Setting DIO Outputs 54

5.1.3 Setting DIO Pull-ups 54

5.1.4 Reading the DIOs 54

5.2 DIO Interrupts and Wake-up 55
5.2.1 DIO Interrupts 55

5.2.2 DIO Wake-up 56

5.3 Configuring Digital Outputs (DOs) 57

6. UARTs 59
6.1 UART Signals and Pins 59

6.2 UART Operation 60
6.2.1 2-wire Mode 60

6.2.2 4-wire Mode (with Flow Control) [UART0 Only] 61

6.2.3 1-Wire Mode [UART1 Only] 62

6.3 Configuring the UARTs 62
6.3.1 Enabling a UART 62

6.3.2 Setting the Baud-rate 63

6.3.3 Setting Other UART Properties 63

6.3.4 Enabling Interrupts 64

6.4 Transferring Serial Data in 2-wire Mode 65
6.4.1 Transmitting Data (2-wire Mode) 65

6.4.2 Receiving Data (2-wire Mode) 66

6.5 Transferring Serial Data in 4-wire Mode (UART0 Only) 67
6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control) 67

6.5.2 Receiving Data (4-wire Mode, Manual Flow Control) 68
4 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.5.3 Automatic Flow Control (4-wire Mode) 69

6.6 Transmitting Serial Data in 1-wire Mode (UART1 Only) 71

6.7 Break Condition 71

6.8 UART Interrupt Handling 71

7. Timers 73
7.1 Modes of Timer Operation 74

7.2 Setting up a Timer 75
7.2.1 Selecting DIOs 75

7.2.2 Enabling a Timer 76

7.2.3 Selecting Clocks 77

7.3 Starting and Operating a Timer 78
7.3.1 Timer and PWM Modes 78

7.3.2 Delta-Sigma Mode (NRZ and RTZ) 79

7.3.3 Capture Mode 80

7.3.4 Counter Mode 82

7.4 Timer Interrupts 83

8. Wake Timers 85
8.1 Using a Wake Timer 85

8.1.1 Enabling and Starting a Wake Timer 85

8.1.2 Stopping a Wake Timer 86

8.1.3 Reading a Wake Timer 86

8.1.4 Obtaining Wake Timer Status 86

8.2 Clock Calibration 86

9. Tick Timer 89
9.1 Tick Timer Operation 89

9.2 Using the Tick Timer 90
9.2.1 Setting Up the Tick Timer 90

9.2.2 Running the Tick Timer 90

9.3 Tick Timer Interrupts 91

10. Watchdog Timer 93
10.1 Watchdog Operation 93

10.2 Using the Watchdog Timer 94
10.2.1 Starting the Timer 94

10.2.2 Resetting the Timer 95

10.2.3 Exception Handler for Debug 95
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 5

Contents
11. Pulse Counters 97
11.1 Pulse Counter Operation 97

11.2 Using a Pulse Counter 98
11.2.1 Configuring a Pulse Counter 98

11.2.2 Starting and Stopping a Pulse Counter 98

11.2.3 Monitoring a Pulse Counter 99

11.3 Pulse Counter Interrupts 99

12. Infra-Red Transmitter 101
12.1 Infra-Red Transmitter Operation 101

12.2 Using the Infra-Red Transmitter 102
12.2.1 Configuring the Infra-Red Transmitter 102

12.2.2 Starting an Infra-Red Transmission 103

12.2.3 Monitoring an Infra-Red Transmission 104

12.2.4 Disabling the Infra-Red Transmitter 104

12.3 Infra-Red Transmitter Interrupt 104

13. Serial Interface (SI) 105
13.1 SI Master 105

13.1.1 Enabling the SI Master 106

13.1.2 Writing Data to SI Slave 107

13.1.3 Reading Data from SI Slave 108

13.1.4 Waiting for Completion 110

13.2 SI Slave 111
13.2.1 Enabling the SI Slave and its Interrupts 111

13.2.2 Receiving Data from the SI Master 112

13.2.3 Sending Data to the SI Master 112

14. Serial Peripheral Interface (SPI) Master 113
14.1 SPI Bus Lines 113

14.2 Data Transfers 113

14.3 SPI Modes 114

14.4 Slave Selection 114

14.5 Using the Serial Peripheral Interface 115
14.5.1 Performing a Data Transfer 115

14.5.2 Performing a Continuous Transfer 116

14.6 SPI Interrupts 116
6 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
15. Serial Peripheral Interface (SPI) Slave 117
15.1 SPI Slave Operation 117

15.1.1 SPI Bus Lines and DIO Usage 118

15.1.2 SPI Slave FIFOs and Interrupts 118

15.2 Using the SPI Slave 119

16. Flash Memory 121
16.1 Flash Memory Organisation and Types 121

16.2 API Functions 122

16.3 Operating on Flash Memory 122
16.3.1 Erasing Data from Flash Memory 122

16.3.2 Reading Data from Flash Memory 123

16.3.3 Writing Data to Flash Memory 123

16.4 Controlling Power to External Flash Memory 124

17. EEPROM 125
17.1 Initialisation 125

17.2 Writing to the EEPROM 125

17.3 Reading from the EEPROM 126

17.4 Erasing the EEPROM 126

Part II: Reference Information

18. General Functions 129
u32AHI_Init 130

vAHI_HighPowerModuleEnable 131

vAHI_AntennaDiversityOutputEnable 132

vAHI_AntennaDiversityEnable 133

u8AHI_AntennaDiversityStatus 134

vAHI_AntennaDiversityControl 135

vAHI_AntennaDiversitySwitch 136

vAHI_StartRandomNumberGenerator 137

vAHI_StopRandomNumberGenerator 138

u16AHI_ReadRandomNumber 139

bAHI_RndNumPoll 140

vAHI_SetStackOverflow 141

vAHI_WriteNVData 143

u32AHI_ReadNVData 144

vAHI_InterruptSetPriority 145
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 7

Contents
19. System Controller Functions 147
u16AHI_PowerStatus 149

vAHI_CpuDoze 150

vAHI_Sleep 151

vAHI_ProtocolPower 153

bAHI_Set32KhzClockMode 154

vAHI_Init32KhzXtal 155

vAHI_Trim32KhzRC 156

vAHI_SelectClockSource 157

bAHI_GetClkSource 158

bAHI_SetClockRate 159

u8AHI_GetSystemClkRate 160

bAHI_Clock32MHzStable 162

vAHI_ClockXtalPull 163

vAHI_EnableFastStartUp 164

bAHI_TrimHighSpeedRCOsc 165

vAHI_OptimiseWaitStates 166

vAHI_BrownOutConfigure 167

bAHI_BrownOutStatus 169

bAHI_BrownOutEventResetStatus 170

u32AHI_BrownOutPoll 171

vAHI_SwReset 172

vAHI_SetJTAGdebugger 173

vAHI_ClearSystemEventStatus 174

vAHI_SysCtrlRegisterCallback 175

20. Analogue Peripheral Functions 177
20.1 Common Analogue Peripheral Functions 177

vAHI_ApConfigure 178

vAHI_ApSetBandGap 180

bAHI_APRegulatorEnabled 181

vAHI_APRegisterCallback 182

20.2 ADC Functions 183
vAHI_AdcEnable 184

vAHI_AdcStartSample 185

vAHI_AdcStartAccumulateSamples 186

bAHI_AdcPoll 187

u16AHI_AdcRead 188

vAHI_AdcDisable 189

20.3 ADC with DMA Engine Functions 190
bAHI_AdcEnableSampleBuffer 191

vAHI_AdcDisableSampleBuffer 193

u16AHI_AdcSampleBufferOffset 194
8 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
20.4 Comparator Functions 195
vAHI_ComparatorEnable 196

vAHI_ComparatorDisable 198

vAHI_ComparatorLowPowerMode 199

vAHI_ComparatorIntEnable 200

u8AHI_ComparatorStatus 201

u8AHI_ComparatorWakeStatus 202

21. DIO and DO Functions 203
vAHI_DioSetDirection 204

vAHI_DioSetOutput 205

u32AHI_DioReadInput 206

vAHI_DioSetPullup 207

vAHI_DioSetByte 208

u8AHI_DioReadByte 209

vAHI_DioInterruptEnable 210

vAHI_DioInterruptEdge 211

u32AHI_DioInterruptStatus 212

vAHI_DioWakeEnable 213

vAHI_DioWakeEdge 214

u32AHI_DioWakeStatus 215

bAHI_DoEnableOutputs 216

vAHI_DoSetDataOut 217

vAHI_DoSetPullup 218

22. UART Functions 219
bAHI_UartEnable 221

vAHI_UartEnable 223

vAHI_UartDisable 225

vAHI_UartSetLocation 226

vAHI_UartSetBaudRate 227

vAHI_UartSetBaudDivisor 228

vAHI_UartSetClocksPerBit 229

vAHI_UartSetControl 230

vAHI_UartSetInterrupt 231

vAHI_UartTxOnly 232

vAHI_UartSetRTSCTS 233

vAHI_UartSetRTS 234

vAHI_UartSetAutoFlowCtrl 235

vAHI_UartSetBreak 237

vAHI_UartReset 238

u16AHI_UartReadRxFifoLevel 239

u16AHI_UartReadTxFifoLevel 240

u8AHI_UartReadRxFifoLevel 241

u8AHI_UartReadTxFifoLevel 242

u8AHI_UartReadLineStatus 243
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 9

Contents
u8AHI_UartReadModemStatus 244

u8AHI_UartReadInterruptStatus 245

vAHI_UartWriteData 246

u8AHI_UartReadData 247

u16AHI_UartBlockWriteData 248

u16AHI_UartBlockReadData 249

vAHI_Uart0RegisterCallback 250

vAHI_Uart1RegisterCallback 251

23. Timer Functions 253
vAHI_TimerEnable 254

vAHI_TimerClockSelect 256

vAHI_TimerConfigureOutputs 257

vAHI_TimerConfigureInputs 258

vAHI_TimerSetLocation 259

vAHI_TimerStartSingleShot 260

vAHI_TimerStartRepeat 261

vAHI_TimerStartCapture 262

vAHI_TimerStartDeltaSigma 263

u16AHI_TimerReadCount 265

vAHI_TimerReadCapture 266

vAHI_TimerReadCaptureFreeRunning 267

vAHI_TimerStop 268

vAHI_TimerDisable 269

vAHI_TimerDIOControl 270

vAHI_TimerFineGrainDIOControl 271

u8AHI_TimerFired 272

vAHI_Timer0RegisterCallback 273

vAHI_Timer1RegisterCallback 274

vAHI_Timer2RegisterCallback 275

vAHI_Timer3RegisterCallback 276

vAHI_Timer4RegisterCallback 277

24. Wake Timer Functions 279
vAHI_WakeTimerEnable 280

vAHI_WakeTimerStartLarge 281

vAHI_WakeTimerStop 282

u64AHI_WakeTimerReadLarge 283

u8AHI_WakeTimerStatus 284

u8AHI_WakeTimerFiredStatus 285

u32AHI_WakeTimerCalibrate 286
10 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
25. Tick Timer Functions 287
vAHI_TickTimerConfigure 288

vAHI_TickTimerInterval 289

vAHI_TickTimerWrite 290

u32AHI_TickTimerRead 291

vAHI_TickTimerIntEnable 292

bAHI_TickTimerIntStatus 293

vAHI_TickTimerIntPendClr 294

vAHI_TickTimerRegisterCallback 295

26. Watchdog Timer Functions 297
vAHI_WatchdogStart 298

vAHI_WatchdogStop 299

vAHI_WatchdogRestart 300

u16AHI_WatchdogReadValue 301

bAHI_WatchdogResetEvent 302

vAHI_WatchdogException 303

27. Pulse Counter Functions 305
bAHI_PulseCounterConfigure 306

vAHI_PulseCounterSetLocation 308

bAHI_SetPulseCounterRef 309

bAHI_StartPulseCounter 310

bAHI_StopPulseCounter 311

u32AHI_PulseCounterStatus 312

bAHI_Read16BitCounter 313

bAHI_Read32BitCounter 314

bAHI_Clear16BitPulseCounter 315

bAHI_Clear32BitPulseCounter 316

28. Infra-Red Transmitter Functions 317
bAHI_InfraredEnable 318

vAHI_InfraredDisable 319

bAHI_InfraredStart 320

bAHI_InfraredStatus 321

vAHI_InfraredRegisterCallback 322

29. Serial Interface (2-wire) Functions 323
29.1 SI Master Functions 324

vAHI_SiMasterConfigure 325

vAHI_SiMasterDisable 326

bAHI_SiMasterSetCmdReg 327

vAHI_SiMasterWriteSlaveAddr 329

vAHI_SiMasterWriteData8 330

u8AHI_SiMasterReadData8 331
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 11

Contents
bAHI_SiMasterPollBusy 332

bAHI_SiMasterPollTransferInProgress 333

bAHI_SiMasterCheckRxNack 334

bAHI_SiMasterPollArbitrationLost 335

29.2 SI Slave Functions 336
vAHI_SiSlaveConfigure 337

vAHI_SiSlaveDisable 339

vAHI_SiSlaveWriteData8 340

u8AHI_SiSlaveReadData8 341

29.3 General SI Functions 342
vAHI_SiSetLocation 343

vAHI_SiRegisterCallback 344

30. SPI Master Functions 345
vAHI_SpiConfigure 346

vAHI_SpiReadConfiguration 348

vAHI_SpiRestoreConfiguration 349

vAHI_SpiSelSetLocation 350

vAHI_SpiSelect 351

vAHI_SpiStop 352

vAHI_SpiDisable 353

vAHI_SpiStartTransfer 354

u32AHI_SpiReadTransfer32 355

u16AHI_SpiReadTransfer16 356

u8AHI_SpiReadTransfer8 357

vAHI_SpiContinuous 358

bAHI_SpiPollBusy 359

vAHI_SpiWaitBusy 360

vAHI_SetDelayReadEdge 361

vAHI_SpiRegisterCallback 362

31. SPI Slave Functions 363
bAHI_SpiSlaveEnable 364

vAHI_SpiSlaveDisable 365

vAHI_SpiSlaveReset 366

vAHI_SpiSlaveTxWriteByte 367

u8AHI_SpiSlaveRxReadByte 368

u8AHI_SpiSlaveTxFillLevel 369

u8AHI_SpiSlaveRxFillLevel 370

u8AHI_SpiSlaveStatus 371

vAHI_SpiSlaveRegisterCallback 372
12 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
32. Flash Memory Functions 373
bAHI_FlashInit 374

bAHI_FlashEraseSector 375

bAHI_FullFlashProgram 376

bAHI_FullFlashRead 377

vAHI_FlashPowerDown 378

vAHI_FlashPowerUp 379

bAHI_FlashEECerrorInterruptSet 380

33. EEPROM Functions 381
u16AHI_InitialiseEEP 382

iAHI_WriteDataIntoEEPROMsegment 383

iAHI_ReadDataFromEEPROMsegment 384

iAHI_EraseEEPROMsegment 385

Part III: Appendices

A. Interrupt Handling 389
A.1 Callback Function Prototype and Parameters 390
A.2 Callback Behaviour 390
A.3 Handling Wake Interrupts 391

B. Interrupt Enumerations and Masks 393
B.1 Peripheral Interrupt Enumerations (u32DeviceId) 393
B.2 Peripheral Interrupt Sources (u32ItemBitmap) 394
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 13

Contents
14 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
About this Manual

This manual describes the use of the JN516x Integrated Peripherals Application
Programming Interface (API) to interact with the peripherals on a wireless
microcontroller from the NXP JN516x family. The manual explains the basic operation
of each peripheral and indicates how to use the relevant API functions to control the
peripheral from the application which runs on the JN516x device. The C functions and
associated resources of the API are fully detailed.

Organisation

This manual is divided into three parts:

 Part I: Concept and Operational Information comprises 17 chapters:

 Chapter 1 presents a functional overview of the JN516x Integrated
Peripherals API.

 Chapter 2 describes use of the General functions of the API, including
the API initialisation function.

 Chapter 3 describes use of the System Controller functions, including
functions that configure the system clock and sleep operations.

 Chapter 4 describes use of the Analogue Peripheral functions, used to
control the ADC and comparator.

 Chapter 5 describes use of the DIO functions, used to control the
general-purpose digital input/output pins.

 Chapter 6 describes use of the UART functions, used to control the
16550-compatible UARTs.

 Chapter 7 describes use of the Timer functions, used to control the
general-purpose timers.

 Chapter 8 describes use of the Wake Timer functions, used to control the
wake timers that can be employed to time sleep periods.

 Chapter 9 describes use of the Tick Timer functions, used to control the
high-precision hardware timer.

 Chapter 10 describes use of the Watchdog Timer functions, used to
control the watchdog that allows software lock-ups to be avoided.

 Chapter 11 describes use of the Pulse Counter functions, used to
control the two pulse counters.

 Chapter 12 describes use of the Infra-Red Transmitter functions, used
to control the infra-red transmission feature of Timer 2.

 Chapter 13 describes use of the Serial Interface (SI) functions, used to
control a 2-wire SI master and SI slave.

 Chapter 14 describes use of the Serial Peripheral Interface (SPI) Master
functions, used to control the master interface to the SPI bus.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 15

About this Manual
 Chapter 15 describes use of the Serial Peripheral Interface (SPI) Slave
functions, used to control the slave interface to the SPI bus.

 Chapter 16 describes use of the Flash Memory functions, used to
manage the Flash memory.

 Chapter 17 describes use of the EEPROM functions, used to access the
on-chip EEPROM device.

 Part II: Reference Information comprises 16 chapters:

 Chapter 18 details the General functions of the API, including the API
initialisation function.

 Chapter 19 details the System Controller functions, including functions
that configure the system clock and sleep operations.

 Chapter 20 details the Analogue Peripheral functions, used to control
the ADC and comparator.

 Chapter 21 details the DIO functions, used to control the general-purpose
digital input/output pins.

 Chapter 22 details the UART functions, used to control the 16550-
compatible UARTs.

 Chapter 23 details the Timer functions, used to control the general-
purpose timers.

 Chapter 24 details the Wake Timer functions, used to control the wake
timers that can be employed to time sleep periods.

 Chapter 25 details the Tick Timer functions, used to control the high-
precision hardware timer.

 Chapter 26 details the Watchdog Timer functions, used to control the
watchdog that allows software lock-ups to be avoided.

 Chapter 27 details the Pulse Counter functions, used to control the two
pulse counters.

 Chapter 28 details the Infra-Red Transmitter functions, used to control
infra-red transmission.

 Chapter 29 details the Serial Interface (SI) functions, used to control a 2-
wire SI master and SI slave.

 Chapter 30 details the Serial Peripheral Interface (SPI) Master
functions, used to control the master interface to the SPI bus.

 Chapter 31 details the Serial Peripheral Interface (SPI) Slave functions,
used to control the slave interface to the SPI bus.

 Chapter 32 details the Flash Memory functions, used to manage the
Flash memory.

 Chapter 33 details the EEPROM functions, used to access the on-chip
EEPROM device.

 Part III: Appendices provides information on handling interrupts from the
peripheral devices.
16 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

ADC Analogue-to-Digital Converter

AES Advanced Encryption Standard

AHI Application Hardware Interface

API Application Programming Interface

CPU Central Processing Unit

CTS Clear-To-Send

DAC Digital-to-Analogue Converter

DAI Digital Audio Interface

DIO Digital Input/Output

EIRP Equivalent Isotropically Radiated Power

FIFO First In, First Out (queue)

GPIO General Purpose Input/Output

LPRF Low-Power Radio Frequency

MAC Medium Access Control

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 17

About this Manual
NVM Non-Volatile Memory

PWM Pulse Width Modulation

RAM Random Access Memory

RTS Ready-To-Send

SI Serial Interface

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

VBO Voltage Brownout

Related Documents

JN-DS-JN516x JN516x Data Sheet

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.
18 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Part I:
Concept and Operational

Information
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 19

20 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
1. Overview

This chapter introduces the JN516x Integrated Peripherals Application Programming
Interface (API) that is used to interact with peripherals on a wireless microcontroller
from the NXP JN516x family. The chips of this family have the same peripherals but
different memory sizes:

 JN5168 (32KB RAM, 4KB EEPROM, 256KB Flash memory)

 JN5164 (32KB RAM, 4KB EEPROM, 160KB Flash memory)

 JN5161 (8KB RAM, 4KB EEPROM, 64KB Flash memory)

1.1 JN516x Integrated Peripherals

The JN516x microcontrollers each feature a number of on-chip peripherals that can
be used by a user application which runs on the CPU of the microcontroller. These
‘integrated peripherals’ are listed below.

 System Controller

 Analogue Peripherals:

 Analogue-to-Digital Converter (ADC)

 Comparator

 Digital Inputs/Outputs (DIOs)

 Universal Asynchronous Receiver-Transmitters (UARTs)

 Timers

 Wake Timers

 Tick Timer

 Watchdog Timer

 Pulse Counters

 Serial Interface (2-wire):

 SI Master

 SI Slave

 Serial Peripheral Interface (SPI):

 SPI Master

 SPI Slave

 Interface to external Flash memory

The above peripherals are illustrated in Figure 1.

For hardware details of these peripherals, refer to the relevant chip data sheet - see
“Related Documents” on page 18.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 21

Chapter 1
Overview

1.2 JN516x Integrated Peripherals API

The JN516x Integrated Peripherals API is a collection of C functions that can be
incorporated in application code that runs on a JN516x wireless microcontroller in
order to control the on-chip peripherals listed in Section 1.1. This API (sometimes
referred to as the AHI) is defined in the header file AppHardwareApi.h, which is
included in the NXP Software Developer’s Kits (SDKs) for the JN516x devices. The
software that is invoked by this API is located in the on-chip ROM.

This API provides a thin software layer above the on-chip registers used to control the
integrated peripherals. By encapsulating several register accesses into one function
call, the API simplifies use of the peripherals without the need for a detailed knowledge
of their operation.

Figure 1: JN516x Block Diagram

Caution: The JN516x Integrated Peripherals API
functions are not re-entrant. A function must be allowed
to complete before the function is called again,
otherwise unexpected results may occur.

32-bit

RISC CPU
4xPWM + Timer

2xUART

10-bit ADC

Battery and

Temp Sensors

2-Wire Serial
(Master/Slave)

SPI
Master & Slave

RAM

128-bit AES

Hardware

2.4GHz

Including
Diversity

Flash

Power

Management

XTAL

O-QPSK

Modem

4kB

EEPROM
20 DIO

Sleep Counter

Watchdog

Timer

Watchdog

Timer

Voltage Brownout

8/32K 64/160/256K

Radio

4-Channel

IEEE 802.15.4

Baseband

Processor

Encryption
22 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Note that the Integrated Peripherals API does NOT include functions to control the:

 IEEE 802.15.4 Baseband Processor built into the JN516x device - this is
controlled by the wireless network protocol stack software (which may be an
IEEE 802.15.4, ZigBee, JenNet or JenNet-IP stack), and APIs for this purpose
are provided with the appropriate stack software product.

 128-bit AES Hardware Encryption core built into the JN516x device - this is
controlled using the functions described in the AES Coprocessor API
Reference Manual (JN-RM-2013)

 EEPROM - this is controlled using the Persistent Data Manager resident in the
Jennic Operating System (JenOS). For further details, please refer to the
JenOS User Guide (JN-UG-3075)

 resources of the JN516x evaluation kit boards, such as sensors and display
panels (although the buttons and LEDs on the evaluation kit boards are
connected to the DIO pins of the JN516x device) - a special function library,
called the LPRF Board API, is provided by NXP for this purpose and is
described in the LPRF Board API Reference Manual (JN-RM-2003).

1.3 Using this Manual

The remainder of this manual is largely organised as one chapter per peripheral block.
You should use the manual as follows:

1. First study Chapter 2 which describes the general functions that are not
associated with one particular peripheral block. This chapter explains how to
initialise the Integrated Peripherals API for use in your application code.

2. Next study Chapter 3 which describes the range of features associated with
the System Controller. You may need to use one or more of these features in
your application.

3. Then study those chapters in Part I: Concept and Operational Information
which correspond to the particular peripherals that you wish to use in your
application.

For full details of the referenced API functions, refer to Part II: Reference Information.
Also note that interrupt handling is described in Part III: Appendices.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 23

Chapter 1
Overview

24 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
2. General Functions

This chapter describes use of the ‘general functions’ that are not associated with any
of the peripheral blocks but may be needed in your application code (the API
initialisation function will definitely be needed).

These functions cover the following areas:

 API initialisation (Section 2.1)

 Configuration of the radio transmission power (Section 2.2)

 Use of the random number generator (Section 2.4)

 Accessing the JN516x internal Non-Volatile Memory (Section 2.5)

2.1 API Initialisation

Before calling any other function from the JN516x Integrated Peripherals API, the
function u32AHI_Init() must be called to initialise the API. This function must be called
after every reset and wake-up (from sleep) of the JN516x microcontroller.

2.2 Radio Transmission Power

The radio transmission power of a JN516x device can be varied. A standard JN516x
module has a transmission power range of -32 to +2.5 dBm. To set the transmission
power, you can use the function eAppApiPlmeSet() from the NXP 802.15.4 Stack API
(supplied in AppApi.h in all the JN516x SDKs). The required function call is:

eAppApiPlmeSet(PHY_PIB_ATTR_TX_POWER, x);

where x is a 6-bit two’s complement power level, yielding a range of -32 to 31 dBm
- in practice, this value is mapped to one of the four levels -32, -20, -9 and 0 dBm.

Caution: If you are using JenOS (Jennic Operating
System), you must not call u32AHI_Init() explicitly in
your code, as this function is called internally by JenOS.
This applies principally to users who are developing
ZigBee PRO applications.

Note: The function bAHI_PhyRadioSetPower() has
been removed from the JN516x Integrated Peripherals
API. If updating existing code that previously used the
function call bAHI_PhyRadioSetPower(y) then x in
the above call to eAppApiPlmeSet() can be calculated
as 34+10*y.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 25

Chapter 2
General Functions

2.3 Antenna Diversity

The JN516x device provides an antenna diversity facility, allowing two antennae to be
connected to the device. If this feature is implemented and the transmit and/or receive
performance through the current antenna is deemed poor, a switch to the alternative
antenna is automatically initiated.

If antenna diversity is to be used, two antennas must be connected to the JN516x
device via a 2-state switch which is controlled by the device using a complementary
pair of signals output on pins DIO12 and DIO13. In one position (e.g. DIO12-13 = 10),
the switch connects the RF_IN pin of the JN516x device to one antenna and in the
other position (e.g. DIO12-13 = 01) the switch connects this pin to the other antenna.
This connection is illustrated in Figure 2 below.

The DIO12 and DIO13 pins must first be enabled for antenna diversity use by calling
the function vAHI_AntennaDiversityOutputEnable().

Antenna diversity is enabled in the application by calling the function
vAHI_AntennaDiversityEnable(). This function allows antenna diversity to be
enabled individually for the transmit and receive paths (or for both paths). The
operation of antenna diversity for the transmit and receive cases is outlined below:

 Transmit: For a transmission, the decision of whether to switch antennae is
dependent on the use of IEEE 802.15.4 MAC acknowledgments. Once an
IEEE 802.15.4 packet has been transmitted, the radio transceiver will enter
receive mode and wait for an acknowledgment from the target node. If no
acknowledgment is received, the device will retry the transmission on the
alternative antenna (the number of retries is configurable in the IEEE 802.15.4
MAC). The selected antenna is switched for each subsequent retry.

 Receive: For reception, the JN516x device measures the received energy in
the relevant radio channel every 40µs. The measured energy level is compared
with a pre-set energy threshold. The JN516x device will automatically switch
the antenna if the measurement is below this threshold and all the following
conditions hold:

 The radio is not in the process of receiving a packet

 A preamble symbol having a signal quality above a minimum specified
threshold has not been detected in the last 40µs

 The radio is not waiting for an acknowledgment from a previous
transmission

Figure 2: Connections for Antenna Diversity

JN516x
RF_IN

DIO12

DIO13
26 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
The signal energy and signal quality thresholds can be set by the application using the
function vAHI_AntennaDiversityControl().

The current antenna diversity status can be obtained using the function
u8AHI_AntennaDiversityStatus(). This function returns the antenna used for the last
packet transmitted, the antenna used for the last packet received and the antenna that
is currently selected.

The currently selected antenna can be manually switched by calling the function
vAHI_AntennaDiversitySwitch(). Calling this function will generally not be required
because it is expected that most applications will make use of the automatic transmit
and/or receive antenna diversity control features that are enabled by calling
vAHI_AntennaDiversityEnable().

2.4 Random Number Generator

The JN516x devices feature a random number generator which can produce 16-bit
random numbers in one of two modes:

 Single-shot mode: The generator produces one random number and stops.

 Continuous mode: The generator runs continuously and generates a new
random number every 256µs.

The random number generator can be started in either of the above modes using the
function vAHI_StartRandomNumberGenerator(). This function also allows an
interrupt to be enabled which is produced when a random number becomes available
- this is handled as a System Controller interrupt by the callback function registered
using the function vAHI_SysCtrlRegisterCallback() (see Section 3.5).

A randomly generated value can subsequently be read using the function
u16AHI_ReadRandomNumber(). The availability of a new random number, and
therefore the need to call the ‘read’ function, can be determined using either of the
following methods:

 Waiting for a random number generator interrupt, if enabled (see above)

 Periodically calling the function bAHI_RndNumPoll() to poll for the availability
of a new random value

When running in Continuous mode, the random number generator can be stopped
using the function vAHI_StopRandomNumberGenerator().

Note: The random number generator uses the 32kHz
clock domain (see Section 3.1) and will not operate
properly if a high-precision external 32kHz clock source
is used. Therefore, if generating random numbers in
your application, you are advised to use the internal RC
oscillator or a low-precision external clock source. You
may also generate random numbers in your application
before switching to a high-precision external clock.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 27

Chapter 2
General Functions

2.5 Accessing Internal NVM

The JN516x device contains a small block of Non-Volatile Memory (NVM) which is
organised as four 32-bit words numbered 0, 1, 2 and 3. This memory can be used to
preserve important data (e.g. counter values) at times when the JN516x RAM is not
powered - for example, during periods of sleep without RAM held.

Two functions are provided to access this memory:

 vAHI_WriteNVData() can be used to write a 32-bit word of data to one of the
four memory locations

 u32AHI_ReadNVData() can be used to read a 32-bit word of data from one of
the four memory locations

Caution: The contents of this JN516x NVM are not
maintained when the microcontroller is completely
powered off. However, they are maintained through a
device reset.
28 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
3. System Controller

This chapter describes use of the functions that control features of the System
Controller.

These functions cover the following areas:

 Clock management (Section 3.1)

 Power management (Section 3.2)

 Supply voltage monitoring (Section 3.3)

 Chip reset (Section 3.4)

 Interrupts (Section 3.5)

3.1 Clock Management

The System Controller provides clocks to the JN516x microcontroller and is divided
into four main blocks - a system clock domain, a peripheral clock domain, a CPU clock
domain and a 32kHz clock domain.

System Clock Domain

The system clock is a high-speed reference clock from which the peripheral clock and
CPU clock are derived when the chip is fully operational. The clock for this domain is
sourced from one of the following:

 External 32MHz crystal oscillator

 Internal high-speed RC oscillator

The crystal oscillator is driven from a 32MHz external crystal connected to device pins
4 and 5. The domain will produce a 32MHz system clock when sourced from the
crystal oscillator.

The uncalibrated RC oscillator runs at 27MHz nominally, but can be calibrated to run
at approximately 32MHz. The RC oscillator is mainly provided for a quick start-up
following sleep, since the RC oscillator can start much more quickly than the crystal
oscillator.

The radio transceiver and some peripherals should not be used when sourcing the
system clock from the RC oscillator. System clock start-up and source selection is
described in described in Section 3.1.1 and Section 3.1.2.

Peripheral Clock Domain

The peripheral clock is derived from the system clock and is used as the clock
reference for the on-chip peripherals including the modem and baseband processor.
The peripheral clock operates at half the system clock frequency - the peripheral clock
runs at 16MHz when the system clock is sourced from the external 32MHz crystal
oscillator.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 29

Chapter 3
System Controller

CPU Clock Domain

The CPU clock is a divided down version of the system clock and is used as the clock
reference for the microprocessor and memory subsystem. The CPU clock frequency
selection is described in Section 3.1.3.

32kHz Clock Domain

The 32kHz clock domain is mainly used during low-power sleep states (but also for
the random number generator on the JN516x device - see Section 2.4). While in Sleep
mode (see Section 3.2.3), the CPU does not run and relies on an interrupt to wake it.
The interrupt can be generated by an on-chip wake timer (see Chapter 8) or
alternatively from an external source via a DIO pin (see Chapter 5), an on-chip
comparator (see Section 4.3) or an on-chip pulse counter (see Chapter 11). The wake
timers are driven from the 32kHz domain. The 32kHz clock for this domain can be
sourced from one of the following:

 Internal RC oscillator

 External crystal

 External clock module

The crystal oscillator is driven from an external 32kHz crystal connected to DIO9 and
DIO10. If used, the external clock module is connected to DIO9.

Source clock selection for this domain is described in Section 3.1.4.

The 32kHz domain is still active when the chip is operating normally and can be
calibrated against the peripheral clock to improve timing accuracy - see Section 8.2.

3.1.1 System Clock Start-up and Source Selection

As stated in the introduction to Section 3.1, there are two possible sources for the
system clock on the JN516x device:

 Internal high-speed RC oscillator

 External crystal oscillator

where the crystal oscillator provides a more accurate clock than the RC oscillator.

Following a reset, the JN516x device takes its system clock from the internal high-
speed RC oscillator. By default, an automatic switch to the external 32MHz crystal
oscillator is performed once the crystal oscillator has stabilised (this can take up to
1ms). Application code is executed immediately following a reset.

Once the device and system clock are fully up and running, the system clock source
can be changed using the function vAHI_SelectClockSource(). The identity of the
current source clock can be obtained by calling the function bAHI_GetClkSource().

The RC Oscillator may be calibrated to improve its frequency accuracy by calling the
function bAHI_TrimHighSpeedRCOsc().
30 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
It is important to note the following limitations while using the RC oscillator:

 Uncalibrated, the RC oscillator will produce a system clock frequency to an
accuracy of ±18% (or ±5% if calibrated)

 The full system cannot be run while using the RC oscillator - it is possible to
execute code but it is not possible to successfuly transmit or receive radio
signals. Also, the peripheral clock may not be sufficiently accurate to support
certain peripheral functions, such as UART communication.

Therefore, while using the RC oscillator, use of the radio transceiver should not be
attempted, and the JN516x peripherals should be used with special care.

3.1.2 System Clock Start-up Following Sleep

By default, following sleep, the JN516x device takes its system clock from the internal
high-speed RC oscillator, but performs an automatic switch to the external 32MHz
crystal oscillator once the crystal oscillator has stabilised (can take up to 1ms). Thus,
application code is executed immediately following sleep.

It is possible to continue using the internal high-speed RC oscillator (without the
automatic switch). In this case, before going to sleep, it is necessary to call the function
vAHI_EnableFastStartUp() with the manual switch option selected - this cancels the
automatic switch to the crystal oscillator.

3.1.3 CPU Clock Frequency Selection

A range of CPU clock frequencies are available on the JN516x device. By default, the
source clock frequency is halved to produce the CPU clock. Thus:

 Using the external crystal oscillator, the 32MHz source frequency will produce a
CPU clock frequency of 16MHz

 Using the uncalibrated internal high-speed RC oscillator, the 27MHz source
frequency will produce a CPU clock frequency of 13.5MHz (±18%).

However, alternative CPU clock frequencies can be configured using the function
bAHI_SetClockRate(). A division factor must be specified for dividing down the
source clock to produce the CPU clock. The possible division factors are 1, 2, 4, 8, 16
and 32:

 For a source clock of 32MHz, the possible CPU clock frequencies are then 1, 2,
4, 8, 16 and 32 MHz

 For a source clock of 27MHz, the possible CPU clock frequencies are then
0.84, 1.17, 3.38, 6.75, 13.5 and 27 MHz.

Note: The frequency of the high-speed RC oscillator
can be adjusted to a calibrated 32MHz by calling
bAHI_TrimHighSpeedRCOsc().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 31

Chapter 3
System Controller

3.1.4 32kHz Clock Selection

As stated in the introduction to Section 3.1, a choice of source for the 32kHz clock is
available on the JN516x device. The selection of this source clock is detailed below.

The 32kHz clock can be optionally sourced from an external crystal or clock module.
If one of these external clock sources is required, the function
bAHI_Set32KhzClockMode() must be called. If required, this function should be
called near the start of the application. More information is provided below on using
this function to select an external crystal.

If selecting the external crystal oscillator then bAHI_Set32KhzClockMode() must be
called before Timer 0 and any Wake Timers are used by the application, since these
timers are used by the function when switching the clock source to the external crystal.
This function starts the external crystal, which can take up to 1 second to stabilise, and
the function waits for the crystal to become ready before returning.

If selecting the external crystal oscillator, alternatively the function
vAHI_Init32KhzXtal() can first be called in order to start the external crystal. This
function returns immediately, allowing the application to do other processing or to put
the JN516x device into sleep mode while waiting for the crystal to become stable - in
the case of sleep, the application should typically set a wake timer to wake the device
after 1 second. bAHI_Set32KhzClockMode() must then be called in order to switch
the 32kHz clock source to the external crystal.

If selecting the external clock module (RC circuit), the accuracy of the clock frequency
produced can be chosen by setting the current consumption of the circuit using the
function vAHI_Trim32KhzRC().

The connections to the external clock source must be made as follows:

 The external clock module must be supplied on DIO9. You must first disable the
pull-up on DIO9 using the function vAHI_DioSetPullup().

 The external crystal oscillator must be attached on DIO9 and DIO10. The pull-
ups on DIO9 and DIO10 are disabled automatically.

Note that there is no need to explicitly configure DIO9 or DIO10 as an input, as this is
done automatically by bAHI_Set32KhzClockMode() and by vAHI_Init32KhzXtal().

Note: The default clock source is the internal 32kHz RC
oscillator. The functions described below only need to
be called if an external 32kHz clock source is required.
Once an external source has been selected, it is not
possible to switch back to the internal RC oscillator.
32 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
3.2 Power Management

This section describes how to control the power to a JN516x microcontroller using the
Integrated Peripherals API. This includes control of the power regulator that supplies
certain on-chip peripherals and the management of low-power sleep modes.

3.2.1 Power Domains

A JN516x microcontroller has a number of power domains, as follows:

 Digital Logic domain: This domain supplies the CPU and digital peripherals
as well as the wireless transceiver (including encryption coprocessor and
baseband controller). The clock from this domain to the wireless transceiver
can be enabled/disabled by the application (see Section 3.2.2). The domain is
always unpowered during sleep.

 Analogue domain: This domain supplies the ADC. The domain is switched on
when the function vAHI_ApConfigure() is called to configure the analogue
peripherals - see Chapter 4. The domain is always unpowered during sleep.

 RAM domain: This domain supplies the on-chip RAM. The domain may be
powered or unpowered during sleep.

 Radio domain: This domain supplies the radio transceiver. The domain is
always unpowered during sleep.

 VDD Supply domain: This domain supplies the wake timers, DIO blocks,
comparator and 32kHz oscillators. The domain is driven from the external
supply (battery) and is always powered. However, the wake timers and 32kHz
oscillators may be powered or unpowered during sleep.

Separate voltage regulators for the CPU (Digital Logic domain) and on-chip RAM
provide flexibility in implementing different low-power sleep modes, allowing the
memory to be either powered (and its contents maintained) or unpowered while the
CPU is powered down - for further information on sleep modes, refer to Section 3.2.3.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 33

Chapter 3
System Controller

3.2.2 Wireless Transceiver Clock

The clock to the wireless transceiver can be enabled/disabled using the function
vAHI_ProtocolPower(). However, disabling this clock outside of a reset or sleep
cycle must be done with caution. The following points should be noted:

 Disabling this clock leaves the clock powered but disabled (gated).

 Disabling the clock causes the IEEE 802.15.4 MAC settings to be lost.
Therefore, you must save the current MAC settings before disabling the clock.
On re-enabling the clock, the MAC settings must be restored from the saved
settings. You can save and restore the MAC settings using functions of the
802.15.4 Stack API, described in the IEEE 802.15.4 Stack User Guide
(JN-UG-3024):

 To save the MAC settings, use the function vAppApiSaveMacSettings().

 To restore the saved MAC settings, use the function
vAppApiRestoreMacSettings() - the clock is automatically re-enabled,
since this function calls vAHI_ProtocolPower().

 Do not call vAHI_ProtocolPower() to disable the clock while the 802.15.4
MAC layer is active, otherwise the microcontroller may freeze.

 While the clock is disabled, do not make any calls into the stack, as this may
result in the stack attempting to access the associated hardware (which is
disabled) and therefore cause an exception.
34 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
3.2.3 Low-Power Modes

The JN516x microcontroller is able to enter a number of low-power modes in order to
conserve power during periods when the device does not need to be fully active.
Generally, there are two low-power modes, Sleep mode (including Deep Sleep) and
Doze mode, described below.

Sleep and Deep Sleep Modes

In Sleep mode, most of the internal chip functions are shut down to save power,
including the CPU and the majority of on-chip peripherals. However, the states of the
DIO pins are retained, including the output values and pull-up enables, which
preserves any interface to the outside world. The on-chip RAM, the 32kHz oscillator,
the comparator and the pulse counter can optionally remain active during sleep.

Sleep mode is started using the function vAHI_Sleep(), when one of four sleep modes
can be selected which depend on whether RAM and the 32kHz oscillator are to be
powered off. The significance of the 32kHz oscillator and RAM during sleep is outlined
below:

 32kHz Oscillator: The 32kHz oscillator (internal RC, external clock or external
crystal) can, in theory, be either left running or stopped for the duration of sleep.
However, this oscillator is used by the wake timers and must be left running if a
wake timer will be used to wake the device from sleep. Also, if an external
source is used for this oscillator, it is not recommended that the oscillator is
stopped on entering sleep mode.

 On-chip RAM: Power to on-chip RAM can be either maintained or removed
during sleep. The application program, stack context data and application data
are all held in on-chip RAM while the microcontroller is fully active, but are lost
if the power to RAM is switched off.

 If the power to RAM is removed during sleep, the application is re-loaded
into RAM from on-chip Flash memory on exiting sleep mode. Stack context
and application data may also be re-loaded by the application, if they were
saved to the on-chip EEPROM before entering sleep mode.

 If the power to RAM is maintained during sleep, the application and data
will be preserved. This option is useful for short sleep periods, when the
time taken on waking to re-load the application and data into RAM is
significant compared with the sleep duration.

A further low-power option is Deep Sleep mode in which the CPU, RAM and both the
system and 32kHz clock domains are powered down. In addition, any external Flash
memory is also powered down during Deep Sleep mode. This option obviously
provides a bigger power saving than Sleep mode.

Note: If the pulse counter is to be run with debounce
while the device is asleep, the 32kHz oscillator must be
left running - see Chapter 11.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 35

Chapter 3
System Controller

The microcontroller can be woken from Sleep mode by one of the following:

 DIO interrupt (see Chapter 5)

 Wake timer interrupt (needs 32kHz oscillator to be running - see Chapter 8)

 Comparator interrupt (see Section 4.3)

 Pulse counter interrupt (see Chapter 11)

The device can only be woken from Deep Sleep mode by its reset line being pulled
low or by an external event which triggers a change on a DIO pin.

When the device restarts, it will begin processing at the cold start or warm start entry
point, depending on the sleep mode from which the device is waking.

Doze Mode

Doze mode is a low-power mode in which the CPU, RAM, radio transceiver and digital
peripherals remain powered but the clock to the CPU is stopped (all other clocks
continue as normal). This mode provides less of a power saving than Sleep mode but
allows a quicker recovery back to full working mode. Doze mode is useful for very
short periods of low power consumption - for example, while waiting for a timer event
or for a transmission to complete.

The CPU can be put into Doze mode by calling the function vAHI_CpuDoze(). It is
subsequently brought out of Doze mode by any interrupt.

3.2.4 Power Status

The power status of the JN516x microcontroller can be obtained using the function
u16AHI_PowerStatus(). This function returns a bitmap which indicates whether:

 The device has completed a sleep-wake cycle

 RAM contents were retained during sleep

 The analogue power domain is switched on

 The protocol logic is operational - clock is enabled

 Watchdog timeout was responsible for the last device restart

 32kHz clock is ready (e.g. following a reset or wake-up)

 Device has just come out of Deep Sleep mode (rather than a reset)

For further details of the bitmap, refer to the function descriptions in Chapter 19.

Note: External NVM is not powered down during normal
Sleep mode. If required, you can power down an
external Flash memory device using the function
vAHI_FlashPowerDown(), which must be called before
vAHI_Sleep(), provided you are using a compatible
Flash device. For full details, refer to Section 16.4.
36 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
3.3 Supply Voltage Monitor (SVM)

A ‘brownout’ is a fall in the supply voltage to a device or system below a pre-defined
level, which may hinder or be harmful to the operation of the device/system. The
JN516x microcontroller is equipped with a Supply Voltage Monitor (SVM) to detect the
brownout condition. SVM can be configured and monitored through functions of the
Integrated Peripherals API.

3.3.1 Configuring SVM

By default on the JN516x device, the SVM feature is automatically enabled and the
brownout voltage is set to 2.0V. On detection of a brownout, the chip will be
automatically reset.

The SVM settings can be changed from the default values by calling the function
vAHI_BrownOutConfigure(), which allows the configuration of the following:

 SVM enable/disable: The SVM feature can be enabled/disabled - if the
configuration function is called and SVM is required, the feature must be
explicitly enabled in the function.

 Brownout level: The brownout voltage level can be set to one of the following
values: 1.95V, 2.0V (default), 2.1V, 2.2V, 2.3V, 2.4V, 2.7V or 3.0V

 Reset on brownout: The automatic reset on the occurrence of a brownout can
be enabled/disabled.

 Brownout interrupts: Two separate interrupts relating to brownout can be
enabled/disabled:

 An interrupt can be generated when the device enters the brownout state
(supply voltage falls below the brownout voltage level).

 An interrupt can be generated when the device leaves the brownout state
(supply voltage rises above the brownout voltage level).

After the return of the configuration function, there will be a delay before the new
settings take effect - this delay is up to 3.3µs.

Note: Following a device reset or sleep, the default
SVM settings are re-instated.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 37

Chapter 3
System Controller

3.3.2 Monitoring Voltage

Provided that SVM is enabled (see Section 3.3.1), the brownout status of the JN516x
device can be monitored in one of three ways: automatic reset, interrupts or polling.
These options are described below.

Automatic Reset on Brownout

An automatic reset on a brownout is enabled by default, but can also be enabled/
disabled through the function vAHI_BrownOutConfigure(). Following a chip reset,
the application can check whether a brownout was the cause of the reset by calling
the function bAHI_BrownOutEventResetStatus().

Brownout Interrupts

Interrupts can be generated when the device enters the brownout state and/or when
it exits the brownout state. These two interrupts can be individually enabled/disabled
through the function vAHI_BrownOutConfigure(). Brownout interrupts are System
Controller interrupts and are handled by the callback function registered using the
function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

Polling for Brownout

If brownout interrupts and automatic reset are disabled (but SVM is still enabled), the
brownout state of the device can be obtained by manually polling via the function
u32AHI_BrownOutPoll(). This function will indicate whether the supply voltage is
currently above or below the brownout level.

3.4 Resets

The JN516x microcontroller can be reset from the application using the function
vAHI_SwReset(). This function initiates the full reset sequence for the chip and is the
equivalent of pulling the external RESETN line low. Note that during a chip reset, the
contents of on-chip RAM are likely to be lost.

One or more external devices may also be connected to the RESETN line. Thus, any
external devices connected to this line may be affected.

Note: An external RC circuit can be connected to the
RESETN line in order to generate a reset. The required
resistance and capacitance values are specified in the
data sheet for the microcontroller.
38 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
3.5 System Controller Interrupts

System Controller interrupts cover a number of on-chip peripherals that do not have
their own interrupts:

 Comparator

 DIOs

 Wake Timers

 Pulse Counter

 Random Number Generator

 Brownout detector

Interrupts for these peripherals can be individually enabled using their own functions
from the Integrated Peripherals API.

The handling of interrupts from these sources must be incorporated in a user-defined
callback function, registered using the function vAHI_SysCtrlRegisterCallback().
The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_SYSCTRL occurs. The exact source of the interrupt (from the
peripherals listed above) can then be identified from a bitmap that is passed into the
function. Note that the interrupt will be automatically cleared before the callback
function is invoked.

Note: The callback function prototype is detailed in
Appendix A.1. The interrupt source information is
provided in Appendix B.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 39

Chapter 3
System Controller

40 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
4. Analogue Peripherals

This chapter describes control of the analogue peripherals using functions of the
Integrated Peripherals API.

The are two types of analogue peripheral on the JN516x microcontroller:

 Analogue-to-Digital Converter [ADC] (Section 4.1)

 Comparator (Section 4.3)

Analogue peripheral interrupts are described in Section 4.4.

4.1 ADC

The JN516x microcontroller includes a 10-bit Analogue-to-Digital Converter (ADC).
The ADC samples an analogue input signal to produce a digital representation of the
input voltage. It samples the input voltage at one instant in time and holds this voltage
(in a capacitor) while converting it to a 10-bit binary value - the total sample/convert
duration is called the conversion time.

The ADC may sample periodically to produce a sequence of digital values
representing the behaviour of the input voltage over time. The rate at which the
sampling events take place is called the sampling frequency. According to the Nyquist
sampling theorem, the sampling frequency must be at least twice the highest
frequency to be measured in the input signal. If the input signal contains frequencies
of more than half the sampling frequency, these frequencies will be aliased. To
prevent aliasing, a low-pass filter should be applied to the ADC input in order to
remove frequencies greater than half the sampling frequency.

The ADC can take its analogue input from an external source, an on-chip temperature
sensor and an internal voltage monitor (see below). The input voltage range is also
selectable as between zero and a reference voltage, or between zero and twice this
reference voltage (see below).

When using the ADC, the first analogue peripheral function to be called must be
vAHI_ApConfigure(), which allows the following properties to be configured:

 Clock:

The clock input for the ADC is provided by the peripheral clock, normally 16MHz
(see Section 3.1 for system clock options), which is divided down. The target
frequency is selected using vAHI_ApConfigure(). The recommended target
frequency for the ADC is 500kHz.

Note: When an ADC input which is shared with a DIO is
used, the associated DIO should be configured as an
input with the pull-up disabled (refer to Section 5.1.1
and Section 5.1.3).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 41

Chapter 4
Analogue Peripherals

 Sampling interval and conversion time:

The sampling interval determines the time over which the ADC will integrate the
analogue input voltage before performing the conversion - in fact, the integration
occurs over three times this interval (see Figure 3). This interval is set as a
multiple of the ADC clock period (2x, 4x, 6x or 8x), where this multiple is
selected using vAHI_ApConfigure(). Normally, it should be set to 2x - for
details, refer to the data sheet for the microcontroller.

The time allowed to perform the subsequent conversion is 13 clock periods.
Thus, the total time to sample and convert (the conversion time) is given by:

[(3 x sampling interval) + 13] x clock period

For a visual illustration, refer to Figure 3.

 Reference voltage:

The permissible range for the analogue input voltage is defined relative to a
reference voltage Vref, which can be sourced internally or externally. The source
of Vref is selected using vAHI_ApConfigure().

The input voltage range can be selected as either 0 to Vref or 0 to 2Vref, which
is selected the vAHI_AdcEnable() function - see later.

 Voltage regulator:

In order to minimise the amount of digital noise in the ADC, the device is
powered from a voltage regulator, sourced from the analogue supply VDD1.
The regulator (and therefore power) can be enabled/disabled using
vAHI_ApConfigure(). Once enabled, it is necessary to wait for the regulator to
stabilise - the function bAHI_APRegulatorEnabled() can be used to check
whether the regulator is ready.

 Interrupt:

Interrupts can be enabled such that an interrupt (of the type
E_AHI_DEVICE_ANALOGUE) is generated after each individual conversion.
This is particularly useful for ADC continuous (periodic) conversion. Interrupts
can be enabled/disabled using vAHI_ApConfigure(). Analogue peripheral
interrupt handling is described in Section 4.4.

The ADC must then be further configured and enabled (but not started) using the
function vAHI_AdcEnable(). This function allows the following properties to be
configured.

 Input source:

The ADC can take its input from one of six multiplexed sources, comprising four
external pins (DIOs), an on-chip temperature sensor and an internal voltage
monitor. The input is selected using vAHI_AdcEnable().

 Input voltage range:

The permissible range for the analogue input voltage is defined relative to the
reference voltage Vref. The input voltage range can be selected as either 0 to
Vref or 0 to 2Vref (an input voltage outside this range results in a saturated digital
output). The analogue voltage range is selected using vAHI_AdcEnable().
42 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
 Conversion mode:

The ADC can be configured to perform conversions in the following modes:

 Single-shot: A single conversion is performed (see Section 4.1.1).

 Continuous: Conversions are performed repeatedly (see Section 4.1.2).

 Accumulation: A fixed number of conversions are performed and the
results are added together (see Section 4.1.3).

Single-shot mode or continuous mode can be selected using
vAHI_AdcEnable(). In all three cases, the conversion time for an individual
conversion is given by [(3 x sampling interval) + 13] x clock period, which is
illustrated in Figure 3. In the cases of continuous mode and accumulation mode,
after this time the next conversion will start and the sampling frequency will be
the reciprocal of the conversion time.

Once the ADC has been configured using first vAHI_ApConfigure() and then
vAHI_AdcEnable(), conversion can be started in one of the available modes.
Operation of the ADC in these modes is described in the subsections below:

 Single-shot mode: Section 4.1.1

 Continuous mode: Section 4.1.2

 Accumulation mode: Section 4.1.3

Note that only the ADC can generate analogue peripheral interrupts (of the type
E_AHI_DEVICE_ANALOGUE) - these interrupts are handled by a user-defined
callback function registered via vAHI_APRegisterCallback(). Refer to Section 4.4 for
more information on analogue peripheral interrupt handling.

Figure 3: ADC Sampling

3 x
sampling
interval *

* Sampling interval is defined as
 2, 4, 6 or 8 clock cycles

13 x
clock cycles

ADC uses this time
to perform the conversion

ADC captures
analogue input
during this time
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 43

Chapter 4
Analogue Peripherals

4.1.1 Single-Shot Mode

In single-shot mode, the ADC performs one conversion and then stops. To operate in
this way, single-shot mode must have been selected when the ADC was enabled
using vAHI_AdcEnable(). The conversion can then be started using the function
vAHI_AdcStartSample().

Completion of the conversion can be detected in one of two ways:

 An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().

 The function bAHI_AdcPoll() can be used to check whether the conversion
has completed.

Once the conversion has been performed, the result can be obtained using the
function u16AHI_AdcRead().

4.1.2 Continuous Mode

In continuous mode, the ADC performs repeated conversions indefinitely (until
stopped). To operate in this way, continuous mode must have been selected when the
ADC was enabled using vAHI_AdcEnable(). The conversions can then be started
using the function vAHI_AdcStartSample().

The sampling frequency in continuous mode is given by the reciprocal of the
conversion time, where:

Conversion time = [(3 x sampling interval) + 13] x clock period

Completion of an individual conversion can be detected in one of two ways:

 An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().

 The function bAHI_AdcPoll() can be used to check whether the conversion
has completed.

Once an individual conversion has been performed, the result can be obtained using
the function u16AHI_AdcRead(). The result remains available to be read by this
function until the next conversion has completed.

The conversions can be stopped using the function vAHI_AdcDisable().
44 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
4.1.3 Accumulation Mode

In accumulation mode, the ADC performs a fixed number of conversions and then
stops. The results of these conversions are added together to allow them to be
averaged. To operate in this mode, the conversions must be started using the function
vAHI_AdcStartAccumulateSamples(). The number of conversions is selected in
this function as 2, 4, 8 or 16.

The sampling frequency in accumulation mode is given by the reciprocal of the
conversion time, where:

Conversion time = [(3 x sampling interval) + 13] x clock period

Completion of ALL the conversions can be detected in one of two ways:

 An interrupt can be generated on completion - in this case, analogue peripheral
interrupts must have been enabled in the function vAHI_ApConfigure().

 The function bAHI_AdcPoll() can be used to check whether the conversions
have completed.

Once the conversions have been performed, the cumulative result can be obtained
using the function u16AHI_AdcRead(). Note that this function delivers the sum of the
results for individual conversions - the averaging calculation must be performed by the
application (by dividing by the number of conversions).

The conversions can be stopped at any time using the function vAHI_AdcDisable().

4.2 ADC with DMA Engine (Sample Buffer Mode)

This section describes an operational mode of the ADC in which it is used in
conjunction with the DMA (Direct Memory Access) engine on the JN516x device. In
this mode:

 ADC 10-bit data samples are produced at regular intervals and transferred into
a buffer in RAM as 16-bit samples, where this data transfer and storage is
performed by the DMA engine independently of the CPU

 The CPU can perform other tasks while the data transfer and storage is being
managed by the DMA engine - the CPU only needs to initiate the ADC
conversions and deal with the results in the buffer (when an interrupt occurs)

 ADC sampling can be multiplexed between different analogue sources

This method of using the ADC is called ‘sample buffer mode’.

The ADC samples are produced at a configurable rate and are timed using one of the
on-chip timers (Timer 0, 1, 2, 3 or 4).

Note: When the ADC is started in accumulation mode,
the conversion mode selected in vAHI_AdcEnable() is
ignored.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 45

Chapter 4
Analogue Peripherals

The application running on the CPU can service the buffer when the latter has
collected sufficient data to cause an interrupt. The application must register a callback
function to service this interrupt.

4.2.1 Preparing for Sample Buffer Mode

Before sample buffer mode can be enabled and started (see Section 4.2.2), the
following preparations must be carried out:

 The function vAHI_ApConfigure() must be called to perform the initial
configuration of the ADC (including clock frequency for conversion, sampling
interval for conversion, reference voltage for input, use of voltage regulator and
use of interrupts), as described for other ADC modes in Section 4.2.

 A JN516x timer to trigger the repeated conversions must be set up and started,
as described in Chapter 7. Note the following:

 This timer can be any one of Timers 0 to 4 (the required timer is specified
later when sample buffer mode is enabled and started - see Section 4.2.2)

 DIOs are not needed by this timer and may be released for other uses (see
Section 7.2.1)

 Timer interrupts are not required and should be disabled for this timer
when vAHI_TimerEnable() is called (see Section 7.2.2)

 The timer must be configured and started in ‘Timer repeat’ mode using
vAHI_TimerStartRepeat() (see Section 7.3.1)

 A user-defined callback function to handle the interrupts generated in sample
buffer mode must be registered using vAHI_APRegisterCallback(), as
described in Section 4.4 (the required interrupt mode is specified later when
sample buffer mode is enabled and started - see Section 4.2.2).

4.2.2 Sample Buffer Mode Operation

Once sample buffer mode has been prepared as described in Section 4.2.1 (ADC
configuration, timer started, callback function registered), operation in this mode can
be further configured and started using bAHI_AdcEnableSampleBuffer(). The
following configuration must be carried out in this function call:

 The required JN516x timer must be specified as one of Timers 0 to 4

 The input voltage range must be specified as either 0 to Vref or 0 to 2Vref,
where the reference voltage Vref has been specified in the call to
vAHI_ApConfigure()

 A bitmap must be provided which specifies the analogue input sources that will
be multiplexed in this ADC mode - the possible sources include four external
pins (DIOs), an on-chip temperature sensor and an internal voltage monitor

 The RAM buffer to receive the data must be fully specified, as follows:

 A pointer to the start of the buffer

 The size of the buffer (in 16-bit samples, up to a maximum of 2047)
46 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
 Whether the buffer will wrap around to the start (when it becomes full)

 The DMA interrupt mode to be used must be specified as one of:

 Interrupt when the buffer fills to its mid-point

 Interrupt when the buffer is full

 Interrupt when the buffer has wrapped around to its start

If operation in this mode is continuous (the buffer wraps around), it can be stopped
using the function vAHI_AdcDisableSampleBuffer().

Notes on various aspects of sample buffer mode operation (input multiplexing, buffer
wrap and DMA interrupts) are provided below.

Input Multiplexing

Sample buffer mode allows up to six analogue inputs to be multiplexed. These inputs
comprise four external inputs (ADC1-4, corresponding to DIO pins), an on-chip
temperature sensor and an internal voltage monitor. The required multiplexed inputs
are specified through a bitmap in the call to bAHI_AdcEnableSampleBuffer().

16-bit samples from all the selected inputs will be produced on each timer trigger.
These samples will be produced (and stored in the buffer) in the following order:

1. External input ADC1

2. External input ADC2

3. External input ADC3

4. External input ADC4

5. Temperature sensor

6. Voltage monitor

Buffer Wrap

In the call to bAHI_AdcEnableSampleBuffer(), the RAM buffer can be configured to
wrap around - that is, when the buffer is full, data will continue to be written from the
start of the buffer again (and an interrupt will be generated, if configured).

If the buffer wrap is not selected, conversions will automatically stop once the buffer
is full (and an interrupt will be generated, if configured).

DMA Interrupts

DMA interrupts are used to notify the application of the status of the RAM buffer.
These interrupts can be generated in the following circumstances:

 The buffer has been half-filled

 The buffer has been completely filled

 The buffer has been completely filled, and a new sample is available and
cannot be stored (assumes that the buffer wrap option has been disabled)

One or more of the above interrupt conditions can be selected in the call to
bAHI_AdcEnableSampleBuffer(). These interrupts must be serviced by the user-
defined callback function registered using vAHI_APRegisterCallback().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 47

Chapter 4
Analogue Peripherals

4.3 Comparator

The JN516x microcontroller includes one comparator (numbered 1).

The comparator can be used to compare two analogue inputs. It changes its two-state
digital output (high to low or low to high) when the arithmetic difference between the
inputs changes sense (positive to negative or negative to positive). The comparator
can be used as a basis for measuring the frequency of a time-varying analogue input
when compared with a constant reference input.

One analogue input carries the externally sourced signal to be monitored - the input
voltage must always remain within the range 0V to Vdd (the chip supply voltage). This
external signal can be supplied on the comparator’s ‘positive’ pin (COMP1P) or
‘negative’ pin (COMP1M). It will be compared with a reference signal, which can be
sourced internally or externally as follows:

 externally from the other comparator pin (COMP1P or COMP1M) that is not
being used for the monitored input signal

 internally from the reference voltage Vref (the source of Vref is selected using
the function vAHI_ApConfigure())

The input and reference signals are selected from the above options via the function
vAHI_ComparatorEnable(), which is used to configure and enable the comparator.

The comparator has two possible states - high or low. The comparator state is
determined by the relative values of the two analogue input voltages - that is, by the
instantaneous voltages of the signal under analysis, Vsig, and the reference signal,
Vrefsig. The relationships are as follows:

Vsig > Vrefsig high

Vsig < Vrefsig low

or in terms of differences:

Vsig - Vrefsig > 0 high

Vsig - Vrefsig < 0 low

Thus, as the signal levels vary with time, when Vsig rises above Vrefsig or falls below
Vrefsig, the state of the comparator result changes. In this way, Vrefsig is used as the
threshold against which Vsig is assessed.

Note 1: By default, the comparator is enabled in low-
power mode. Refer to Section 4.3.2 for more details.

Note 2: Calling vAHI_ComparatorEnable() while the
ADC is operating may lead to corruption of the ADC
results. Therefore, if required, this function should be
called before starting the ADC.

Note 3: When a comparator pin is used, the associated
DIO should be configured as an input with the pull-up
disabled (refer to Section 5.1.1 and Section 5.1.3).
48 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
In reality, this method of functioning is sensitive to noise in the analogue input signals
causing spurious changes in the comparator state. This situation can be improved by
using two different thresholds:

 An upper threshold, Vupper, for low-to-high transitions

 A lower threshold, Vlower, for high-to-low transitions

The thresholds Vupper and Vlower are defined such that they are above and below the
reference signal voltage Vrefsig by the same amount, where this amount is called the
hysteresis voltage, Vhyst.

That is:

Vupper = Vrefsig + Vhyst

Vlower = Vrefsig - Vhyst

The hysteresis voltage is selected using the vAHI_ComparatorEnable() function. It
can be set to 0, 5, 10 or 20 mV. The selected hysteresis level should be larger than
the noise level in the input signal.

The comparator two-threshold mechanism is illustrated in Figure 4 below for the case
when the reference signal voltage Vrefsig is constant.

Note that there is a time delay between a change in the comparator inputs and the
resulting state reported by the comparator.

As well as configuring the comparator, vAHI_ComparatorEnable() also starts
operation of the comparator. The current state of the comparator (high or low) can be
obtained at any time using the function u8AHI_ComparatorStatus(). The comparator
can be stopped at any time using the function vAHI_ComparatorDisable().

Figure 4: Upper and Lower Thresholds of Comparator

Vsig

t

Vupper

Vlower

Vrefsig
2Vhyst

Comparator state:

Low to High

Comparator state:

High to Low
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 49

Chapter 4
Analogue Peripherals

4.3.1 Comparator Interrupts and Wake-up

The comparator allows an interrupt to be generated on either a low-to-high or high-to-
low transition. Interrupts can only be produced on transitions in one direction (and not
both). Interrupts can be enabled using the function vAHI_ComparatorIntEnable().
The function is used to both enable/disable comparator interrupts and select the
direction of the transitions that will trigger the interrupts.

A comparator interrupt can be used as a signal to wake a node from sleep - this is then
referred to as a ‘wake-up interrupt’. To use this feature, interrupts must be configured
and enabled using vAHI_ComparatorIntEnable(), as described above. Note that
during sleep, the reference signal Vrefsig is taken from an external source via the
‘negative’ pin COMP1M or the ‘positive’ pin COMP1P, whichever is used during wake
periods. The wake-up interrupt status can be checked using the function
u8AHI_ComparatorWakeStatus().

4.3.2 Comparator Low-Power Mode

The comparator is able to operate in a low-power mode, in which it draws only 0.8µA
of current, compared with 73µA when operating in standard-power mode. Comparator
low-power mode can be enabled/disabled using the function
vAHI_ComparatorLowPowerMode().

When a comparator is configured and started using vAHI_ComparatorEnable(), it
operates in standard-power mode. To operate the comparator in low-power mode, the
function vAHI_ComparatorLowPowerMode() must then be called.

Low-power mode is beneficial in helping to minimise the current drawn by a device that
employs energy harvesting. It is also automatically enabled during sleep in order to
optimise the energy conserved. The disadvantage of low-power mode is a slower
response time for the comparator - that is, a longer delay between a change in the
comparator inputs and the resulting state reported by the comparator. However, if the
response time is not important, low-power mode should normally be used.

Important: Comparator interrupts are System Controller
interrupts and not analogue peripheral interrupts. They
must therefore be handled by a callback function that is
registered via vAHI_SysCtrlRegisterCallback().
50 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
4.4 Analogue Peripheral Interrupts

Analogue peripheral interrupts (of the type E_AHI_DEVICE_ANALOGUE) are only
generated by the ADC (the comparator generates System Controller interrupts). The
analogue peripheral interrupts are enabled in the function vAHI_ApConfigure() and
are handled by a user-defined callback function registered using the function
vAHI_APRegisterCallback(). For details of the callback function prototype, refer to
Appendix A.1. The interrupt is automatically cleared when the callback function is
invoked.

The exact interrupt source depends on the ADC operating mode (single-shot,
continuous, accumulation):

 In single-shot and continuous modes, a ‘capture’ interrupt will be generated
after each individual conversion.

 In accumulation mode, an ‘accumulation’ interrupt will be generated when the
final accumulated result is available.

Once an ADC result becomes available, it can be obtained by calling the function
u16AHI_AdcRead() within the callback function.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 51

Chapter 4
Analogue Peripherals

52 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
5. Digital Inputs/Outputs (DIOs)

This chapter describes control of the Digital Inputs/Outputs (DIOs) using functions of
the Integrated Peripherals API.

The JN516x microcontroller has 20 DIO lines, numbered 0 to 19. Each pin can be
individually configured as an input or output. However, the DIO pins are shared with
the following on-chip peripherals/features:

 ADC

 Comparator

 UARTs

 Timers

 2-wire Serial Interface (SI)

 Serial Peripheral Interface (SPI)

 Antenna Diversity

 Pulse Counter

A shared DIO is not available when the corresponding peripheral/feature is enabled.
For details of the shared pins, refer to the data sheet for the microcontroller.

From reset, all peripherals are disabled and the DIOs are configured as inputs.

In addition to normal operation, when configured as inputs, the DIOs can be used to
generate interrupts and wake the device from sleep - see Section 5.2. Note that the
interrupts triggered by the DIOs are System Controller interrupts and are handled by
a callback function registered via vAHI_SysCtrlRegisterCallback() - see Section 3.5.

5.1 Using the DIOs

This section describes how to use the Integrated Peripherals API functions to
configure and access the DIOs.

5.1.1 Setting the Directions of the DIOs

The DIOs can be individually configured as inputs and outputs using the function
vAHI_DioSetDirection() - by default, they are all inputs. If a DIO is shared with an on-
chip peripheral and is being used by this peripheral when vAHI_DioSetDirection() is
called, the specified input/output setting for the DIO will not take immediate effect but
will take effect once the peripheral has been disabled.

Note: In addition to the DIOs, the JN516x device has
two digital outputs (DO0 and DO1). The configuration of
these outputs is described in Section 5.3.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 53

Chapter 5
Digital Inputs/Outputs (DIOs)

5.1.2 Setting DIO Outputs

The DIOs configured as outputs can then be individually set to on (high) and off (low)
using the function vAHI_DioSetOutput(). The output states are set in a 32-bit bitmap,
where each DIO is represented by a bit (bits 0-19 for DIO0-19). Note that:

 DIOs configured as inputs will not be affected by this function unless they are
later set as outputs via a call to vAHI_DioSetDirection() - they will then adopt
the output states set in vAHI_DioSetOutput().

 If a shared DIO is in use by an on-chip peripheral when vAHI_DioSetOutput()
is called, the specified on/off setting for the DIO will not take immediate effect
but will take effect once the peripheral has been disabled.

A set of 8 consecutive DIOs can be used to output a byte in parallel - set DIO0-7 or
DIO8-15 can be used for this purpose, where bit 0 or 8 is used for the least significant
bit of the byte. The DIO set and the output byte can be specified using the function
vAHI_DioSetByte(). All DIOs in the selected set must have been previously
configured as outputs - see Section 5.1.1.

5.1.3 Setting DIO Pull-ups

Each DIO has an associated pull-up resistor. The purpose of the ‘pull-up’ is to prevent
the state of the pin from ‘floating’ when there is no external load connected to the DIO
- that is, when enabled, the pull-up ties the pin to the high (on) state in the absence of
an external load (or in the presence a weak external load). The pull-ups for all the DIOs
can be enabled/disabled using the function vAHI_DioSetPullup() - by default, all pull-
ups are enabled. Again, if a shared DIO is in use by an on-chip peripheral when
vAHI_DioSetPullup() is called, the specified pull-up setting for the DIO will be applied
except when it is connected to an external 32kHz crystal (see Section 3.1.4).

5.1.4 Reading the DIOs

The states of the DIOs can be obtained using the function u32AHI_DioReadInput().
This function will return the states of all the DIOs, irrespective of whether they have
been configured as inputs or outputs, or are in use by peripherals.

A set of 8 consecutive DIOs can be used to input a byte in parallel - set DIO0-7 or
DIO8-15 can be used for this purpose, where bit 0 or 8 is used for the least significant
bit of the byte. The input byte on a DIO set can be obtained using the function
u8AHI_DioReadByte(). All DIOs in the set must have been previously configured as
inputs - see Section 5.1.1.

Note: DIO pull-up settings are maintained through
sleep. A power saving can be made by disabling DIO
pull-ups (during sleep or normal operation) if they are
not required.
54 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
5.2 DIO Interrupts and Wake-up

The DIOs configured as inputs can be used to generate System Controller interrupts.
These interrupts can be used to wake the microcontroller, if it is sleeping. The
Integrated Peripherals API includes a set of ‘DIO interrupt’ functions and a set of ‘DIO
wake’ functions, but these functions are identical in their effect (as they access the
same register bits in hardware). Use of these two function-sets is described in the
subsections below.

5.2.1 DIO Interrupts

A change of state on an input DIO can be used to trigger an interrupt.

First, the input signal transition (low-to-high or high-to-low) that will trigger the
interrupt should be selected for individual DIOs using the function
vAHI_DioInterruptEdge() - the default is a low-to-high transition. Interrupts can then
be enabled for the relevant DIO pins using the function vAHI_DioInterruptEnable().

The interrupt status of the DIO pins can subsequently be obtained using the function
u32AHI_DioInterruptStatus() - that is, this function can be used to determine if one
of the DIOs caused an interrupt. This function is useful for polling the interrupt status
of the DIOs when DIO interrupts are disabled and therefore not generated.

Caution: Since the ‘DIO interrupt’ and ‘DIO wake’
functions access the same JN516x register bits, you
must ensure that the two sets of functions do not conflict
in your application code.

Note: If DIO interrupts are enabled, you should include
DIO interrupt handling in the callback function registered
via vAHI_SysCtrlRegisterCallback().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 55

Chapter 5
Digital Inputs/Outputs (DIOs)

5.2.2 DIO Wake-up

The DIOs can be used to wake the microcontroller from Sleep (including Deep Sleep)
or Doze mode. Any DIO pin configured as an input can be used for wake-up - a change
of state of the DIO will trigger a wake interrupt.

First, the input signal transition (low-to-high or high-to-low) that will trigger the wake
interrupt should be selected for individual DIOs using the function
vAHI_DioWakeEdge() - the default is a low-to-high transition. Wake interrupts can
then be enabled for the relevant DIO pins using the function vAHI_DioWakeEnable().

The wake status of the DIO pins can subsequently be obtained using the function
u32AHI_DioWakeStatus() - that is, this function can be used to determine if one of
the DIOs caused a wake-up event. Note that on waking, you must call this function
before u32AHI_Init(), as the latter function will clear any pending interrupts.

Note 1: As an alternative to calling the function
u32AHI_DioWakeStatus(), you can determine the
wake interrupt source in the callback function registered
via vAHI_SysCtrlRegisterCallback().

Note 2: When waking from deep sleep, the function
u32AHI_DioWakeStatus() will not indicate a DIO wake
source because the device will have completed a full
reset. When waking from sleep, this function may
indicate more than one wake source if multiple DIO
events occurred while the device was booting.

Note 3: If using the JenNet protocol, do not call
u32AHI_DioWakeStatus() to obtain the DIO interrupt
status on waking from sleep. At wake-up, JenNet calls
u32AHI_Init() internally and clears the interrupt status
before passing control to the application. The System
Controller callback function must be used to obtain the
interrupt status, if required.
56 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
5.3 Configuring Digital Outputs (DOs)

The JN516x device has two pins, DO0 and DO1, that may be used as general-purpose
digital outputs while the device is awake. The DO pins are shared with the SPI Master,
and Timers 2 and 3.

These pins can be configured as follows:

 bAHI_DoEnableOutputs() can be used to enable (or disable) the DO pins as
general-purpose digital outputs - by default, the DO pins are disabled as
general-purpose digital outputs at power-up

 vAHI_DoSetDataOut() can be used to set the output states of the DO pins to
on or off, in any combination - by default, the output states are on at power-up

 vAHI_DoSetPullup() can be used to set the pull-up states of the DO pins to on
or off, in any combination - by default, the pull-ups are enabled at power-up

The DO pins do not preserve their status through sleep and may not be used to wake
the device from sleep. From reset, during sleep and on waking from sleep the DO pins
revert to being disabled as general-purpose outputs with pull-ups enabled.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 57

Chapter 5
Digital Inputs/Outputs (DIOs)

58 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6. UARTs

This chapter describes control of the UARTs (Universal Asynchronous Receiver
Transmitters) using functions of the Integrated Peripherals API.

The JN516x microcontroller has two UARTs, denoted UART0 and UART1, which can
be independently enabled. These UARTs are 16550-compatible and can be used for
the input/output of serial data at a programmable baud-rate of up to 4Mbps.

6.1 UART Signals and Pins

A UART employs the following signals to interface with an external device:

 Transmit Data (TxD) output - connected to RxD on external device

 Receive Data (RxD) input - connected to TxD on external device

 Request-To-Send (RTS) output - connected to CTS on external device

 Clear-To-Send (CTS) input - connected to RTS on external device

If a UART just uses signals RxD and TxD, it is said to operate in 2-wire mode (see
Section 6.2.1). If it uses all four of the above signals, it is said to operate in 4-wire mode
and implements flow control (see Section 6.2.2). On the JN516x device:

 UART0 can operate in 4-wire mode (default) or in 2-wire mode

 UART1 can operate in 2-wire mode (default) or in 1-wire (transmit only) mode

The default pins used for the above signals are shared with the DIOs, as shown below:

* The pins used by UART0 can alternatively be used to connect a JTAG emulator for debugging

The UART0 signals can be moved from DIO4-7 to DIO12-15 using the function
vAHI_UartSetLocation(). The UART1 signals can be moved from DIO14 and DIO15
to DIO11 and DIO9, respectively, using the same function. If this function is required,
it must be called before the UART is enabled.

Note: The UART operation described here assumes
that the peripheral clock runs at 16MHz and is derived
from an external crystal oscillator - see Section 3.1. You
are not advised to run a UART from any other clock.

Signal DIOs for UART0 * DIOs for UART1

CTS DIO4 -

RTS DIO5 -

TxD DIO6 DIO14

RxD DIO7 DIO15

Table 1: Default DIOs Used for UART Signals
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 59

Chapter 6
UARTs

6.2 UART Operation

The transmit and receive paths of a UART each have a FIFO buffer, which allows
multiple-byte serial transfers to be performed with an external device:

 The TxD pin is connected to the Transmit FIFO

 The RxD pin is connected to the Receive FIFO

The FIFOs are contained in RAM and are defined by the application. The size of each
FIFO can be from 16 bytes up to 2047 bytes.

On the local device, the CPU can write/read data to/from a FIFO either one byte or a
block of data at a time. The two paths are independent, so transmission and reception
occur independently. The movement of data between the FIFOs and the TxD/RxD
lines is handled by a DMA (Direct Memory Access) engine, with no CPU involvment.

The basic UART set-up is illustrated in Figure 5 below.

Both UARTs can operate in 2-wire mode, UART0 can also operate in 4-wire mode and
UART1 can also operate in 1-wire mode. These modes are introduced in the sub-
sections below.

6.2.1 2-wire Mode

In 2-wire mode, the UART only uses signal lines TxD and RxD. Data is transmitted
unannounced, at the convenience of the sending device (e.g. when the Transmit FIFO
contains some data). Data is also received unannounced and at the convenience of
the sending device. This can cause problems and the loss of data - for example, if the
receiving device has insufficient space in its Receive FIFO to accept the sent data.

Figure 5: UART Connections

JN516x

UART

Rx FIFO

Tx FIFO

UART

Tx FIFO

Rx FIFO

RTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Only required for flow control
60 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.2.2 4-wire Mode (with Flow Control) [UART0 Only]

In 4-wire mode, UART0 uses the signal lines TxD, RxD, RTS and CTS. This allows
flow control to be implemented, which ensures that sent data can always be accepted.
The general principle of flow control is described below.

The RTS and CTS lines are flags that are used to indicate when it is safe to transfer
data between the devices. The RTS line on one device is connected to the CTS line
on the other device.

The destination device dictates when the source device should send data to it, as
follows:

 When the destination device is ready to receive data, it asserts its RTS line to
request the source device to send data. This may be when the Receive FIFO
fill-level on the destination device falls below a pre-defined level and the FIFO
becomes able to receive more data.

 The assertion of the RTS line on the destination device is seen by the source
device as the assertion of its CTS line. The source device is then able to send
data from its Transmit FIFO.

Flow control operation is illustrated in Figure 6 below.

Figure 6: Example of UART Flow Control (UART0 Only)

UART UART
RTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

UART UART
RTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

UART UART
RTS

CTS

RxD

TxD

TxD

RxD

CTS

RTS

Tx FIFO

Tx FIFORx FIFO

Rx FIFO

RTS line is asserted
when Rx FIFO fill-level
falls below pre-defined
level

Asserted CTS line
means that data can
be transmitted

Data is transmitted
on TxD line

Data is received on
RxD line

RTS line is cleared
when Rx FIFO fill-level
rises to pre-defined
level

CTS line is cleared
and data transmission
is stopped

Destination Source

1 2

34

5 6
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 61

Chapter 6
UARTs

The Integrated Peripherals API provides functions for controlling and monitoring the
RTS/CTS lines, allowing the application to implement the flow control algorithm
manually. In practice, manual flow control can be a burden for a busy CPU, particularly
when the UART is operating at a high baud-rate. For this reason, the API provides an
Automatic Flow Control option in which the state of the RTS line is controlled directly
by the Receive FIFO fill-level on the destination device. The implementations of
manual and automatic flow control using the functions of Integrated Peripherals API
are described in Section 6.5.

6.2.3 1-Wire Mode [UART1 Only]

In 1-wire mode, UART1 uses the TxD line to transmit data unannounced, at the
convenience of the sending device. In this mode, data is not received and the RxD line
is unused (so the associated DIO pin is available for another purpose).

6.3 Configuring the UARTs

This section describes the various aspects of configuring a UART before using it to
transfer serial data.

6.3.1 Enabling a UART

A UART is enabled using the function bAHI_UartEnable(), which enables UART0 in
4-wire mode or UART1 in 2-wire mode, by default. This must be the first UART
function called, unless you wish to use the UART in its non-default mode:

 If you wish to use UART0 in 2-wire mode (without flow control), you will first
need to call vAHI_UartSetRTSCTS() in order to release control of the DIOs
used for the flow control RTS and CTS lines.

 If you wish to use UART1 in 1-wire mode (transmit only), you will first need to
call vAHI_UartTxOnly() in order to release control of the pin used for RxD.

The function bAHI_UartEnable() also allows the FIFO buffers for the UART transmit
and receive paths to be configured. Each buffer is defined by the application as a
section of RAM, and the start address and size (in bytes) of each buffer must be
specified. The maximum possible buffer size is 2047 bytes and the minimum possible
buffer size is 16 bytes.

Note: The function vAHI_UartEnable() (returns void
rather than boolean) is also available for backward
compatibility with application code developed for the
JN514x microcontrollers.
62 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.3.2 Setting the Baud-rate

The following functions are provided for setting the baud-rate of a UART:

 vAHI_UartSetBaudRate()

This function allows one of the following standard baud-rates to be set: 4800,
9600, 19200, 38400, 76800 or 115200 bps.

 vAHI_UartSetBaudDivisor()

This function allows a 16-bit integer divisor (Divisor) to be specified which will
be used to derive the baud-rate from a 1MHz frequency, given by:

 vAHI_UartSetClocksPerBit()

This function can be used to obtain a more refined baud-rate than can be
achieved using vAHI_UartSetBaudDivisor() alone. The divisor from the latter
function is used in conjunction with an 8-bit integer parameter (Cpb) from
vAHI_UartSetClocksPerBit() to derive a baud-rate from the 16MHz peripheral
clock, given by:

Based on the above formula, the highest recommended baud-rate that can be
achieved is 4Mbps (Divisor=1, Cpb=3).

6.3.3 Setting Other UART Properties

In addition to setting the baud-rate of a UART, as described in Section 6.3.2, it is also
necessary to configure a number of other properties of the UART. These properties
are set using the function vAHI_UartSetControl() and include the following:

 Parity checks can be optionally applied to the transferred data and the type of
parity (odd or even) can be selected.

 The length of a word of data can be set to 5, 6, 7 or 8 bits - this is the number of
bits per transmitted ‘character’ and should normally be set to 8 (a byte).

 The number of stop bits can be set to 1 or 1.5 / 2.

 The initial state of the RTS line can be configured (set or cleared) - this is only
implemented if using UART0 in 4-wire mode (see Section 6.3.1).

Note: Either vAHI_UartSetBaudRate() or
vAHI_UartSetBaudDivisor() must be called, but not
both. If used, vAHI_UartSetClocksPerBit() must be
called after vAHI_UartSetBaudDivisor().

1 10
6

Divisor

16 10
6

Divisor Cpb 1+

JN-UG-3087 v1.1 © NXP Laboratories UK 2013 63

Chapter 6
UARTs

6.3.4 Enabling Interrupts

UART interrupts can be generated under a variety of conditions. The interrupts can be
enabled and configured using the function vAHI_UartSetInterrupt(). The possible
interrupt conditions are as follows:

 Transmit FIFO empty: The Transmit FIFO has become empty (and therefore
requires more data).

 Receive data available: The Receive FIFO has filled with data to a pre-defined
level, which can be set to 1, 4, 8 or 14 bytes. This interrupt is cleared when the
FIFO fill-level falls below the pre-defined level again.

 Timeout: This interrupt is enabled when the ‘receive data available’ interrupt is
enabled and is generated if all the following conditions exist:

 At least one character is in the FIFO.

 No character has entered the FIFO during a time interval in which at least
four characters could potentially have been received.

 Nothing has been read from the FIFO during a time interval in which at
least four characters could potentially have been read.

A timeout interrupt is cleared and the timer is reset by reading a character from
the Receive FIFO.

 Receive line status: An error condition has occurred on the RxD line, such as
a break indication, framing error, parity error or over-run.

 Modem status: A change in the CTS line has been detected (for example, it
has been asserted to indicate that the remote device is ready to accept data) in
the case of UART0 operating 4-wire mode.

UART interrupts are handled by a callback function which must be registered using
the function vAHI_Uart0RegisterCallback() or vAHI_Uart1RegisterCallback(),
depending on the UART (0 or 1). For more information on UART interrupt handling,
refer to Section 6.8.
64 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.4 Transferring Serial Data in 2-wire Mode

In 2-wire mode, a UART only uses signals RxD and TxD, and does not implement flow
control. Data transmission and reception are covered separately below.

6.4.1 Transmitting Data (2-wire Mode)

Data is transmitted via a UART by calling one of the following functions:

 vAHI_UartWriteData(): This function can be used to write a single byte of data
to the Transmit FIFO. If used, this function may be called multiple times to
queue data bytes for transmission.

 u16AHI_UartBlockWriteData(): This function is used to write a block of data
bytes to the Transmit FIFO. The function will return the number of bytes that
have been successfully written to the FIFO.

Once in the FIFO, a data byte starts to be transmitted as soon as it reaches the head
of the FIFO (and provided that the TxD line is idle). The transfer of data from the FIFO
to the TxD line is handled automatically by the DMA engine.

The following methods can be used to prompt the application to call the
vAHI_UartWriteData() or u16AHI_UartBlockWriteData() function:

 The function u16AHI_UartReadTxFifoLevel() can be called to check the
number of characters currently waiting in the Transmit FIFO (more data could
then be written to the FIFO, if there is sufficient free space).

 The function u16AHI_UartReadLineStatus() can be used to check whether
the Transmit FIFO is empty.

 An interrupt can be generated when the Transmit FIFO becomes empty (that is,
when the last data byte in the FIFO starts to be transmitted) - this interrupt is
enabled using the function vAHI_UartSetInterrupt().

 A timer can be used to schedule periodic transmissions (provided that data is
available to be transmitted).

Note 1: For UART1, 2-wire mode is the default mode.

Note 2: In order to operate UART0 in 2-wire mode, the
function vAHI_UartSetRTSCTS() must first be called to
release control of the DIOs used for flow control. This
function must be called before vAHI_UartEnable().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 65

Chapter 6
UARTs

6.4.2 Receiving Data (2-wire Mode)

Data is received on the RxD line as and when the source device sends it. The local
transfer of data from the RxD line to the Receive FIFO is handled automatically by the
DMA engine. The destination application can read data from the FIFO using one of the
following functions:

 u8AHI_UartReadData(): This function can be used to read a single byte of
data from the Receive FIFO.

 u16AHI_UartBlockReadData(): This function can be used to read a block of
data bytes from the Receive FIFO.

The following methods can be used to prompt the application to call the
u8AHI_UartReadData() or u16AHI_UartBlockReadData() function:

 The function u16AHI_UartReadRxFifoLevel() can be called to check the
number of characters currently in the Receive FIFO.

 The function u8AHI_UartReadLineStatus() can be used to check whether the
Receive FIFO contains data that can be read (or is empty).

 An interrupt can be generated when the Receive FIFO contains a certain
number of data bytes - this interrupt is enabled using the function
vAHI_UartSetInterrupt(), in which the trigger level for the interrupt must be
specified as 1, 4, 8 or 14 bytes.

 A timer can be used to schedule periodic reads of the Receive FIFO. Before
each timed read, the presence of data in the FIFO can be checked using either
u8AHI_UartReadLineStatus() or u16AHI_UartReadRxFifoLevel().

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
66 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.5 Transferring Serial Data in 4-wire Mode (UART0 Only)

In 4-wire mode, UART0 uses the signals RTS and CTS to implement flow control (see
Section 6.2.2), as well as RxD and TxD. Flow control can be implemented manually
by the application or automatically. The implementation of manual flow control is
described below for transmission and reception separately, and then automatic flow
control is described.

6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control)

In the flow control protocol, the source device should only transmit data when the
destination device is ready to receive (see Section 6.5.2). The readiness of the
destination device to accept data is indicated on the source device by its CTS line
being asserted. The status of the CTS line can be monitored in either of the following
ways:

 The source device can check the status of its CTS line using the function
u8AHI_UartReadModemStatus().

 An interrupt can be generated when a change in status of the CTS line occurs -
this interrupt is enabled using the function vAHI_UartSetInterrupt().

Once a change in the state of the CTS line (to asserted) has been detected, one of the
following functions can be called:

 vAHI_UartWriteData(): This function can be used to write a single byte of data
to the Transmit FIFO. If used, this function may be called multiple times to
queue data bytes for transmission.

 u16AHI_UartBlockReadData(): This function can be used to read a block of
data bytes from the Receive FIFO. The function will return the number of bytes
that have been successfully written to the FIFO.

Once in the FIFO, a data byte starts to be transmitted as soon as it reaches the head
of the FIFO (and provided that the TxD line is idle). The transfer of data from the FIFO
to the TxD line is handled automatically by the DMA engine.

Note that before calling vAHI_UartWriteData() to write data to the Transmit FIFO, the
application may check whether there is already data in the FIFO (left over from a
previous transfer) using the function u16AHI_UartReadTxFifoLevel() or
u8AHI_UartReadLineStatus().

The CTS line is de-asserted when the RTS line is de-asserted on the destination
device - see Section 6.5.2.

Note 1: 4-wire mode is the default mode on UART0.
Therefore, the UART will automatically have control of
the DIOs used for the RTS and CTS lines as soon as
vAHI_UartEnable() is called.

Note 2: 4-wire mode is not available on UART1.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 67

Chapter 6
UARTs

6.5.2 Receiving Data (4-wire Mode, Manual Flow Control)

In the flow control protocol, the destination device should only receive data when it is
ready. This is normally when its Receive FIFO has sufficient free space to accept more
data. The application can check the fill status of its Receive FIFO using the function
u16AHI_UartReadRxFifoLevel() or u8AHI_UartReadLineStatus().

Once the application on the destination device has decided that it is ready to receive
data, it must request the data from the source device by asserting the RTS line (which
asserts the CTS line on the source device - see Section 6.5.1). The RTS line can be
asserted using the function vAHI_UartSetRTS() or vAHI_UartSetControl().

The source device may then send data, which is received on the RxD line on the
destination device. The local transfer of data from the RxD line to the Receive FIFO is
handled automatically by the DMA engine. The received data can be read from the
Receive FIFO using one of the following functions:

 u8AHI_UartReadData(): This function can be used to read a single byte of
data from the Receive FIFO.

 u16AHI_UartBlockReadData(): This function can be used to read a block of
data bytes from the Receive FIFO.

The application may subsequently make a decision to stop the transfer from the
source device, which is achieved by de-asserting the RTS line using the function
vAHI_UartSetRTS() or vAHI_UartSetControl(). This decision is based on the fill-
level of the Receive FIFO - when the amount of data in the FIFO reaches a certain
level, the application will start to read the data and may also stop the transfer if it
cannot read from the FIFO quickly enough to prevent an overflow condition. The
current fill-level of the Receive FIFO can be monitored using either of the following
mechanisms:

 The function u16AHI_UartReadRxFifoLevel() can be called to check the
number of data bytes currently in the Receive FIFO.

 A ‘receive data available’ interrupt can be generated when the number of data
bytes in the Receive FIFO rises to a certain level - this interrupt is enabled
using the function vAHI_UartSetInterrupt(), in which the trigger-level for the
interrupt must be specified as 1, 4, 8 or 14 bytes.

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
68 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.5.3 Automatic Flow Control (4-wire Mode)

Flow control can be implemented automatically in UART0 4-wire mode, rather than
manually (as described in Section 6.5.1 and Section 6.5.2). Automatic flow control can
be used on the destination device and/or on the source device:

 On the destination device, automatic flow control avoids the need for the
application to monitor the Receive FIFO fill-level and to assert/de-assert the
RTS line.

 On the source device, automatic flow control avoids the need for the application
to monitor the CTS line before transmitting data.

Automatic flow control is configured and enabled using the function
vAHI_UartSetAutoFlowCtrl() which, if used, must be called after enabling the UART
and before starting the data transfer.

The vAHI_UartSetAutoFlowCtrl() function allows:

 A Receive FIFO trigger-level to be specified on the destination device (as 8, 11,
13 or 15 bytes), so that:

 The local RTS line is asserted when the fill-level is below the trigger-level,
indicating the readiness of the destination device to accept more data.

 The local RTS line is de-asserted when the fill-level is at or above the
trigger-level, indicating that the destination device is not in a position to
accept more data.

Thus, as the destination Receive FIFO fill-level rises and falls (as data is
received and read), the local RTS line is automatically manipulated to control
the arrival of further data from the source device.

 Automatic monitoring of the CTS line to be enabled on the source device -
when this line is asserted, any data in the Transmit FIFO is transmitted
automatically.

This function also allows the RTS/CTS signals to be configured as active-high or
active-low.

Automatic flow control can be set up between the two devices either for data transfers
in only one direction or for data transfers in both directions.

Although much of the data transfer is automatic, the application on the source device
must write data into its Transmit FIFO and the application on the destination device
must read data from its Receive FIFO. These operations are described below.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 69

Chapter 6
UARTs

Transmitting Data

To transmit data, the sending application can use one of the following functions:

 vAHI_UartWriteData(): This function can be used to write a single byte of data
to the Transmit FIFO. If used, this function may be called multiple times to
queue data bytes for transmission.

 u16AHI_UartBlockReadData(): This function can be used to read a block of
data bytes from the Receive FIFO. The function will return the number of bytes
that have been successfully written to the FIFO.

Once in the FIFO, the data is automatically transmitted (via the TxD line) as soon as
the CTS line indicates that the destination device is ready to receive. The transfer of
data from the FIFO to the TxD line is handled automatically by the DMA engine.

Note that before calling vAHI_UartWriteData() or u16AHI_UartBlockReadData() to
write data to the Transmit FIFO, the application may check whether there is already
data in the FIFO (left over from a previous transfer) using the function
u8AHI_UartReadTxFifoLevel() or u8AHI_UartReadLineStatus().

Receiving Data

Data is received on the RxD line on the destination device. The local transfer of data
from the RxD line to the Receive FIFO is handled automatically by the DMA engine.
The received data can be read from the Receive FIFO using one of the following
functions:

 u8AHI_UartReadData(): This function can be used to read a single byte of
data from the Receive FIFO.

 u16AHI_UartBlockReadData(): This function can be used to read a block of
data bytes from the Receive FIFO.

The application can decide when to start and stop reading data from the Receive
FIFO, based on either of the following mechanisms:

 The function u16AHI_UartReadRxFifoLevel() can be called to check the
number of characters currently in the Receive FIFO. Thus, the application may
decide to start reading data when the FIFO fill-level is at or above a certain
threshold. It may decide to stop reading data when the FIFO fill-level is at or
below another threshold, or when the FIFO is empty.

 A ‘receive data available’ interrupt can be generated when the Receive FIFO
contains a certain number of data bytes - this interrupt is enabled using the
function vAHI_UartSetInterrupt(), in which the trigger-level for the interrupt
must be specified as 1, 4, 8 or 14 bytes. Thus, the application may decide to
start reading data from the Receive FIFO when this interrupt occurs and to stop
reading data when all the received bytes have been extracted from the FIFO.

Note: When the ‘receive data available’ interrupt is
enabled (described above), a ‘timeout’ interrupt is also
enabled for the Receive FIFO. For more details of this
interrupt, refer to Section 6.3.4.
70 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
6.6 Transmitting Serial Data in 1-wire Mode (UART1 Only)

In 1-wire mode, UART1 uses only the TxD line and can only transmit serial data. This
transmission is performed at the convenience of the sending device (so no flow control
is implemented).

For this mode, the function vAHI_UartTxOnly() must be called to release control of
the pin used for RxD before the UART is enabled using bAHI_UartEnable(). Since the
RxD line is not used and the Receive FIFO buffer is therefore not needed, in
bAHI_UartEnable() you are advised to set the pointer to the start of this buffer in RAM
to NULL - this avoids allocating RAM space to this buffer.

6.7 Break Condition

During a data transfer, if the application on this source device becomes aware of an
error, it can convey this error status to the destination device by setting a break
condition using the function vAHI_UartSetBreak(). When this break condition is
issued, the data byte that is currently being transmitted is corrupted and the
transmission is stopped.

If a JN516x device receives a break condition (as the destination device), this results
in a ‘receive line status’ interrupt (E_AHI_UART_INT_RXLINE) being generated on
the device, provided that UART interrupts are enabled on this device. UART interrupts
are described in Section 6.3.4 and UART interrupt handling in Section 6.8.

The vAHI_UartSetBreak() function can also be used to clear the break condition
(from the source device). In this case, the transmission will restart in order to transfer
the data remaining in the Transmit FIFO.

6.8 UART Interrupt Handling

Interrupts can be employed in a number of ways in controlling UART operation. The
various uses of UART interrupts are introduced in Section 6.3.4 and are further
covered in the sections on transferring data (Section 6.4 and Section 6.5).

UART interrupts are handled by a user-defined callback function, which must be
registered using vAHI_Uart0RegisterCallback() or vAHI_Uart1RegisterCallback(),
depending on the UART (0 or 1). The relevant callback function is automatically
invoked when an interrupt of the type E_AHI_DEVICE_UART0 (for UART 0) or
E_AHI_DEVICE_UART1 (for UART 1) occurs. For details of the callback function
prototype, refer to Appendix A.1.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 71

Chapter 6
UARTs

The exact nature of the UART interrupt (from those listed in Section 6.3.4) can then
be identified from an enumeration that is passed into the callback function. For details
of these enumerations, refer to Appendix B.2.

Note that the handling of UART interrupts differs from the handling of other interrupts
in the following ways:

 The exact cause of an interrupt is normally indicated to the callback function by
means of a bitmap, but not in the case of a UART interrupt - instead, an
enumeration is used to indicate the nature of a UART interrupt. The reported
enumeration corresponds to the currently active interrupt condition with the
highest priority.

 An interrupt is normally automatically cleared before the callback function is
invoked, but the UARTs are the exception to this rule. When generating a
'receive data available' or 'timeout' interrupt, the UART will only clear the
interrupt once the data has been read from the Receive FIFO. It is therefore
vital that the callback function handles the UART 'receive data available' and
'timeout' interrupts by reading the data from the Receive FIFO before returning.

Note: If the Application Queue API is being used, the
above issue with the UART interrupts is handled by this
API, so the application does not need to deal with it. For
more information on this API, refer to the Application
Queue API Reference Manual (JN-RM-2025).
72 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
7. Timers

This chapter describes control of the on-chip timers using functions of the Integrated
Peripherals API. On the JN516x device, there are five timers: Timer 0, Timer 1, Timer
2, Timer 3 and Timer 4.

The timers offer a range of operating modes:

 Timer mode

 Pulse Width Modulation (PWM) mode

 Counter mode

 Capture mode

 Delta-Sigma mode

However, not all the timers can operate in all modes. Timers 1-4 do not support modes
that require external inputs - these are Counter mode and Capture mode. The timer
modes are outlined in Section 7.1.

To use a timer in one of the above modes:

1. First refer to Section 7.2 on setting up a timer.

2. Then refer to Section 7.3 on operating a timer (you should refer to the sub-
section which corresponds to your chosen mode of operation).

For information on Timer interrupts, refer to Section 7.4.

Note: These timers are distinct from the wake timers
described in Chapter 8 and tick timer described in
Chapter 9.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 73

Chapter 7
Timers

7.1 Modes of Timer Operation

The following timer modes are available on the JN516x microcontrollers: Timer, Pulse
Width Modulation (PWM), Counter, Capture and Delta-Sigma. These modes are
summarised in the table below, along with the functions needed for each mode
(following a call to vAHI_TimerEnable()). A mode is supported by all JN516x timers
unless otherwise stated.

Mode Description Functions

Timer The source clock is used to produce a pulse cycle
defined by the number of clock cycles until a positive
pulse edge and until a negative pulse edge. Inter-
rupts can be generated on either or both edges. The
pulse cycle can be produced just once in ‘single-
shot’ mode or continuously in ‘repeat’ mode. Timer
mode is described further in Section 7.3.1.

vAHI_TimerConfigureOutputs()

vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()

PWM As for Timer mode, except the Pulse Width Modu-
lated signal is output on a DIO pin (which depends
on the specific timer used - see Section 7.2.1). PWM
mode is described further in Section 7.3.1.

vAHI_TimerConfigureOutputs()

vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()

Counter The timer is used to count edges on an external
input signal, selected as an external clock input. The
timer can count just rising edges or both rising and
falling edges. Counter mode is described further in
Section 7.3.4.

Supported by Timer 0 but not by Timers 1-4

vAHI_TimerClockSelect()

vAHI_TimerConfigureInputs()

vAHI_TimerStartSingleShot() or
vAHI_TimerStartRepeat()

u16AHI_TimerReadCount()

Capture An external input signal is sampled on every tick of
the source clock. The results of the capture allow the
period and pulse width of the sampled signal to be
calculated. If required, the results can be read with-
out stopping the timer. Capture mode is described
further in Section 7.3.3.

Supported by Timer 0 but not by Timers 1-4

vAHI_TimerConfigureInputs()

vAHI_TimerStartCapture()

vAHI_TimerReadCapture() or
vAHI_TimerReadCaptureFreeRunning()

Delta-Sigma The timer is used as a low-rate DAC. The converted
signal is output on a DIO pin (which depends on the
specific timer used - see Section 7.2.1) and requires
simple filtering to give the analogue signal. Delta-
Sigma mode is available in two options, NRZ and
RTZ, and is described further in Section 7.3.2.

vAHI_TimerStartDeltaSigma()

Table 2: Modes of Timer Operation
74 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
7.2 Setting up a Timer

This section describes how to use the Integrated Peripherals API functions to set up
a timer before the timer is started (starting and operating a timer are described in
Section 7.3).

7.2.1 Selecting DIOs

The timers may use certain DIO pins, as indicated in the table below

* vAHI_TimerSetLocation() can be used to move the Timer 0 signals from DIO8-10 to DIO2-4
or to move the Timer 1-4 signals from DIO11-13 and 17 to DIO5-8. Alternatively, this function
can be used to put the Timer 2 and 3 signals on DO0 and DO1 (Digital Outputs) respectively.

** Timers 1-4 have no inputs

By default, a DIO pin associated with an enabled timer is reserved for use by the timer
but becomes available for General Purpose Input/Output (GPIO) when the timer is
disabled. The DIO pin(s) assigned to a timer can also be released for GPIO use by
calling the function vAHI_TimerDIOControl(). Alternatively, the function
vAHI_TimerFineGrainDIOControl() can be used to configure the DIO usage for all
the timers at the same time - this function can also be used to individually release the
three DIO pins associated with Timer 0.

Timer 0
DIO *

Timer 1
DIO *

Timer 2
DIO *

Timer 3
DIO *

Timer 4
DIO *

Function

8 Not
Applicable**

Not
Applicable**

Not
Applicable**

Not
Applicable**

Clock or gate input (used
in Counter mode)

9 Not
Applicable**

Not
Applicable**

Not
Applicable**

Not
Applicable**

Capture mode input

10 11 12 13 17 PWM and Delta-Sigma
mode output

Table 3: DIO Usage with JN516x Timers

Caution: The above DIO configuration should be
performed before a timer is enabled using
vAHI_TimerEnable(), in order to avoid glitching on the
GPIOs during timer operation.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 75

Chapter 7
Timers

7.2.2 Enabling a Timer

Before a timer can be started, it must be configured and enabled using the function
vAHI_TimerEnable().

The vAHI_TimerEnable() function contains certain configuration parameters, which
are outlined below.

 Clock Divisor:

To obtain the timer frequency, the peripheral clock is divided by a factor of
2prescale, where prescale is a user-configurable integer value in the range 0 to
16 (note that the value 0 leaves the clock frequency unchanged). For example,
for a 16MHz peripheral clock and a prescale value of 3, a division factor of 8 is
used to give a timer frequency of 2MHz. A system clock sourced from the
external crystal oscillator will give the most stable timer frequency (for system
clock options, refer to Section 3.1).

 Interrupts:

Each timer can be configured to generate interrupts on either or both of the
following conditions:

 On the rising edge of the timer output (at end of low period)

 On the falling edge of the timer output (at the end of full timer period)

Timer interrupts are further described in Section 7.4.

 External Output:

The timer signal can be output externally, but this output must be explicitly
enabled. This output is required for Delta-Sigma mode and PWM mode. It is this
option which distinguishes between Timer mode (output disabled) and PWM
mode (output enabled). The DIO pin on which the timer signal is output depends
on the device type:

 For Timer 0, DIO10 is used

 For Timer 1, DIO11 is used

 For Timer 2, DIO12 is used

 For Timer 3, DIO13 is used

 For Timer 4, DIO17 is used

Once a timer has been enabled using vAHI_TimerEnable(), an external clock input
can be selected (if required - see Section 7.2.3) and then the timer can be started in
the desired mode using the relevant start function (see Section 7.3.1 to Section 7.3.4).

Caution: You must enable a timer before attempting
any other operation on it, otherwise an exception may
result.
76 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
7.2.3 Selecting Clocks

Each timer requires a source clock, which is provided by the peripheral clock. This
source clock is divided down to produce the timer’s clock. The division factor is
specified when the timer is enabled using vAHI_TimerEnable() - see Section 7.2.2. A
system clock sourced from the external crystal oscillator gives the most stable timer
frequency (for system clock options, refer to Section 3.1).

When Timer 0 is operating in Counter mode (see Section 7.3.4), an external clock is
monitored by the timer. This signal is input on the DIO8 pin and this input must be
enabled using the function vAHI_TimerClockSelect(), which must be called after
vAHI_TimerEnable().

Note: An enabled timer can be disabled using the
function vAHI_TimerDisable(). This stops the timer (if
running) and powers down the timer block - this is useful
to reduce power consumption when the timer is not
needed. The application must not attempt to access a
disabled timer, otherwise an exception may occur.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 77

Chapter 7
Timers

7.3 Starting and Operating a Timer

This section describes how to use the Integrated Peripherals API functions to start and
operate a timer that has been set up as described in Section 7.2. A timer can be
started in the following modes:

 Timer or PWM mode - see Section 7.3.1

 Delta-Sigma mode - see Section 7.3.2

 Capture mode (Timer 0 only) - see Section 7.3.3

 Counter mode (Timer 0 only) - see Section 7.3.4

7.3.1 Timer and PWM Modes

Timer mode allows a timer to produce a rectangular waveform of a specified period,
where this waveform starts low and then goes high after a specified time. These times
are specified when the timer is started (see below), in terms of the following
parameters:

 Time to rise (u16Hi): This is the number of clock cycles between starting the
timer and the (first) low-to-high transition. An interrupt can be generated at this
transition.

 Time to fall (u16Lo): This is the number of clock cycles between starting the
timer and the (first) high-to-low transition (effectively the period of one pulse
cycle). An interrupt can be generated at this transition.

These times and the timer signal are illustrated below in Figure 7.

Figure 7: Timer Mode Signal

Time to rise (configurable)

Time to fall (configurable)

LOW HIGH
78 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Within Timer mode, there are two sub-modes and the timer is started in these modes
using different functions:

 Single-shot mode: The timer produces a single pulse cycle (as depicted in
Figure 7) and then stops. The timer can be started in this mode using
vAHI_TimerStartSingleShot().

 Repeat mode: The timer produces a train of pulses (where the repetition rate
is determined by the configured ‘time to fall’ period - see above). The timer can
be started in this mode using vAHI_TimerStartRepeat().

Once started, the timer can be stopped using the function vAHI_TimerStop().

PWM (Pulse Width Modulation) mode is identical to Timer mode except the produced
waveform is output on a DIO pin - see Section 7.2.1 for the relevant DIOs. This output
can be enabled in vAHI_TimerEnable(). The output can also be inverted using the
function vAHI_TimerConfigureOutputs().

7.3.2 Delta-Sigma Mode (NRZ and RTZ)

Delta-Sigma mode allows a timer to be used as a simple low-rate DAC. This requires
the timer output on a DIO pin to be enabled in the call to vAHI_TimerEnable() - see
Section 7.2.1 for the relevant DIOs. An RC (Resistor-Capacitor) circuit must be
inserted between this pin and Ground (see Figure 8).

A timer is started in Delta-Sigma mode using vAHI_TimerStartDeltaSigma(). The
value to be converted is digitally encoded by the timer as a pseudo-random waveform
in which:

 the total number of clock cycles that make up one period of the waveform is
fixed (at 216 for NRZ and at 217 for RTZ - see below)

 the number of high clock cycles during one period is set to a number which is
proportional to the value to be converted

 the high clock cycles are distributed randomly throughout a complete period

Thus, the capacitor will charge in proportion to the specified value such that, at the end
of the period, the voltage produced is an analogue representation of the digital value.
The output voltage requires calibration - for example, you could determine the
maximum possible voltage by measuring the voltage across the capacitor after a
conversion with the high period set to the whole pulse period (less one clock cycle).

Two Delta-Sigma mode options are available, NRZ and RTZ:

 NRZ (Non Return-to-Zero): Delta-Sigma NRZ mode uses the 16MHz
peripheral clock and the period of the waveform is fixed at 216 clock cycles. The
NRZ option means that clock cycles are implemented without gaps between
them (see RTZ option below). You must define the number of clock cycles
spent in the high state during the pulse cycle such that this high period is
proportional to the value to be converted. This number is set when the timer is
started using the function vAHI_TimerStartDeltaSigma(). For example, if you
wish to convert values in the range 0-100 then 216 clock cycles would
correspond to 100, and to convert the value 25 you must set the number of high
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 79

Chapter 7
Timers

clock cycles to 214 (a quarter of the pulse cycle). For an illustration, refer to
Figure 8.

 RTZ (Return-to-Zero): Delta-Sigma RTZ mode is similar to the NRZ option,
described above, except that after every clock cycle, a blank (low) clock cycle
is inserted. Thus, each pulse cycle takes twice as many clock cycles - that is,
217. Note that this does not affect the required number of high clock cycles to
represent the digital value being converted. This mode doubles the conversion
period but improves linearity if the rise and fall times of the outputs are different
from each other.

7.3.3 Capture Mode

Capture mode is available on Timer 0 only (and not on Timers 1-4). In this mode, the
timer can be used to measure the pulse width of an external input. The external signal
must be provided on a DIO pin - see Section 7.2.1 for the relevant DIOs. The timer
measures the number of clock cycles in the input signal from the start of capture to the
next low-to-high transition and also to next the high-to-low transition. The number of
clock cycles in the last pulse is then the difference between these measured values
(see Figure 9). The pulse width in units of time is then given by:

Pulse width (in units of time) = Number of clock cycles in pulse X Clock cycle period

A timer is started in Capture mode using the function vAHI_TimerStartCapture(). The
timer can be stopped and the most recent measurements obtained using the function

Note: For more information on ‘Delta-Sigma’ mode,
refer to the data sheet for your microcontroller.

Figure 8: Delta-Sigma NRZ Mode Operation

R

C

DIO

Period
(216 clock cycles, e.g. corresponding to 100)

High periods represent value, e.g. 214 clock cycles corresponding to 25

JN516x Timer in Delta-Sigma Mode

Vout
80 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerReadCapture(). These measurements can alternatively be obtained
without stopping the timer by calling vAHI_TimerReadCaptureFreeRunning().

The input signal for Capture mode can be inverted. This option is configured using the
function vAHI_TimerConfigureInputs() and allows the low-pulse width (instead of
the high-pulse width) of the input signal to be measured.

Note: Only the measurements for the last low-to-high
and high-to-low transitions are stored, and then returned
when the above ‘read capture’ functions are called.
Therefore, it is important not to call these functions
during a pulse, as in this case the measurements will
not give sensible results. To ensure that you obtain the
capture results after a pulse has completed, you should
enable interrupts on the falling edge when the timer is
configured using vAHI_TimerEnable().

Figure 9: Capture Mode Operation

Clock cycles to low-to-high transition

Clock cycles to high-to-low transition

Pulse
width

Timer started in
Capture mode

Timer stopped
and results
obtained

Clock cycles
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 81

Chapter 7
Timers

7.3.4 Counter Mode

Counter mode is available on Timer 0 only (and not on Timers 1-4). In this mode, the
timer counts edges on an external clock signal, which must be provided on a DIO pin
- see Section 7.2.1 for the relevant DIOs. Counter mode is enabled by selecting an
external clock input in a call to vAHI_TimerClockSelect().

The timer can count rising edges only or both rising and falling edges. This must be
configured using the function vAHI_TimerConfigureInputs(). Edges must be at least
100ns apart, i.e. pulses must be wider than 100ns.

Like Timer/PWM mode, the timer can then be started in one of two sub-modes:

 Single-shot mode: The timer can be started in this mode using the function
vAHI_TimerStartSingleShot() and will stop at a specified count value (u16Lo).

 Repeat mode: The timer can be started in this mode using the function
vAHI_TimerStartRepeat(). The timer operates continuously and the counter
resets to zero each time the specified count value (u16Lo) is reached.

The above start functions each allow two counts to be specified at which interrupts will
be generated (timer interrupts must also have been enabled in vAHI_TimerEnable()).

The current count of a running timer can be obtained at any time using the function
u16AHI_TimerReadCount(). The timer can be stopped using vAHI_TimerStop().
82 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
7.4 Timer Interrupts

A timer can be configured in vAHI_TimerEnable() to generate interrupts on either or
both of the following conditions:

 On the rising edge of the timer output (at end of low period)

 On the falling edge of the timer output (at the end of full timer period)

The handling of timer interrupts must be incorporated in a user-defined callback
function for the particular timer. These callback functions are registered using
dedicated registration functions for the individual timers:

 vAHI_Timer0RegisterCallback() for Timer 0

 vAHI_Timer1RegisterCallback() for Timer 1

 vAHI_Timer2RegisterCallback() for Timer 2

 vAHI_Timer3RegisterCallback() for Timer 3

 vAHI_Timer4RegisterCallback() for Timer 4

The relevant callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_TIMER0, E_AHI_DEVICE_TIMER1, E_AHI_DEVICE_TIMER2,
E_AHI_DEVICE_TIMER3 or E_AHI_DEVICE_TIMER4 occurs. The exact nature of
the interrupt (from the two conditions listed above) can then be identified from a bitmap
that is passed into the function. Note that the interrupt will be automatically cleared
before the callback function is invoked.

Note: The callback function prototype is detailed in
Appendix A.1. The interrupt source information is
provided in Appendix B.

Caution: A registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 83

Chapter 7
Timers

84 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
8. Wake Timers

This chapter describes control of the on-chip wake timers using functions of the
Integrated Peripherals API.

The JN516x microcontroller includes two wake timers, denoted Wake Timer 0 and
Wake Timer 1, where each is a 41-bit counter. The wake timers are based on the
32kHz clock (which can be sourced internally or externally, as described in Section
3.1.4) and can run while the device is in sleep mode (and while the CPU is running).
They are generally used to time the sleep duration and wake the device at the end of
the sleep period. A wake timer counts down from a programmed value and wakes the
device when the count reaches zero by generating an interrupt or wake-up event.

8.1 Using a Wake Timer

This section describes how to use the Integrated Peripherals API functions to operate
a wake timer.

8.1.1 Enabling and Starting a Wake Timer

A wake timer is enabled using the function vAHI_WakeTimerEnable(). This function
allows the interrupt to be enabled/disabled that is generated when the counter reaches
zero. Note that wake timer interrupts are handled by the callback function registered
using the function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

A wake timer can then be started using the function vAHI_WakeTimerStartLarge().
This function takes as a parameter the starting value for the countdown - this value
must be specified in 32kHz clock periods (thus, 32 corresponds to 1 millisecond).

On reaching zero, the timer ‘fires’, rolls over to 0x1FFFFFFFFFF and continues to
count down. If enabled, the wake timer interrupt is generated on reaching zero.

Note: If the 32kHz clock is sourced from the (default)
internal 32kHz RC oscillator, the wake timers may run
up to 18% fast or slow. For more accurate timings, you
are advised to first calibrate the clock and adjust the
specified count value accordingly, as described in
Section 8.2.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 85

Chapter 8
Wake Timers

8.1.2 Stopping a Wake Timer

A wake timer can be stopped at any time using the function vAHI_WakeTimerStop().
The counter will then remain at the value at which it was stopped and will not generate
an interrupt.

8.1.3 Reading a Wake Timer

The current count of a wake timer can be obtained using the function
u64AHI_WakeTimerReadLarge(). This function does not stop the wake timer.

8.1.4 Obtaining Wake Timer Status

The states of the wake timers can be obtained using the following functions:

 u8AHI_WakeTimerStatus() can be used to find out which wake timers are
currently running.

 u8AHI_WakeTimerFiredStatus() can be used to find out which wake timers
have fired (passed zero). The ‘fired’ status of a wake timer is also cleared by
this function.

8.2 Clock Calibration

The wake timers are driven by the JN516x microcontroller’s 32kHz clock. If this clock
is sourced from the internal 32kHz RC oscillator, it may run up to 18% fast or slow,
depending on temperature, supply voltage and manufacturing tolerance. To achieve
more accurate timings in this case, the self-calibration facility should be used that
compares the 32kHz clock against the faster and more accurate peripheral clock,
which should be running at 16MHz with the system clock sourced from the external
crystal oscillator (for system clock information, refer to Section 3.1). This test is
performed using Wake Timer 0. The result of this calibration allows you to calculate
the required number of 32kHz clock cycles to achieve the desired timer duration when
starting a wake timer with the function vAHI_WakeTimerStart() or
vAHI_WakeTimerStartLarge().

Note 1: If using u8AHI_WakeTimerFiredStatus() to
check whether a wake timer caused a wake-up event,
you must call this function before u32AHI_Init().

Note 2: If using the JenNet protocol, do not call
u8AHI_WakeTimerFiredStatus() to obtain the wake
timer interrupt status on waking from sleep. At wake-up,
JenNet calls u32AHI_Init() internally and clears the
interrupt status before passing control to the application.
The System Controller callback function must be used
to obtain the interrupt status, if required.
86 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
The calibration is performed using the function u32AHI_WakeTimerCalibrate(), as
described below.

1. Wake Timer 0 must be disabled (using vAHI_WakeTimerStop(), if required).

2. The status of both wake timers (0 and 1) must be cleared by calling the
function u8AHI_WakeTimerFiredStatus().

3. The calibration is started using u32AHI_WakeTimerCalibrate().

This causes Wake Timer 0 to start counting down 20 clock periods of the
internal 32kHz clock. At the same time, a reference counter starts counting up
from zero using the 16MHz peripheral clock.

4. When the wake timer reaches zero, u32AHI_WakeTimerCalibrate() returns
the number of 16MHz clock cycles registered by the reference counter. Let
this value be n.

 If the clock is running at 32kHz, n = 10000

 If the clock is running slower than 32kHz, n > 10000

 If the clock is running faster than 32kHz, n < 10000

5. You can then calculate the required number of 32kHz clock periods (for
vAHI_WakeTimerStart() or vAHI_WakeTimerStartLarge()) to achieve the
desired timer duration. If T is the required duration in seconds, the appropriate
number of 32kHz clock periods, N, is given by:

For example, if a value of 9000 is obtained for n, this means that the 32kHz
clock is running fast. Therefore, to achieve a 2 second timer duration, instead
of requiring 64000 clock periods, you will need (10000/9000) x 32000 x 2 clock
periods; that is, 71111 (rounded down).

Tip: To ensure that the device wakes in time for a
scheduled event, it is better to under-estimate the
required number of 32kHz clock periods than to over-
estimate them.

N
10000

n

 32000 T=
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 87

Chapter 8
Wake Timers

88 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
9. Tick Timer

This chapter describes control of the Tick Timer using functions of the Integrated
Peripherals API.

The Tick Timer is a hardware timer derived from the peripheral clock and can be used
to implement:

 timing interrupts to software

 regular events, such as ticks for software timers or an operating system

 a high-precision timing reference

 system monitor timeouts, as used in a watchdog timer

9.1 Tick Timer Operation

The Tick Timer counts upwards until the count matches a pre-defined reference value
(the starting value can be specified). The timer can be operated in one of three modes,
which determine what the timer will do once the reference count has been reached.
The options are:

 Continue counting upwards

 Restart the count from zero

 Stop counting (single-shot mode)

An interrupt can also be enabled which is generated on reaching the reference count.

Note: For high-precision Tick Timer operation, the
peripheral clock should run at 16MHz with the system
clock sourced from the external crystal oscillator. For
system clock information, refer to Section 3.1.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 89

Chapter 9
Tick Timer

9.2 Using the Tick Timer

This section describes how to use the Integrated Peripherals API functions to set up
and run the Tick Timer.

9.2.1 Setting Up the Tick Timer

On device power-up/reset, the Tick Timer is disabled. However, before setting up the
Tick Timer, you are advised to call the function vAHI_TickTimerConfigure() and
specify the disable option. The starting count and reference count can then be set as
follows:

1. The starting count is set (in the range 0 to 0xFFFFFFFF) using the function
vAHI_TickTimerWrite(). Note that if this function is called while the timer is
enabled, the timer will immediately start counting from the specified value.

2. The reference count is set (in the range 0 to 0x0FFFFFFF) using the function
vAHI_TickTimerInterval().

9.2.2 Running the Tick Timer

Once the timer has been set up (as described in Section 9.2.1), it can be started by
calling the function vAHI_TickTimerConfigure() again but, this time, specifying one
of the three operational modes listed in Section 9.1.

The current count of the Tick Timer can be obtained at any time by calling the function
u32AHI_TickTimerRead().

Note that if the Tick Timer is started in single-shot mode, once it has stopped (on
reaching the reference count), it can be started again simply by setting another
starting value using vAHI_TickTimerWrite().
90 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
9.3 Tick Timer Interrupts

An interrupt can be enabled that will be generated when the Tick Timer reaches its
reference count. This interrupt is enabled using the function
vAHI_TickTimerIntEnable().

The Tick Timer interrupt is handled by a user-defined callback function which is
registered using the function vAHI_TickTimerRegisterCallback().

The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_TICK_TIMER occurs. For details of the callback function prototype,
refer to Appendix A.1.

The following functions are also provided to deal with the status of the Tick Timer
interrupt:

 bAHI_TickTimerIntStatus() obtains the current interrupt status of the Tick
Timer.

 vAHI_TickTimerIntPendClr() clears a pending Tick Timer interrupt.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 91

Chapter 9
Tick Timer

92 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
10. Watchdog Timer

This chapter describes control of the Watchdog Timer on the JN516x device using
functions of the Integrated Peripherals API.

The Watchdog Timer is provided to allow the JN516x device to recover from software
lock-ups. Note that a watchdog can also be implemented using the Tick Timer,
described in Chapter 9.

10.1 Watchdog Operation

The Watchdog Timer implements a timeout period and is derived from the internal
high-speed RC oscillator (which runs at 27MHz or 32MHz).

On reaching the timeout period, the JN516x device is automatically reset. Therefore,
to avoid a chip reset, the application must regularly reset the Watchdog Timer (to the
start of the timeout period) in order to prevent the timer from expiring and to indicate
that the application still has control of the JN516x device. If the timer is allowed to
expire, the assumption is that the application has lost control of the chip and, thus, a
hardware reset of the chip is automatically initiated.

Note that the Watchdog Timer continues to run during Doze mode but not during Sleep
or Deep Sleep mode, or when the hardware debugger has taken control of the CPU
(it will, however, automatically restart when the debugger un-stalls the CPU).

Note 1: Following a power-up, reset or wake-up from
sleep, the Watchdog Timer is enabled with the
maximum possible timeout period of 16392ms
(regardless of its state before any sleep or reset).

Note 2: The Watchdog Timer can be configured to
invoke an exception on timeout. This allows debugging
of the situation that led to the timeout during application
development. For more information, refer to Section
10.2.3.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 93

Chapter 10
Watchdog Timer

10.2 Using the Watchdog Timer

This section describes how to use the Integrated Peripherals API functions to start and
reset the Watchdog Timer.

10.2.1 Starting the Timer

The Watchdog Timer is started by default on the JN516x device. It is started with the
maximum possible timeout of 16392ms.

 If the Watchdog Timer is required with a shorter timeout period, the timer must
be restarted with the desired period. To do this, first call the function
vAHI_WatchdogRestart() to restart the timer from the beginning of the timeout
period and then call the function vAHI_WatchdogStart() to specify the new
timeout period (see below).

 If the Watchdog Timer is not required in the application, call the function
vAHI_WatchdogStop() at the start of your code to stop the timer.

In the function vAHI_WatchdogStart(), the timeout period must be specified via an
index, Prescale (in the range 0 to 12), which the function uses to calculate the timeout
period, in milliseconds, according to the following formulae:

Timeout Period = 8ms if Prescale = 0

Timeout Period = [2(Prescale - 1) + 1] x 8ms if 1 Prescale 12

This gives timeout periods in the range 8 to 16392ms.

Note that if the Watchdog Timer is sourced from an internal RC oscillator, the actual
timeout period obtained may be up to 18% less than the calculated value due to
variations in the oscillator.

The current count of a running Watchdog Timer can be obtained using the function
u16AHI_WatchdogReadValue().

Note: If called while the Watchdog Timer is in a stopped
state, vAHI_WatchdogStart() will start the timer with
the specified timeout period. If this function is called
while the timer is running, the timer will continue to run
but with the newly specified timeout period.

Caution: Be sure to set the Watchdog timeout period to
be greater than the worst-case Flash memory read-write
cycle. If the Watchdog times out during a Flash memory
access, the JN516x microcontroller will enter
programming mode. For information on read-write cycle
times, refer to the relevant Flash memory data sheet.
94 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
10.2.2 Resetting the Timer

A running Watchdog Timer should be reset by the application before the pre-set
timeout period is reached. This is done using the function vAHI_WatchdogRestart(),
which restarts the timer from the beginning of the timeout period. When applying this
reset, the application should take into account the fact that the true timeout period may
be up to 18% shorter than the calculated timeout period (if the timer is sourced from
an internal RC oscillator - see Section 10.2.1).

If the application fails to prevent a Watchdog timeout, the chip will be automatically
reset. The function bAHI_WatchdogResetEvent() can be used following a chip reset
to find out whether the last hardware reset was caused by a Watchdog Timer expiry
event.

Note that it is also possible to stop the Watchdog Timer and freeze its count by using
the function vAHI_WatchdogStop().

10.2.3 Exception Handler for Debug

By default, the expiry of the Watchdog Timer will cause a reset of the JN516x device.
Alternatively, an exception can be invoked on expiry of the timer. The exception is
serviced by the stack overflow exception handler, which can call the function
bAHI_WatchdogResetEvent() to determine if a Watchdog exception occurred. This
may help to debug the situation which led to the Watchdog timeout. Therefore, this
option is designed for use only during application development.

The exception option is enabled by calling the function vAHI_WatchdogException().
The stack overflow exception handler function should be developed before enabling
the Watchdog exception option.

Note: The stack overflow exception handler function
should have the following prototype definition:

PUBLIC void vException_StackOverflow(void);

We would not expect an exception handler written in C
to return - once it has performed any actions, it should
either sit in a loop or reset the device.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 95

Chapter 10
Watchdog Timer

96 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
11. Pulse Counters

This chapter describes control of the pulse counters on the JN516x device using
functions of the Integrated Peripherals API.

Two pulse counters are provided on the JN516x device, Pulse Counter 0 and Pulse
Counter 1. A pulse counter detects and counts pulses in an external signal that is input
on an associated DIO pin.

11.1 Pulse Counter Operation

The two pulse counters, Pulse Counter 0 and Pulse Counter 1, are each 16-bit
counters which, by default, receive their input signals on pins DIO1 and DIO8,
respectively (alternatively, Pulse Counter 0 can take its input from DIO4 and Pulse
Counter 1 can take its input from DIO5). The two counters can be combined together
to form a single 32-bit counter, if desired - in this case, the DIO on which the input
signal is taken can be selected from the input pins for the two counters.

The pulse counters can operate in all power modes of the JN516x device, including
sleep, and with input signals of up to 100kHz. An increment of the counter can be
configured to occur on a rising or falling edge of the relevant input. Each pulse counter
has an associated user-defined reference value. An interrupt (or wake-up event, if
asleep) can be generated when the counter passes its pre-configured reference value
- that is, when the count reaches (reference value + 1). The counters do not saturate
at their maximum count values, but wrap around to zero.

Debounce

The input pulses can be debounced using the 32kHz clock, to avoid false counts on
slow or noisy edges. The debounce feature requires a number of identical consecutive
input samples (2, 4 or 8) before a change in the input signal is recognised. Depending
on the debounce setting, a pulse counter can work with input signals up to the
following frequencies:

 100kHz, if debounce disabled

 3.7kHz, if debounce enabled to operate with 2 consecutive samples

 2.2kHz, if debounce enabled to operate with 4 consecutive samples

 1.2kHz, if debounce enabled to operate with 8 consecutive samples

The required debounce setting is selected when the pulse counter is configured, as
described in Section 11.2.1.

Note: Pulse Counter interrupts are handled by the
callback function for the System Controller interrupts,
registered using vAHI_SysCtrlRegisterCallback() -
see Section 11.3.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 97

Chapter 11
Pulse Counters

When using debounce, the 32kHz clock must be active - therefore, for minimum sleep
current, the debounce feature should not be used.

11.2 Using a Pulse Counter

This section describes how to use the Integrated Peripherals API functions to
configure, start/stop and monitor a pulse counter.

11.2.1 Configuring a Pulse Counter

A pulse counter must first be configured using the bAHI_PulseCounterConfigure()
function. This function call must specify:

 if the two 16-bit pulse counters are to be combined into a single 32-bit pulse
counter and, if so, the pin on which the combined counter will take its input

 if the pulse count is to be incremented on the rising edge or falling edge of a
pulse in the input signal

 if the debounce feature is to be enabled and, if so, the number of consecutive
samples (2, 4 or 8) with which it will operate (see Section 11.1)

 if an interrupt is to be enabled which is generated when the pulse count passes
the reference value (see below)

When a pulse counter is selected using this function, the input signal will automatically
be taken from the relevant pin: DIO1 for Pulse Counter 0, DIO8 for Pulse Counter 1
(the combined pulse counter can take its input from either of these DIOs). However,
the input can be moved to another pin using vAHI_PulseCounterSetLocation():

 For Pulse Counter 0, the input can be moved from DIO1 to DIO4

 For Pulse Counter 1, the input can be moved from DIO8 to DIO5

The configuration of the pulse counter is completed by calling the function
bAHI_SetPulseCounterRef() in order to set the reference count. Note that the pulse
counter will continue to count beyond the specified reference value, but will wrap
around to zero on reaching the maximum possible count value.

11.2.2 Starting and Stopping a Pulse Counter

A configured pulse counter is started using the function bAHI_StartPulseCounter().
Note that the count may increment by one when this function is called (even though
no pulse has been detected).

The pulse counter will continue to count until stopped using the function
bAHI_StopPulseCounter(), at which point the count will be frozen. The count can
then be cleared to zero using one of the following functions:

 bAHI_Clear16BitPulseCounter() for Pulse Counter 0 or 1

 bAHI_Clear32BitPulseCounter() for the combined pulse counter
98 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
11.2.3 Monitoring a Pulse Counter

The application can detect whether a running pulse counter has reached its reference
count in either of the following ways:

 An interrupt can be enabled which is triggered when the reference count is
passed (see Section 11.3).

 The application can use the function u32AHI_PulseCounterStatus() to poll the
pulse counters - this function returns a bitmap which includes all running pulse
counters and indicates whether each counter has reached its reference value.

Functions are also provided that allow the current count of a pulse counter to be read
without stopping the pulse counter or clearing its count. The required function depends
on the pulse counter:

 bAHI_Read16BitCounter() for Pulse Counter 0 or 1

 bAHI_Read32BitCounter() for the combined pulse counter

When a pulse counter reaches its reference count, it continues counting beyond this
value. If required, a new reference count can then be set (while the counter is running)
using the function bAHI_SetPulseCounterRef().

11.3 Pulse Counter Interrupts

A pulse counter can optionally generate an interrupt when its count passes the pre-set
reference value - that is, when the count reaches (reference value + 1). This interrupt
can be enabled as part of the call to the function bAHI_PulseCounterConfigure().

The pulse counter interrupt is handled as a System Controller interrupt and must
therefore be incorporated in the user-defined callback function registered using the
function vAHI_SysCtrlRegisterCallback() - see Section 3.5.

The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_SYSCTRL occurs. If the source of the interrupt is Pulse Counter 0 or
Pulse Counter 1, this will be indicated in the bitmap that is passed into the callback
function (if the combined pulse counter is in use, this counter will be shown as Pulse
Counter 0 for the purpose of interrupts). Note that the interrupt will be automatically
cleared before the callback function is invoked.

Once a pulse counter interrupt has occurred, the pulse counter will continue to count
beyond its reference value. If required, a new reference count can then be set (while
the counter is running) using the function bAHI_SetPulseCounterRef().

Note: A pulse counter continues to run during sleep. A
pulse counter interrupt can be used to wake the JN516x
device from sleep.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 99

Chapter 11
Pulse Counters

100 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
12. Infra-Red Transmitter

This chapter describes control of the infra-red transmitter on the JN516x device using
functions of the Integrated Peripherals API.

Infra-red transmission is a special feature of Timer 2 in which the timer is used to
generate waveforms for infra-red remote control applications.

12.1 Infra-Red Transmitter Operation

Remote control protocols, such as Philips RC-6, apply On-Off Key (OOK) modulation
to a carrier signal using an encoded bit stream. The infra-red transmitter is able to
accommodate a variety of remote control protocols that have different carrier
frequency, carrier duty-cycle and data bit encoding requirements. The infra-red
transmitter uses Timer 2 to produce a programmable carrier waveform that is OOK
modulated by a programmable bit sequence stored in RAM. The resultant waveform
is output to the associated Timer 2 output pin.

Example Waveform

An example of an OOK modulated waveform is shown in Figure 10.

In this example, the resultant OOK modulated waveform is generated from the logical
AND of a periodic carrier signal and the binary bit pattern 1011, where the period of
each data bit is exactly equal to three times the carrier-period.

Caution: A typical infra-red LED requires at least 15mA
of drive current. An external transistor or LED driver will
be required to supply this current because the standard
digital outputs do not have this drive strength capability.

Figure 10: Example OOK Modulated Waveform

1 0 1 1Data

Waveform

Bit-periodCarrier-period
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 101

Chapter 12
Infra-Red Transmitter

12.2 Using the Infra-Red Transmitter

This section describes how to use the Integrated Peripherals API functions to
configure, start and monitor an infra-red transmission.

12.2.1 Configuring the Infra-Red Transmitter

The infra-red transmitter must first be enabled and configured using the
bAHI_InfraredEnable() function. This function call must specify:

 the clock prescale value used to divide down the peripheral clock and produce
the timer clock

 the number of timer clock periods after starting the timer before the carrier goes
high - this defines the carrier low duration

 the number of timer clock periods after starting the timer before the carrier goes
low again - this defines the carrier period

 the bit-period in units of the carrier period

 the output signal polarity

 if an interrupt is to be enabled that indicates the end of transmission

Example Configuration

The Philips RC-6 protocol requires a carrier signal of 36kHz ±10% with a duty cycle
between 25% and 50%. In this example we will use a duty cycle of 30%.

The RC-6 protocol encodes logic ‘0’ as bits ‘01’, logic ‘1’ as bits ‘10’ and the leader
symbol as bits ‘11111100’. Each individual bit has a duration of 16 times the carrier
period (i.e. 16x1/36kHz ≈ 444µs). These waveform timing requirements can be
satisfied by calling bAHI_InfraredEnable() with the following input parameter values:

 u8Prescale: 2 (timer clock period = 2u8Prescale/16MHz = 4/16MHz = 250ns)

 u16Hi: 78 (carrier low duration = 78x250ns = 19.5µs)

 u16Lo: 111 (carrier period = 111x250ns = 27.75µs, i.e. frequency = 36.036kHz)

 u16BitPeriodInCarrierPeriods: 16 (bit period = 16x27.75µs = 444µs)

 bInvertOutput: TRUE or FALSE as required by the external transistor

 bInterruptEnable: TRUE or FALSE as required by the application

Note: When using the infra-red transmission feature of
Timer 2, none of the common Timer functions described
in Chapter 7 and listed in Chapter 23 should be called
for Timer 2 except vAHI_TimerSetLocation() and
vAHI_TimerFineGrainDIOControl(), if required.
102 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
12.2.2 Starting an Infra-Red Transmission

Having configured the waveform timing requirements for the remote control protocol
by calling bAHI_InfraredEnable(), the user can start the waveform generation for the
infra-red transmission by calling the function bAHI_InfraredStart(). This function call
must specify:

 the start address in RAM of a 32-bit wide array containing the encoded bits to
be transmitted (maximum array size of 128 words)

 the number of encoded bits from the array to be transmitted (1 to 4096 bits)

Prior to calling bAHI_InfraredStart(), the user should populate the data array with the
required encoded bit pattern to be transmitted. The MSB of each 32-bit word will be
transmitted first. For example, a transmission of 35 bits will require the user to program
all 32 bits in the first 32-bit word followed by the upper 3 bits in the second 32-bit word.

On calling bAHI_InfraredStart(), waveform generation will start - the device will
automatically read the specified number of bits from the data array using a DMA
mechanism and produce an OOK modulated carrier waveform using the pre-
configured timing requirements.

By default, the generated waveform will be output to pin DIO12 (i.e. the default output
pin of Timer 2). If required, the Timer 2 output can be moved to pin DIO6 or pin DO0
by calling the function vAHI_TimerSetLocation() - see Section 7.2.1.

Note: To guarantee accurate waveform timings the user
is advised to ensure that the peripheral clock operates
at 16MHz with the system clock sourced from the
external crystal oscillator - see Section 3.1.

Note: The data array should contain an encoded bit
sequence. It is the responsibility of the application to
perform this encoding as required by the protocol.

Note: To prevent glitches from occurring on the output
pins associated with Timer 2, we recommend that the
application calls vAHI_TimerSetLocation() before
bAHI_InfraredEnable().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 103

Chapter 12
Infra-Red Transmitter

12.2.3 Monitoring an Infra-Red Transmission

The application can detect when an infra-red transmission has completed in either of
the following ways:

 An interrupt can be enabled which is triggered when the transmission
completes (see Section 12.3)

 The application can use the function bAHI_InfraredStatus() to poll the infra-
red transmission status - this function returns TRUE if a transmission is in
progress and FALSE otherwise

12.2.4 Disabling the Infra-Red Transmitter

If enabled, the infra-red transmitter may be subsequently disabled by calling the
function vAHI_InfraredDisable(). After calling this function, bAHI_InfraredEnable()
must first be called before attempting to call any other infra-red function.

12.3 Infra-Red Transmitter Interrupt

The infra-red transmitter can optionally generate an interrupt when the infra-red
transmission has completed. This interrupt can be enabled as part of the call to the
function bAHI_InfraredEnable().

The interrupt is handled as an Infra-Red Transmitter interrupt and must be
incorporated in the user-defined callback function registered using the function
vAHI_InfraredRegisterCallback().

The registered callback function is automatically invoked when an interrupt of the type
E_AHI_DEVICE_INFRARED occurs. The source of the interrupt will be indicated in
the bitmap that is passed into the callback function. Note that the interrupt will be
automatically cleared before the callback function is invoked.
104 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
13. Serial Interface (SI)

This chapter describes control of the 2-wire Serial Interface (SI) using functions of the
Integrated Peripherals API.

The JN516x microcontroller includes an industry-standard 2-wire synchronous Serial
Interface that provides a simple and efficient method of data exchange between
devices. The Serial Interface is similar to an I2C interface and comprises two lines:

 Serial data line on DIO15

 Serial clock line on DIO14

These signals can be moved to DIO17 and DIO16, respectively.

The SI peripheral on a JN516x device can act as a master or a slave of the Serial
Interface bus:

 SI master functionality is described in Section 13.1

 SI slave functionality is described in Section 13.2

13.1 SI Master

The SI master can implement communication in either direction with a slave device on
the Serial Interface bus. This section describes how to implement a data transfer.

Tip: The protocol used by the Serial Interface is detailed

in the I2C Specification (available from www.nxp.com).

Note: The Serial Interface bus on the JN516x device
can have more than one master, but multiple masters
cannot use the bus at the same time. To avoid this, an
arbitration scheme is provided on to resolve conflicts
caused by competing masters attempting to take control
of the Serial Interface bus. If a master loses arbitration,
it must wait and try again later.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 105

Chapter 13
Serial Interface (SI)

13.1.1 Enabling the SI Master

The SI master has its own set of functions in the Integrated Peripherals API (and the
SI slave has a separate set of functions). Before using any of the SI master functions,
the SI peripheral must be enabled using the function vAHI_SiMasterConfigure().

When enabled, this interface uses the DIO14 pin as the clock line and the DIO15 pin
as the bi-directional data line. However, these signals can be moved to DIO16 and
DIO17, respectively, using the function vAHI_SiSetLocation().

As a bus master, the microcontroller provides the clock (on the clock line) for
synchronous data transfers (on the data line), where the clock is scaled from the
peripheral clock which must run at 16MHz (the system clock must be sourced from an
external crystal oscillator - for system clock information, refer to Section 3.1). The
clock scaling factor, PreScaler, is specified when the interface is enabled - the final
operating frequency of the interface is given by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

The SI enable functions also allow SI interrupts (of the type E_AHI_DEVICE_SI) to be
enabled, which are handled by the user-defined callback function registered using the
function vAHI_SiRegisterCallback(). For details of the callback function prototype,
refer to Appendix A.1.

vAHI_SiMasterConfigure() also allows a pulse suppression filter to be enabled,
which suppresses any spurious pulses (high or low) with a pulse width less than
62.5ns on the clock and data lines. Also note that an SI master enabled using this
function can later be disabled using vAHI_SiMasterDisable().

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
106 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
13.1.2 Writing Data to SI Slave

The procedure below describes how the SI master can write data to an SI slave which
has a 7-bit or 10-bit address. It is assumed that the SI master has been enabled as
described in Section 13.1.1. The data can comprise one or more bytes.

Step 1 Take control of SI bus and write slave address to bus

The SI master must first take control of the SI bus and transmit the address of the
target slave for the data transfer. The required method is different for 7-bit and 10-bit
slave addresses, as outlined below:

For 7-bit slave address:

a) Call the function vAHI_SiMasterWriteSlaveAddr() to specify the 7-bit slave
address. Also specify through this function that a write operation will be
performed on the slave. This function will put the specified slave address in the SI
master’s buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
specified above.

c) Wait for an indication of success (slave address sent and target slave responded)
by polling or waiting for an interrupt - for details of this stage, refer to Section
13.1.4.

For 10-bit slave address:

a) Call the function vAHI_SiMasterWriteSlaveAddr() to indicate that 10-bit slave
addressing will be used and to specify the two most significant bits of the relevant
slave address (when specified, these bits must be bitwise ORed with 0x78). Also
specify through this function that a write operation will be performed on the slave.
This function will put the specified information in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

c) Wait for an indication of success (slave address information sent and at least one
matching slave responded) by polling or waiting for an interrupt - for details of this
stage, refer to Section 13.1.4.

d) Call the function vAHI_SiMasterWriteData8() to specify the eight remaining bits
of the slave address. This function will put the specified information in the SI
master’s buffer, but will not transmit it on the SI bus.

e) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the slave address information specified above.

f) Wait for an indication of success (slave address information sent and target slave
responded) by polling or waiting for an interrupt - for details of this stage, refer to
Section 13.1.4.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 107

Chapter 13
Serial Interface (SI)

Step 2 Send data byte to slave

If only one data byte or the final data byte is to be sent to the slave then go directly to
Step 3, otherwise follow the instructions below:

a) Call the function vAHI_SiMasterWriteData8() to specify the data byte to be sent.
This function will put the specified data in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the data byte specified above.

c) Wait for an indication of success (data byte sent and target slave responded) by
polling or waiting for an interrupt - for details of this stage, refer to Section 13.1.4.

Repeat the above instructions (Step 2a-c) for all subsequent data bytes except the
final byte to be sent (which is covered in Step 3).

Step 3 Send final data byte to slave

Send the final (or only) data byte to the slave as follows:

a) Call the function vAHI_SiMasterWriteData8() to specify the data byte to be sent.
This function will put the specified data in the SI master’s buffer, but will not
transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Write and Stop
commands, in order to transmit the data byte specified above and release control
of the SI bus.

c) Wait for an indication of success (data byte sent and target slave responded) by
polling or waiting for an interrupt - for details of this stage, refer to Section 13.1.4.

13.1.3 Reading Data from SI Slave

The procedure below describes how the SI master can read data sent from an SI slave
which has a 7-bit or 10-bit address. It is assumed that the SI master has been enabled
as described in Section 13.1.1. The data can comprise one or more bytes.

Step 1 Take control of SI bus and write slave address to bus

The SI Master must first take control of the SI bus and transmit the address of the
slave which is to be the source of the data transfer. The required method is different
for 7-bit and 10-bit slave addresses, as outlined below:

For 7-bit slave address:

a) Call the function vAHI_SiMasterWriteSlaveAddr() to specify the 7-bit slave
address. Also specify through this function that a read operation will be performed
on the slave. This function will put the specified slave address in the SI master’s
buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
specified above.

c) Wait for an indication of success (slave address sent and target slave responded)
by polling or waiting for an interrupt - for details of this stage, refer to Section
13.1.4.
108 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
For 10-bit slave address:

a) Call the function vAHI_SiMasterWriteSlaveAddr() to indicate that 10-bit slave
addressing will be used and to specify the two most significant bits of the relevant
slave address. Also, initially specify through this function that a write operation will
be performed. This function will put the specified information in the SI master’s
buffer, but will not transmit it on the SI bus.

b) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

c) Wait for an indication of success (slave address information sent and at least one
matching slave responded) by polling or waiting for an interrupt - for details of this
stage, refer to Section 13.1.4.

d) Call the function vAHI_SiMasterWriteData8() to specify the eight remaining bits
of the slave address. This function will put the specified information in the SI
master’s buffer, but will not transmit it on the SI bus.

e) Call the function bAHI_SiMasterSetCmdReg() to issue a Write command, in
order to transmit the slave address information specified above.

f) Wait for an indication of success (slave address information sent and target slave
responded) by polling or waiting for an interrupt - for details of this stage, refer to
Section 13.1.4.

g) Call the function vAHI_SiMasterWriteSlaveAddr() again, indicating that 10-bit
slave addressing will be used and specifying the two most significant bits of the
relevant slave address. This time, specify through this function that a read
operation will be performed on the slave. This function will put the specified
information in the SI master’s transmit buffer, but will not transmit it on the SI bus.

h) Call the function bAHI_SiMasterSetCmdReg() to issue Start and Write
commands, in order to take control of the SI bus and transmit the slave address
information specified above.

i) Wait for an indication of success by polling or waiting for an interrupt - for details
of this stage, refer to Section 13.1.4.

Step 2 Read data byte from slave

If only one data byte or the final data byte is to be read from the slave then go directly
to Step 3, otherwise follow the instructions below:

a) Call the function bAHI_SiMasterSetCmdReg() to issue a Read command, in
order to request a data byte from the slave. Also use this function to enable an
ACK (acknowledgement) to be sent to the slave once the byte has been received.

b) Wait for an indication of success (read request sent and data received) by polling
or waiting for an interrupt - for details of this stage, refer to Section 13.1.4.

c) Call the function u8AHI_SiMasterReadData8() to read the received data byte
from the SI master’s buffer.

Repeat the above instructions (Step 2a-c) for all subsequent data bytes except the
final byte to be read (which is covered in Step 3).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 109

Chapter 13
Serial Interface (SI)

Step 3 Read final data byte from slave

Read the final (or only) data byte from the slave as follows:

a) Call the function bAHI_SiMasterSetCmdReg() to issue Read and Stop
commands, in order to request a data byte from the slave and release control of
the SI bus. Also use this function to enable a NACK to be sent to the slave once
the byte has been received (to indicate that no more data is required).

b) Wait for an indication of success (read request sent and data received) by polling
or waiting for an interrupt - for details of this stage, refer to Section 13.1.4.

c) Call the function u8AHI_SiMasterReadData8() to read the received data byte
from the SI master’s buffer.

13.1.4 Waiting for Completion

At various points in the write and read procedures of Section 13.1.2 and Section
13.1.3, it is necessary to wait for an indication of the success of an operation before
continuing. The application can use either interrupts or polling to determine when to
continue:

 Interrupts: SI interrupts can be enabled when vAHI_SiConfigure() or
vAHI_SiMasterConfigure() is called, as described in Section 13.1.1. An SI
interrupt (of the type E_AHI_DEVICE_SI) can be generated on a variety of
conditions of the Serial Interface. The interrupt is handled by a user-defined
callback function registered using the function vAHI_SiRegisterCallback().
This interrupt handler should identify the exact source of the SI interrupt and
act on it. For more details on the callback function and interrupt sources, refer
to Appendix A.1 and Appendix B.2, respectively. In the above write and read
procedures, the SI master interrupt source of interest is the one which indicates
the completion of a byte transfer or loss of arbitration.

 Polling: To determine when the transfer of a byte has finished, the application
can regularly call bAHI_SiMasterPollTransferInProgress(), which indicates
whether a transfer is in progress on the SI bus.

Once an interrupt or polling has indicated that the transfer of a byte has completed,
further checks must be made to determine whether the master should stop the data
transfer and release the SI bus:

1. In the case of a write to the slave, the application should call the function
bAHI_SiMasterCheckRxNack() which indicates whether an ACK or a NACK
has been received from the slave following the byte transfer:

 An ACK indicates that the slave can accept more data and therefore
further byte transfers can be initiated.

 A NACK indicates that the slave cannot accept any more data, and that
the data transfer must be stopped and the SI bus released.

2. Provided that the SI bus has not already been released, the application should
call the function bAHI_SiMasterPollArbitrationLost() to check whether the
SI master has lost the arbitration of the SI bus. If this is the case, the data
transfer must be stopped and the SI bus released.

The data transfer is stopped and the SI bus released by calling the function
bAHI_SiMasterSetCmdReg() in order to issue the Stop command.
110 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
13.2 SI Slave

The SI peripheral on the JN516x device can act as an SI master or an SI slave (but
not as both at the same time). This section describes what must be done to allow the
SI slave to participate in a data transfer initiated by a remote SI master.

13.2.1 Enabling the SI Slave and its Interrupts

The SI slave must first be configured and enabled using the function
vAHI_SiSlaveConfigure(). This function requires the address size of the SI slave to
be specified as 7-bit or 10-bit, and the SI slave address itself to be specified. The
function also allows the generation of SI slave interrupts to be configured - interrupts
can be triggered on the following conditions:

 Data buffer requires data byte for transmission to SI master

 Byte in data buffer sent to SI master and so buffer free for next byte

 Data buffer contains data byte from SI master, available to be read by SI slave

 Final data byte received from SI master (end of data transfer)

 I2C protocol error

SI interrupts (of the type E_AHI_DEVICE_SI) are handled by the user-defined
callback function registered using the function vAHI_SiRegisterCallback(). This is
the same registration function as used for the SI master. For details of the callback
function prototype, refer to Appendix A.1.

vAHI_SiSlaveConfigure() also allows a pulse suppression filter to be enabled, which
suppresses any spurious pulses (high or low) with a pulse width less than 62.5ns on
the clock and data lines. Also note that an SI slave enabled using this function can
later be disabled using vAHI_SiSlaveDisable().

When enabled, this interface uses the DIO14 pin as the clock line and the DIO15 pin
as the bi-directional data line (but does not supply the clock). These signals can be
moved to DIO16 and DIO17, respectively, using the function vAHI_SiSetLocation().

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 111

Chapter 13
Serial Interface (SI)

13.2.2 Receiving Data from the SI Master

An SI master indicates that it needs to send data to a particular SI slave as described
in Section 13.1.2. The SI slave automatically responds to the SI master according to
the protocol for this request, but the application associated with the slave must deal
with the data that arrives from the master.

The data transfer on the SI bus consists of a sequence of data bytes, where each byte
must be received and then read from the SI slave before the next byte can be
received. Interrupts are used to signal the arrival of a data byte from the SI master:

 An interrupt can be generated when a data byte has arrived from the SI master
and is available to be read from the SI slave’s buffer.

 An interrupt can also be generated when the final data byte of the transfer has
arrived from the SI master and is available to be read from the SI slave’s buffer.

To use these interrupts, they must have been enabled when the function
vAHI_SiSlaveConfigure() was called. The registered SI interrupt handler must also
deal with them - see Section 13.2.1.

Once a received data byte is available in the SI slave’s buffer, it can be read from the
buffer by the application using the function u8AHI_SiSlaveReadData8().

13.2.3 Sending Data to the SI Master

An SI master indicates that it needs to obtain data from a particular SI slave as
described in Section 13.1.3. The SI slave automatically responds to the SI master
according to the protocol for this request, but the application associated with the slave
must supply the data that is to be sent to the master.

The data transfer on the SI bus consists of a sequence of data bytes, where each byte
must be written to the SI slave’s buffer and transmitted before the next byte can be
written to the buffer. Interrupts are used to signal when the next data byte is needed
in the buffer. To use these interrupts, they must have been enabled when the function
vAHI_SiSlaveConfigure() was called. The registered SI interrupt handler must deal
with them - see Section 13.2.1.

Once a new data byte is required in the SI slave’s buffer, it can be written to the buffer
by the application using the function vAHI_SiSlaveWriteData8().
112 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
14. Serial Peripheral Interface (SPI) Master

This chapter describes control of the Serial Peripheral Interface (SPI) Master on the
JN516x microcontroller using functions of the Integrated Peripherals API.

The Serial Peripheral Interface on the JN516x microcontroller allows high-speed
synchronous data transfers between the microcontroller and peripheral devices,
without software intervention. When the microcontroller operates as the master on the
SPI bus, all other devices connected to the bus are expected to be slave devices
under the control of the master’s CPU.

The SPI Master device on the JN516x device supports up to three slaves.

14.1 SPI Bus Lines

The SPI Master uses pins DO0 to output the Clock (SPICLK), DO1 for Data In
(SPIMISO) and DIO18 for Data Out (SPIMOSI) - these signals are shared on the SPI
bus.

Up to three slave-select output lines can be used: SPISEL0, SPISEL1 and SPISEL2.
If enabled, they appear on DIO19, DIO0 and DIO1, respectively. However, lines
SPISEL1 and SPISEL2 can be moved to DIO14 and DIO15 using the function
vAHI_SpiSelSetLocation().

14.2 Data Transfers

Data transfer is full-duplex, so data is transmitted by both communicating devices at
the same time. Data to be transmitted is stored in a FIFO buffer (shift register) in the
device. Any data transaction size between 1 and 32 bits (inclusive) can be used. The
data transfer order can be configured as LSB (least significant bit) first or MSB (most
significant bit) first.

Since the data transfer is synchronous, both transmitting and receiving devices use
the same clock, provided by the SPI master. The SPI device uses the peripheral clock
(for system clock options, see Section 3.1), which may be divided down and allows bit
rates of up to 16Mbps.

An interrupt can be enabled, which is generated when the data transfer completes.

Note: On a JN516x device, the SPI Master is disabled
by default and shares its pins with other functions - this
is unlike a JN514x device that uses dedicated pins for
the SPI Master, which is enabled from reset in order to
boot from an external Flash device.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 113

Chapter 14
Serial Peripheral Interface (SPI) Master

14.3 SPI Modes

The clock edge on which data is latched is determined by the SPI mode of operation
used (0, 1, 2 or 3), which is determined by two boolean parameters, clock polarity and
phase, as indicated in the table below.

14.4 Slave Selection

Before transferring data, the SPI master must select the slave(s) with which it wishes
to communicate. Thus, the relevant slave-select line(s) must be asserted. It is usual
for the SPI master to communicate with a single slave at a time, so not to receive data
from multiple slaves simultaneously (unless the slave devices can be inhibited from
transmitting data). An ‘Automatic Slave Selection’ feature is provided, which only
asserts the chosen slave-select line(s) during a data transfer.

Manual slave selection is preferred over ‘Automatic Slave Selection’ when a number
of consecutive data transfers are to be performed with a particular slave device,
avoiding the need for the slave to be deselected and then reselected between
adjacent transfers.

SPI Mode Polarity Phase Description

0 0 0 Data latched on rising edge of clock

1 0 1 Data latched on falling edge of clock

2 1 0 Clock inverted and data latched on falling edge of clock

3 1 1 Clock inverted and data latched on rising edge of clock

Table 4: SPI Modes of Operation
114 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
14.5 Using the Serial Peripheral Interface

This section describes how to use the Integrated Peripherals API functions to operate
the Serial Peripheral Interface.

14.5.1 Performing a Data Transfer

A SPI data transfer is performed as follows:

1. The SPI master must first be configured and enabled using the function
vAHI_SpiConfigure(). This function allows the configuration of:

 Number of SPI slaves

 Clock divisor (for peripheral clock)

 Data transfer order (LSB first or MSB first)

 Clock polarity (unchanged or inverted)

 Phase (latch data on leading edge or trailing edge of clock)

 Automatic Slave Selection

 SPI interrupts

If SPI interrupts are enabled, a corresponding callback function must be
registered using the function vAHI_SpiRegisterCallback() - see Section 14.6.

2. The SPI slaves must be selected using the function vAHI_SpiSelect(). If
‘Automatic Slave Selection’ is off, the relevant slave-select line(s) will be
asserted immediately, otherwise the line(s) will only be asserted during a
subsequent data transfer.

3. A data transfer is implemented using vAHI_SpiStartTransfer(). A transaction
size between 1 and 32 bits can be specified.

4. The transfer is allowed to complete by waiting for a SPI interrupt (if enabled)
to indicate completion, or by calling vAHI_SpiWaitBusy() which returns when
the transfer has completed, or by periodically calling bAHI_SpiPollBusy() to
check whether the SPI master is still busy.

5. Data received from a slave is read using u32AHI_SpiReadTransfer32(). The
read data is aligned to the right (lower bits) of the returned 32-bit value.

6. If another transfer is required then Steps 3 to 5 must be repeated for the next
data. Otherwise, if ‘Automatic Slave Selection’ is off, the SPI slaves must be
de-selected by calling vAHI_SpiSelect(0) or vAHI_SpiStop().

A number of other SPI functions exist in the Integrated Peripherals API. The current
SPI configuration can be obtained and saved using vAHI_SpiReadConfiguration().
If necessary, this saved configuration can later be restored in the SPI using the
function vAHI_SpiRestoreConfiguration().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 115

Chapter 14
Serial Peripheral Interface (SPI) Master

14.5.2 Performing a Continuous Transfer

Continuous SPI transfers can be initiated by calling the function
vAHI_SpiContinuous() instead of vAHI_SpiStartTransfer(). This mode facilitates
back-to-back reads of the received data, with the incoming data transfers
automatically controlled by hardware - data is received and the hardware then waits
for this data to be read by the software before allowing the next incoming data transfer.

In this case, Steps 1-2 of the procedure in Section 14.5.1 remain the same but Steps
3 and onwards are replaced by the following:

3. A continuous data transfer is started using vAHI_SpiContinuous(), which
requires the data length (1 to 32 bits) of an individual transfer to be specified.

4. bAHI_SpiPollBusy() must be called periodically to check whether the SPI
master is still busy with an individual transfer.

5. Once the latest transfer has completed (the SPI master is no longer busy), the
the received data from this transfer must be read by calling the function
u32AHI_SpiReadTransfer32() - the read data is aligned to the right (lower
bits) of the returned 32-bit value.

6. Once the data has been read, the next transfer will automatically occur and
the transferred data must be read as detailed in Steps 4-5 above. However, a
continuous transfer can be stopped at any time by calling the function
vAHI_SpiContinuous() again, this time to disable continuous mode (after this
function call, there will be one more transfer before the transfers are stopped).

7. If ‘Automatic Slave Selection’ is off, after stopping a continuous transfer the
SPI slaves must be de-selected by calling vAHI_SpiSelect(0).

14.6 SPI Interrupts

A SPI interrupt can be used to indicate when a data transfer initiated by the SPI master
has completed. This interrupt is enabled in vAHI_SpiConfigure().

SPI interrupts are handled by a user-defined callback function, which must be
registered using vAHI_SpiRegisterCallback(). The relevant callback function is
automatically invoked when an interrupt of the type E_AHI_DEVICE_SPIM occurs.
For details of the callback function prototype, refer to Appendix A.1.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
116 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
15. Serial Peripheral Interface (SPI) Slave

This chapter describes control of the Serial Peripheral Interface (SPI) Slave on the
JN516x microcontroller using functions of the Integrated Peripherals API.

The Serial Peripheral Interface on the JN516x microcontroller allows high-speed
synchronous data transfers between the microcontroller and peripheral devices,
without software intervention.

15.1 SPI Slave Operation

The SPI Slave is used for high-speed data exchanges between the JN516x
microcontroller and a ‘remote’ processor, which may be a separate processor
contained in the wireless network node. The remote processor must contain a SPI
Master device, which initiates the data transfers. The data exchanges then require
minimal CPU usage. Data transfer is full-duplex, so data is simultaneously transmitted
and received by both communicating devices.

The SPI Slave uses separate configurable FIFO buffers located in system RAM to
store data bytes for transmission and reception.

Note: The SPI Master device on the JN516x
microcontroller is described in Chapter 14.

Figure 11: JN516x SPI Slave

Caution: Only SPI mode 0 is supported. At both ends of the
data link, the data to be transmitted is changed on a negative
clock edge and received data is sampled on a positive clock
edge.

 JN516x

SPI Slave

Remote Processor

SPI Master

Bi-directional
data transfer
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 117

Chapter 15
Serial Peripheral Interface (SPI) Slave

15.1.1 SPI Bus Lines and DIO Usage

The SPI Slave uses the following bus lines:

 Slave Clock Input, SPISCLK

 Slave Data Output, SPISMISO

 Slave Data Input, SPISMOSI

 Slave-select Input, SPISSEL

These signals use the following DIO pins:

 SPISCLK uses DIO15

 SPISMOSI and SPISMISO use DIO12-13 or alternatively DIO16-17

 SPISSEL uses DIO14

The DIO pins used for SPISMOSI and SPISMISO are configured when calling
bAHI_SpiSlaveEnable().

15.1.2 SPI Slave FIFOs and Interrupts

The Data In (Receive) and Data Out (Transmit) paths of the SPI Slave device contain
FIFO buffers which are located in RAM. The exact locations and sizes of these buffers
are defined by the application when the SPI Slave is initialised using the function
bAHI_SpiSlaveEnable(). Each buffer can be up to 255 bytes in size.

Fill-level thresholds (in bytes) must also be specified that are used to prompt the
application to write data to the Transmit buffer and read data from the Receive buffer.

 For the Transmit FIFO, this threshold is the fill-level which is considered low
enough for more data to be written into the buffer - if interrupts are enabled, an
interrupt will be generated when the amount of data in the buffer falls below this
level

 For the Receive FIFO, this threshold is the fill-level which is considered high
enough for data to be read from the buffer - if interrupts are enabled, an
interrupt will be generated when the amount of data in the buffer rises above
this level

A Receive timeout duration (in microseconds) must also be specified in the above
function call. Following the end of a SPI transfer, if the Receive FIFO remains not
empty for this duration then a timeout interrupt will be generated (if enabled) to prompt
the application to read data from the buffer. This prevents received data from
remaining in the buffer for too long without being read.

SPI Slave interrupts must be enabled in order to use the buffer thresholds and Receive
timeout described above. Again, interrupts can be enabled when the device is
configured using bAHI_SpiSlaveEnable(). If they are enabled, a user-defined
callback function to handle SPI Slave interrupts must be registered using the function
vAHI_SpiSlaveRegisterCallback(). The callback function is automatically invoked
when an interrupt of the type E_AHI_DEVICE_SPIS occurs. For details of the callback
function prototype, refer to Appendix A.1.
118 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
15.2 Using the SPI Slave

A data transfer is conducted via the SPI Slave as follows (this procedure assumes that
SPI Slave interrupts will be enabled):

1. The SPI Slave must first be initialised and configured using the function
bAHI_SpiSlaveEnable(). This function allows the following to be configured:

 Bit-order for transmission/reception of SPI data (LSB first or MSB first)

 DIO pins used for SPISMISO and SPISMOSI

 Transmit FIFO buffer, including start address in RAM, size (in bytes) and
write threshold (in bytes) - see Section 15.1.2

 Receive FIFO buffer, including start address in RAM, size (in bytes), read
threshold (in bytes) and timeout (in microseconds) - see Section 15.1.2

 SPI Slave interrupts (which should be enabled)

2. A user-defined callback function to handle SPI Slave interrupts must now be
registered using vAHI_SpiSlaveRegisterCallback().

3. The application can now load transmission data into the Transmit FIFO (data
will be transmitted when a transfer is initiated by the remote SPI Master):

a) The initial data must be written to the Transmit FIFO using the function
vAHI_SpiSlaveTxWriteByte(). The number of bytes written must not
exceed the size of the buffer. By default, if the Transmit FIFO is empty and
a transfer is initiated by the remote SPI Master, the SPI Slave will transmit
the data byte 0x00.

b) Subsequently, the application must wait for a write threshold interrupt to
prompt further writes to the Transmit FIFO. When this interrupt occurs, the
user-defined callback function will be invoked to handle the interrupt and
vAHI_SpiSlaveTxWriteByte() should be called within this callback
function. The number of bytes written should not exceed the size of the
buffer minus the write threshold for the buffer.

4. The application can now also read any received data from the Receive FIFO.
To do this, it should wait for a read threshold interrupt or a read timeout
interrupt. When one of these interrupts occurs, the user-defined callback
function will be invoked to handle the interrupt and the function
u8AHI_SpiSlaveRxReadByte() should be called within this callback function.

Caution: The registered callback function is only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, the callback function must be re-
registered before calling u32AHI_Init() on waking.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 119

Chapter 15
Serial Peripheral Interface (SPI) Slave

The functions u8AHI_SpiSlaveTxFillLevel(), u8AHI_SpiSlaveRxFillLevel() and
u8AHI_SpiSlaveStatus() are provided to enable an application to monitor the SPI
Slave in a non-interrupt driven manner.

Tip: Although the data transfer is full-duplex, a simplex
transfer can be achieved by transferring dummy data in
the unwanted direction.
120 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
16. Flash Memory

This chapter describes control of Flash memory using functions of the Integrated
Peripherals API.

The JN516x microcontroller has on-chip Flash memory. This non-volatile memory is
used to store the binary application and associated application data. The JN516x
device can also be optionally connected to an external Flash memory device.

The Integrated Peripherals API includes functions that allow the application to erase,
programme and read a sector of Flash memory. Normally, these functions are used to
store and retrieve application data - this might include data to be preserved in non-
volatile memory before going to sleep without RAM held.

16.1 Flash Memory Organisation and Types

Flash memory is partitioned into sectors. The number of sectors depends on the Flash
device type, but the application binary is normally stored from the start of the first
sector, denoted Sector 0, and the application data is stored in the final sector. A Flash
memory sector which is blank (no data) comprises entirely of binary 1s. When data is
written to the sector, the relevant bits are changed from 1 to 0.

The following tables provide details of the on-chip Flash memory and supported
external Flash devices for the JN516x family of microcontrollers..

JN516x Chip
Number of

Sectors
Sector Size

(Kbytes)
Total Size
(Kbytes)

JN5168 8 32 256

JN5164 5 32 160

JN5161 2 32 64

Table 5: On-chip Flash Memory

Manufacturer Flash Device
Number of

Sectors
Sector Size

(Kbytes)
Total Size
(Kbytes)

Atmel AT25F512 2 32 64

STMicroelectronics M25P05A 2 32 64

Microchip SST25VF010A 4 32 128

STMicroelectronics M25P10A 4 32 128

STMicroelectronics M25P20 4 64 256

Winbond W25X20B 4 64 256

STMicroelectronics M25P40 8 64 512

Table 6: Supported External Flash Devices
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 121

Chapter 16
Flash Memory

16.2 API Functions

The supplied Flash Memory functions can be used to interact with the on-chip Flash
device and any compatible external Flash device (detailed in Section 16.1). The
functions are able to access any sector of Flash memory - the application is stored
from the first sector (0) and application data is normally stored in the final sector - you
should refer to the data sheet for the Flash device to obtain the necessary sector
details. The Flash Memory functions are fully detailed in Chapter 32.

16.3 Operating on Flash Memory

This section describes how to use the Flash Memory functions to erase, read from and
write to a sector of Flash memory.

The first Flash memory function called must be the initialisation function
bAHI_FlashInit(). In the case of external Flash memory, this function requires the
attached Flash device type to be specified.

A custom external Flash device can also be specified. In this case, a set of custom
functions must be provided that will be used by the API to access the Flash device.

16.3.1 Erasing Data from Flash Memory

Erasing a portion of Flash memory involves setting any 0 bits to 1. The function
bAHI_FlashEraseSector() can be used to erase an entire sector of Flash memory.
Any sector can be erased.

Note 1: If you wish to use both internal (on-chip) and
external Flash memory devices, you will need to call
bAHI_FlashInit() when switching between them.

Note 2: The bAHI_FlashEECerrorInterruptSet()
function can be used to enable interrupts that are
generated when an error occurs in the on-chip Flash
device. A user-defined callback function is also
registered which is invoked when a Flash memory
interrupt occurs.

Caution: Be careful not to erase essential data such as
the application code. The application is stored from the
start of the on-chip Flash memory (starting in Sector 0).
122 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
16.3.2 Reading Data from Flash Memory

The function bAHI_FullFlashRead() can be used to read data from any sector of
Flash memory. This function can be used to read a portion of data starting at any point
within the sector.

16.3.3 Writing Data to Flash Memory

Before writing the first data to a sector of Flash memory, the sector must be blank
(consisting entirely of binary 1s), as the write operation will only change 1s to 0s
(where relevant). Therefore, it may be necessary to erase the relevant sector, as
described in Section 16.3.1, before writing the first data to it.

The function bAHI_FullFlashProgram() can be used to write data to any sector of
Flash memory. This function can be used to write a portion of data containing a
multiple of 16 bytes starting on a 16-byte boundary within the sector. When adding
data to existing data in a sector, you must be sure that the relevant portion of the sector
is already blank (comprising all binary 1s).

One way to ensure that data is added successfully to a sector is as follows:

1. Read the entire sector into RAM (see Section 16.3.2).

2. Erase the entire sector in Flash memory (see Section 16.3.1).

3. Add the new data to the existing data in RAM.

4. Write all of this data back to the sector in Flash memory.

Note: The internal Flash memory of the JN516x device
has a sector-erase time of approximately 100ms.

Caution 1: Each sector of the internal Flash memory in
the JN516x device is divided into 16-byte pagewords. A
write to a non-blank pageword must not be performed -
the sector containing the non-blank pageword should first
be erased using bAHI_FlashEraseSector() before
writing to the pageword. If the user omits the sector-erase
operation, a subsequent error will likely result when
reading from the pageword - this read-error will trigger an
interrupt and execute the callback function registered
using bAHI_FlashEECerrorInterruptSet().

Caution 2: The internal Flash memory of the JN516x
device has an endurance limit of 10000 write/erase
cycles per sector. Refer to the device-specific data sheet
for the endurance limit of the external Flash memory.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 123

Chapter 16
Flash Memory

16.4 Controlling Power to External Flash Memory

Any external Flash memory can be optionally powered off while the JN516x
microcontroller is in a sleep mode (including Deep Sleep). An unpowered Flash device
during sleep allows greater power savings and extends battery life.

Two functions (see below) are provided for controlling power to an external Flash
device, but these are only applicable to the following STMicroelectronics devices:

 STM25P05A

 STM25P10A

 STM25P20

 STM25P40

Calling these functions for other Flash devices will have no effect.

The necessary function calls before and after sleep are outlined as follows.

Before Sleep

The above external Flash memory devices can be powered down before entering
sleep mode by calling the function vAHI_FlashPowerDown(). This function must be
called before vAHI_Sleep() is called.

After Sleep

If a Flash memory device was powered down using vAHI_FlashPowerDown() before
entering sleep, on waking from sleep the function vAHI_FlashPowerUp() must be
called to power on the Flash memory device again.

Note: The internal Flash memory of the JN516x device
has a sector write-time of approximately 1ms.

Caution: These functions must not be called when using
JN516x on-chip Flash memory device (selected in
bAHI_FlashInit()). Note that when using the JenOS
Persistent Data Manager (PDM), the on-chip Flash memory
device is automatically selected by default.

Tip: In order to conserve power, you may wish to power
down the external Flash memory device at JN516x
start-up and only power up the Flash device when
required.
124 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
17. EEPROM

This chapter describes access to the JN516x on-chip EEPROM using functions of the
Integrated Peripherals API. This non-volatile memory is used to store data that must
be preserved while the JN516x device is not powered or during sleep without RAM
held. Functions are provided for writing to, reading from and erasing the EEPROM.

Although the functions referenced in this chapter provide direct access to the
EEPROM device, it is recommended that they are not used or are used with caution,
for the following reasons:

 JenNet-IP and ZigBee nodes normally use the JenOS Persistent Data Manager
(PDM), which also accesses the EEPROM. PDM is supplied in the NXP
JenNet-IP and ZigBee SDKs, and is described in the JenOS User Guide
(JN-UG-3075). The advantages of using PDM include:

 ‘Wear levelling’ to achieve the uniform use of the EEPROM

 Record IDs to avoid the use of memory addresses

If PDM and the EEPROM direct-access function set are both to be used, it is
important to avoid conflicts between the two - therefore, they must never access
the same part of the EEPROM. To achieve this, PDM must be initialised with a
specific configuration to limit the number of segments used, and a limited
address range must be used for direct EEPROM access.

 ZigBee RF4CE uses the EEPROM direct-access functions itself so, again,
conflicts must be avoided.

17.1 Initialisation

In order to access the EEPROM from the application, the initialisation function
u16AHI_InitialiseEEP() must first be called.

The 4-Kbyte EEPROM is organised in terms of segments and the above function
returns the following information about the available segments:

 Number of segments

 Number of bytes in each segment

The segments are indexed from 0.

17.2 Writing to the EEPROM

A block of data can be written to a specified EEPROM segment using the function
iAHI_WriteDataIntoEEPROMsegment(). The data can be written starting at any
(byte) offset from the beginning of the segment. The function will not allow a segment
to overflow - if the length of the data block to be written is greater than the memory
space up to the end of the segment, the function will return an error and will not write
any data.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 125

Chapter 17
EEPROM

17.3 Reading from the EEPROM

A block of data can be read from a specified EEPROM segment using the function
iAHI_ReadDataFromEEPROMsegment(). The data can be read starting at any
(byte) offset from the beginning of the segment. If the length of the data block to be
read is greater than the memory space up to the end of the segment, the function will
return an error and will not read any data.

17.4 Erasing the EEPROM

The EEPROM can be erased a whole segment at a time. The function
iAHI_EraseEEPROMsegment() can be used to erase a specified segment.
126 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Part II:
Reference Information
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 127

128 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
18. General Functions

This chapter describes various functions of the Integrated Peripherals API that are not
associated with any of the main peripheral blocks on a JN516x microcontroller.

The functions in this chapter include:

 API initialisation function

 Functions to implement antenna diversity

 Functions to control the random number generator

 Processor stack overflow function

 Functions for accessing on-chip Non-Volatile Memory

Note that the random number generator can produce interrupts which are treated as
System Controller interrupts. For more information on interrupt handling, refer to
Appendix A.

The functions are listed below, along with their page references:

Function Page

u32AHI_Init 130

vAHI_HighPowerModuleEnable 131

vAHI_AntennaDiversityOutputEnable 132

vAHI_AntennaDiversityEnable 133

u8AHI_AntennaDiversityStatus 134

vAHI_AntennaDiversityControl 135

vAHI_AntennaDiversitySwitch 136

vAHI_StartRandomNumberGenerator 137

vAHI_StopRandomNumberGenerator 138

u16AHI_ReadRandomNumber 139

bAHI_RndNumPoll 140

vAHI_SetStackOverflow 141

vAHI_WriteNVData 143

u32AHI_ReadNVData 144

vAHI_InterruptSetPriority 145

Note: For guidance on using these functions in JN516x
application code, refer to Chapter 2.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 129

Chapter 18
General Functions

u32AHI_Init

Description

This function initialises the Integrated Peripherals API. It should be called after every
reset and wake-up, and before any other Integrated Peripherals API functions are
called.

Parameters

None

Returns

0 if initialisation failed, otherwise a 32-bit version number for the API (most significant
16 bits are main revision, least significant 16 bits are minor revision).

uint32 u32AHI_Init(void);

Caution: If you are using JenOS (Jennic Operating System),
you must not call this function explicitly in your code, as the
function is called internally by JenOS. This applies principally
to users who are developing ZigBee PRO applications.

Note: This function must be called before initialising the
Application Queue API (if used). For more information on the
latter, refer to the Application Queue API Reference Manual
(JN-RM-2025).
130 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_HighPowerModuleEnable

Description

This function allows control for transmission and reception on a JN516x high-power
module to be enabled or disabled. Control for transmission and reception must both
be enabled or disabled at the same time (enabling only one of them is not supported).
The function should be called before using the radio transceiver on a JN516x high-
power module.

Parameters

bRFTXEn Enable/disable control for high-power module transmission
(must be same setting as for bRFRXEn):
TRUE - enable control for high-power module transmission
FALSE - disable control for high-power module transmission

bRFRXEn Enable/disable control for high-power module reception
(must be same setting as for bRFTXEn):
TRUE - enable control for high-power module reception
FALSE - disable control for high-power module reception

Returns

None

void vAHI_HighPowerModuleEnable(bool_t bRFTXEn,
bool_t bRFRXEn);

Note 1: This function should only be used with a JN516x
high-power module manufactured by NXP.

Note 2: Instead of using this function to enable/disable a
high-power module, you are advised to use the function
vAppApiSetHighPowerMode() from the NXP 802.15.4 Stack
API (supplied in the file AppApi.h in all the JN516x SDKs).

Caution: This function must not be used to enable a JN516x
high-power module which will operate in channel 26 of the
2.4GHz band, since emission regulations will be breached.
The function vAppApiSetHighPowerMode() should be used
instead (see Note 2 above), which enables a mechanism to
reduce the output power on channel 26 so that the emission
regulations are met.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 131

Chapter 18
General Functions

vAHI_AntennaDiversityOutputEnable

Description

This function can be used to individually enable or disable the use of DIO12 and
DIO13 for the control of antenna diversity. The use of antenna diversity requires two
antennas to be connected to the JN516x device via a switch controlled by DIO12 and
DIO13.

Parameters

bOddOutEn Enable/disable setting for DIO12:
TRUE - enable antenna diversity control output on pin
FALSE - disable antenna diversity control output on pin

bEvenOutEn Enable/disable setting for DIO13:
TRUE - enable antenna diversity control output on pin
FALSE - disable antenna diversity control output on pin

Returns

None

void vAHI_AntennaDiversityOutputEnable(
bool_t bOddOutEn,
bool_t bEvenOutEn);
132 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_AntennaDiversityEnable

Description

This function can be used to independently enable/disable antenna diversity on the
transmit and receive paths. The use of antenna diversity requires two antennae to be
connected to the JN516x device via a switch controlled by DIO12 and DIO13 - pins
are enabled for antenna diversity use by calling the function
vAHI_AntennaDiversityOutputEnable().

Parameters

bRxDiversity Enable/disable antenna diversity on receive path:
TRUE - enable
FALSE - disable

bTxDiversity Enable/disable antenna diversity on transmit path:
TRUE - enable
FALSE - disable

Returns

None

void vAHI_AntennaDiversityEnable(
bool_t bRxDiversity,
bool_t bTxDiversity);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 133

Chapter 18
General Functions

u8AHI_AntennaDiversityStatus

Description

This function can be used to obtain the latest antenna diversity status (when two
antennae are connected to the JN516x device and antenna diversity has been
enabled through a call to vAHI_AntennaDiversityEnable()). The use of antenna
diversity requires two antennas to be connected to the JN516x device via a switch
controlled by DIO12 and DIO13 - pins are enabled for antenna diversity use by calling
the function vAHI_AntennaDiversityOutputEnable().

The function returns a bitmap containing the following information:

 Antenna used for the last transmit (bit 0)

 Antenna used for the last receive (bit 1)

 Currently selected antenna (bit 2)

A bit is set to 0 or 1 according to the antenna used where the value corresponds to
the state of the antenna control signal output on DIO12 - the state of the antenna
control signal output on DIO13 will be the complement of this value.

Parameters

None

Returns

Result is a bitmap which can be bitwise ANDed with the following masks:

E_AHI_ANTDIV_STAT_TX_MASK (0x1) - extracts antenna used for last Tx

E_AHI_ANTDIV_STAT_RX_MASK (0x2) - extracts antenna used for last Rx

E_AHI_ANTDIV_STAT_ANT_MASK (0x4) - extracts antenna currently selected

uint8 u8AHI_AntennaDiversityStatus(void);
134 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_AntennaDiversityControl

Description

This function can be used for application control of antenna diversity (enabled
through a call to vAHI_AntennaDiversityEnable()), in the following ways:

 Receive diversity RSSI threshold can be set which determines the minimum acceptable
receive signal strength below which the antenna may be switched (also subject to other
conditions - see Section 2.3)

 Receive diversity Correlation threshold can be set which determines the minimum
acceptable receive signal quality below which the antenna may be switched (also
subject to other conditions - see Section 2.3)

Parameters

u8RxRssiThreshold Receive diversity RSSI threshold, in 1dB steps from 0 to 31
(default value is 25 - it not recommended to use values less
than 25)

u8RxCorrThreshold Receive diversity Correlation threshold, from 0 to 63 (default
value is 25 - it is not recommended to use values less than 25
or greater than 40)

Returns

None

void vAHI_AntennaDiversityControl(
uint8 u8RxRssiThreshold,
uint8 u8RxCorrThreshold);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 135

Chapter 18
General Functions

vAHI_AntennaDiversitySwitch

Description

This function can be used by an application to manually switch the currently selected
antenna for the control of antenna diversity. Note, calling this function will generally
not be required because it is expected that most applications will make use of the
automatic transmit and/or receive antenna diversity control features that are enabled
by calling vAHI_AntennaDiversityEnable().

The use of antenna diversity requires two antennas to be connected to the JN516x
device via a switch controlled by DIO12 and DIO13 - pins are enabled for antenna
diversity use by calling the function vAHI_AntennaDiversityOutputEnable().

Parameters

None

Returns

None

void vAHI_AntennaDiversitySwitch(void);
136 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_StartRandomNumberGenerator

Description

This function starts the random number generator on the JN516x device, which
produces 16-bit random values. The generator can be started in one of two modes:

 Single-shot mode: Stop generator after one random number

 Continuous mode: Run generator continuously - this will generate a random number
every 256µs

A randomly generated value can subsequently be read using the function
u16AHI_ReadRandomNumber(). The availability of a new random number, and
therefore the need to call the ‘read’ function, can be determined using either
interrupts or polling:

 When random number generator interrupts are enabled, an interrupt will occur each
time a new random value is generated. These interrupts are handled by the callback
function registered with vAHI_SysCtrlRegisterCallback() - also refer to Appendix A.

 Alternatively, when random number generator interrupts are disabled, the function
bAHI_RndNumPoll() can be used to poll for the availability of a new random value.

When running continuously, the random number generator can be stopped using the
function vAHI_StopRandomNumberGenerator().

Note that the random number generator uses the 32kHz clock domain (see Section
3.1) and will not operate properly if a high-precision external 32kHz clock source is
used. Therefore, if generating random numbers in your application, you are advised
to use the internal RC oscillator or a low-precision external clock source.

Parameters

bMode Generator mode:
E_AHI_RND_SINGLE_SHOT (single-shot mode)
E_AHI_RND_CONTINUOUS (continuous mode)

bIntEn Enable/disable interrupts setting:
E_AHI_INTS_ENABLED(enable)
E_AHI_INTS_DISABLED(disable)

Returns

None

void vAHI_StartRandomNumberGenerator(
bool_t const bMode,
bool_t const bIntEn);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 137

Chapter 18
General Functions

vAHI_StopRandomNumberGenerator

Description

This function stops the random number generator on the JN516x device, if it has
been started in continuous mode using vAHI_StartRandomNumberGenerator().

Parameters

None

Returns

None

void vAHI_StopRandomNumberGenerator(void);
138 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_ReadRandomNumber

Description

This function obtains the last 16-bit random value produced by the random number
generator on the JN516x device. The function can only be called once the random
number generator has generated a new random number.

The availability of a new random number, and therefore the need to call
u16AHI_ReadRandomNumber(), is determined using either interrupts or polling:

 When random number generator interrupts are enabled, an interrupt will occur each
time a new random value is generated.

 Alternatively, when random number generator interrupts are disabled, the function
bAHI_RndNumPoll() can be used to poll for the availability of a new random value.

Interrupts are enabled or disabled when the random number generator is started
using vAHI_StartRandomNumberGenerator().

Parameters

None

Returns

16-bit random integer

uint16 u16AHI_ReadRandomNumber(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 139

Chapter 18
General Functions

bAHI_RndNumPoll

Description

This function can be used to poll the random number generator on the JN516x device
- that is, to determine whether the generator has produced a new random value.

Note that this function does not obtain the random value, if one is available - the
function u16AHI_ReadRandomNumber() must be called to read the value.

Parameters

None

Returns

Availability of new random value, one of:
TRUE - random value available
FALSE - no random value available

bool_t bAHI_RndNumPoll(void);
140 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SetStackOverflow

Description

This function allows processor stack overflow detection to be enabled/disabled on
the JN516x device and a threshold to be set for the generation of a stack overflow
exception.

The JN516x processor has a stack for temporary storage of data during code
execution, such as local variables and return addresses from functions. The base
address of RAM is 0x04000000 for the JN516x. The stack begins at the highest
location in RAM (e.g. 0x04008000 for the JN5168) and grows downwards through
RAM, as required. Thus, the stack size is dynamic, typically growing when a function
is called and shrinking when returning from a function. It is difficult to determine by
code inspection exactly how large the stack may grow. The lowest memory location
currently used by the stack is stored in the stack pointer.

Applications occupy the bottom region of RAM and the memory space required by
the applications is fixed at build time. Above the applications is the heap, which is
used to store data. The heap grows upwards through RAM as data is added. Since
the actual space needed by the processor stack is not known at build time, it is
possible for the processor stack to grow downwards into the heap space while the
application is running. This condition is called a stack overflow and results in the
processor stack corrupting the heap (and potentially the application).

This function allows a threshold RAM address to be set, such that a stack overflow
exception is generated if and when the stack pointer falls below this threshold
address. The threshold address is specified as a 17-bit offset from the base of RAM
(i.e. from 0x04000000). For example, the threshold address offset for the JN5168
can take a value up to 0x07FFC, so a good starting point is 0x07800. Note, the stack
pointer is word-aligned, so the bottom 2 bits of the address are always 0.

The stack overflow exception handler function should first be developed before
enabling stack overflow detection.

void vAHI_SetStackOverflow(bool_t bStkOvfEn,
uint32 u32Addr);

Note 1: If a stack overflow is detected, the detection
mechanism is automatically disabled and this function must
be called to re-enable it.

Note 2: The stack overflow exception handler function should
have the following prototype definition:

PUBLIC void vException_StackOverflow(void);

We would not expect an exception handler written in C to
return - once it has performed any actions, it should either sit
in a loop or reset the device.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 141

Chapter 18
General Functions

Parameters

bStkOvfEn Enable/disable stack overflow detection:
TRUE - enable detection
FALSE - disable detection (default)

u32Addr 17-bit stack overflow threshold

Returns

None
142 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_WriteNVData

Description

This function writes the specified 32-bit word to the specified location in the JN516x
internal 4-word NVM (Non-Volatile Memory). The JN516x internal NVM contains four
32-bit locations, numbered 0 to 3.

Parameters

u8Location Number of NVM location to which word is to be written:
0, 1, 2 or 3

u32WriteData 32-bit word to be written to NVM

Returns

None

void vAHI_WriteNVData(uint8 u8Location,
uint32 u32WriteData);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 143

Chapter 18
General Functions

u32AHI_ReadNVData

Description

This function reads the 32-bit word from the specified location in the JN516x internal
4-word NVM (Non-Volatile Memory). The JN516x internal NVM contains four 32-bit
locations, numbered 0 to 3.

Parameters

u8Location Number of NVM location from which word is to be read:
0, 1, 2 or 3

Returns

32-bit word read from NVM

uint32 u32AHI_ReadNVData(uint8 u8Location);
144 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_InterruptSetPriority

Description

This function can be used to configure a set of interrupt sources to have the specified
interrupt priority level.

The priority level is set in the range 0 to 15, where 0 represents interrupts disabled
and 15 is the highest interrupt priority level (the default priority level is 8). The
interrupt sources to which this priority level will be applied are specified in a bitmap -
each bit of the bitmap represents an interrupt source and should be set to ‘1’ to
include this interrupt. To help construct this bitmap, enumerations of the form
MICRO_ISR_MASK_xxx are supplied in the file MicroSpecific.h.

The function can be called multiple times to set different priorities for different
interrupt sources.

Parameters

u16Mask Bitmap specifying the interrupt sources to which the priority level will
be applied

u8Level Interrupt priority level (in the range 0 to 15)

Returns

None

void vAHI_InterruptSetPriority(uint16 u16Mask,
uint8 u8Level);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 145

Chapter 18
General Functions

146 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
19. System Controller Functions

This chapter describes the functions that interface to the System Controller on the
JN516x microcontroller.

The functions detailed in this chapter cover the following areas:

 Power management

 Clock management

 Supply voltage monitoring (Voltage brownout)

 Chip reset

The System Controller functions are listed below, along with their page references:

Function Page

u16AHI_PowerStatus 149

vAHI_CpuDoze 150

vAHI_Sleep 151

vAHI_ProtocolPower 153

bAHI_Set32KhzClockMode 154

vAHI_Init32KhzXtal 155

vAHI_Trim32KhzRC 156

vAHI_SelectClockSource 157

bAHI_GetClkSource 158

bAHI_SetClockRate 159

u8AHI_GetSystemClkRate 160

bAHI_Clock32MHzStable 162

vAHI_ClockXtalPull 163

vAHI_EnableFastStartUp 164

bAHI_TrimHighSpeedRCOsc 165

vAHI_OptimiseWaitStates 166

vAHI_BrownOutConfigure 167

bAHI_BrownOutStatus 169

bAHI_BrownOutEventResetStatus 170

u32AHI_BrownOutPoll 171

vAHI_SwReset 172

vAHI_SetJTAGdebugger 173

vAHI_ClearSystemEventStatus 174

Note: For information on the above chip features and
guidance on using the System Controller functions in
JN516x application code, refer to Chapter 3.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 147

Chapter 19
System Controller Functions

vAHI_SysCtrlRegisterCallback 175
148 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_PowerStatus

Description

This function returns power domain status information for the JN516x microcontroller
- in particular, whether:

 Device has completed a sleep-wake cycle

 RAM contents were retained during sleep

 Analogue power domain is switched on

 Protocol logic is operational (clock is enabled)

 Watchdog timeout was responsible for the last device restart

 32kHz clock is ready (e.g. following a reset or wake-up)

 Device has just come out of Deep Sleep mode (rather than a reset)

Note that you must check whether the 32kHz clock is ready before starting a wake
timer.

Parameters

None

Returns

Returns the power domain status information in bits 0-3, 7 and 10-11 of the 16-bit
return value:

uint16 u16AHI_PowerStatus(void);

Bit Reads a ‘1’ if...

0 Device has completed a sleep-wake cycle

1 RAM contents were retained during sleep

2 Analogue power domain is switched on

3 Protocol logic is operational

4-6 Unused

7 Watchdog caused last device restart

8-9 Unused

10 32kHz clock is ready

11 Device has just come out of Deep Sleep mode

12-15 Unused
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 149

Chapter 19
System Controller Functions

vAHI_CpuDoze

Description

This function puts the device into Doze mode by stopping the clock to the CPU (other
on-chip components are not affected by this function and so will continue to operate
normally, e.g. on-chip RAM will remain powered and so retain its contents). The CPU
will cease operating until an interrupt occurs to re-start normal operation. Disabling
the CPU clock in this way reduces the power consumption of the device during
inactive periods.

The function returns when the CPU re-starts.

Parameters

None

Returns

None

void vAHI_CpuDoze(void);
150 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Sleep

Description

This function puts the JN516x device into Sleep mode, being one of four ‘normal’
Sleep modes or Deep Sleep mode. The normal sleep modes are distinguished by
whether on-chip RAM remains powered and whether the 32kHz oscillator is left
running during sleep (see parameter description below).

 In a normal sleep mode, the device can be woken by a reset or one of the following
interrupts:

 DIO interrupt

 Wake timer interrupt (needs 32kHz oscillator to be left running during sleep)

 Comparator interrupt

 Pulse counter interrupt

External Flash memory is not powered down during normal sleep mode. If required, you
can power down the Flash memory device using the function
vAHI_FlashPowerDown(), which must be called before vAHI_Sleep(), provided you
are using a compatible Flash memory device - refer to the description of
vAHI_FlashPowerDown() on page 378.

 In Deep Sleep mode, all components of the chip are powered down and the device can
only be woken by the device’s reset line being pulled low or an external event which
triggers a change on a DIO pin (the relevant DIO must be configured as an input and
DIO interrupts must be enabled).

When the device restarts, it will begin processing at the cold start or warm start entry
point, depending on the Sleep mode from which the device is waking (see below).
This function does not return.

void vAHI_Sleep(teAHI_SleepMode sSleepMode);

Note 1: If an external source is used for the 32kHz oscillator
on the JN516x device (see page 147), it is not recommended
that the oscillator is stopped on entering Sleep mode.

Note 2: Registered callback functions are only preserved
during Sleep modes in which RAM remains powered. If RAM
is powered off during sleep and interrupts are required, any
callback functions must be re-registered before calling
u32AHI_Init() on waking. Alternatively, a DIO wake source
can be resolved using u32AHI_DioWakeStatus().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 151

Chapter 19
System Controller Functions

Parameters

sSleepMode Required Sleep mode, one of:
E_AHI_SLEEP_OSCON_RAMON

32kHz oscillator on and RAM on (warm restart)
E_AHI_SLEEP_OSCON_RAMOFF

32kHz oscillator on and RAM off (cold restart)
E_AHI_SLEEP_OSCOFF_RAMON

32kHz oscillator off and RAM on (warm restart)
E_AHI_SLEEP_OSCOFF_RAMOFF

32kHz oscillator off and RAM off (cold restart)
E_AHI_SLEEP_DEEP

Deep Sleep (all components off - cold restart)

Returns

None
152 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_ProtocolPower

Description

This function is used to enable or disable the clock to the wireless transceiver - the
clock is simply disabled (gated) while the domain remains powered.

If you intend to switch the clock off and then back on again, without performing a
reset or going through a sleep cycle, you must first save the current IEEE 802.15.4
MAC settings before switching off the clock. Upon switching the clock on again, the
MAC settings must be restored from the saved settings. You can save and restore
the MAC settings using functions of the 802.15.4 Stack API:

 To save the MAC settings, use the function vAppApiSaveMacSettings().

 Switching the clock back on can then be achieved by restoring the MAC settings using
the function vAppApiRestoreMacSettings() (this function automatically calls
vAHI_ProtocolPower() to switch on the clock)

The MAC settings save and restore functions are described in the 802.15.4 Stack
API Reference Manual (JN-RM-2002).

While this clock is off, you must not make any calls into the stack, as this may result
in the stack attempting to access the associated hardware (which is disabled) and
therefore cause an exception.

Parameters

bOnNotOff Setting for clock to wireless transceiver:
TRUE to switch the clock ON
FALSE to switch the clock OFF

Returns

None

void vAHI_ProtocolPower(bool_t bOnNotOff);

Caution: Do not call vAH_ProtocolPower(FALSE) while the
802.15.4 MAC layer is active, otherwise the device may
freeze.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 153

Chapter 19
System Controller Functions

bAHI_Set32KhzClockMode

Description

This function selects an external source for the 32kHz clock for the JN516x device
(the function is used to move from the internal source to an external source). The
selected clock can be either of the following options:

 External module (RC circuit): This clock must be supplied on DIO9

 External crystal: This circuit must be attached on DIO9 and DIO10

If the external crystal is selected and is not already running, it will be started and this
function will not return until the crystal has stabilised (which can take up to 1 second).

If this function is not called, the internal 32kHz RC oscillator is used by default. Note
that once an external 32kHz clock source has been selected using this function, it is
not possible to switch back to the internal RC oscillator.

If required, this function should be called near the start of the application. In
particular, if selecting the external crystal, the function must be called before Timer 0
and any wake timers are used by the application, since these timers are used by the
function when switching the clock source to the external crystal.

Note that there is no need to explicitly configure DIO9 or DIO10 as an input, as this
is done automatically by the function.

When selecting an external module, you must disable the pull-up on DIO9 using the
function vAHI_DioSetPullup(). However, when selecting the external crystal, the
pull-ups on DIO9 and DIO10 are disabled automatically.

Parameters

u8Mode External 32kHz clock source:
E_AHI_EXTERNAL_RC (external module)
E_AHI_XTAL (external crystal)

Returns

TRUE - valid clock source specified
FALSE - invalid clock source specified

bool_t bAHI_Set32KhzClockMode(uint8 const u8Mode);
154 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Init32KhzXtal

Description

This function starts an external crystal that may later be selected as the source for
the 32kHz clock on the JN516x device (the function does not switch the clock to this
source). The external crystal must be connected to the device via DIO9 (pin 32) and
DIO10 (pin 33).

The external crystal that has been started needs time to stabilise before it can be
used as a clock source. The function returns immediately, allowing the application to
do other processing or to put the JN516x device into sleep mode while waiting for the
crystal to become ready - it takes up to 1 second to stabilise. Therefore, in the case
of sleep, the application should typically set a wake timer to wake the device after 1
second. The function bAHI_Set32KhzClockMode() can then be called to select the
external crystal as the source for the 32kHz clock.

Parameters

None

Returns

None

void vAHI_Init32KhzXtal(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 155

Chapter 19
System Controller Functions

vAHI_Trim32KhzRC

Description

This function sets the electrical current consumption of the 32kHz RC oscillator
(external module), which determines the accuracy of the clock frequency produced -
the higher the current, the more accurate the generated clock frequency.

Presently, two current settings are available; 0.53µA and 0.35µA, with corresponding
frequency calibration errors of ±300ppm and ±600ppm, respectively.

Parameters

u8Value Current consumption to be set:
0: Reserved
1: Reserved
2: 0.53µA (default)
3: 0.35µA
4-7: No effect

Returns

None

void vAHI_Trim32KhzRC(uint8 u8Value);
156 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SelectClockSource

Description

This function selects the clock source for the system clock on the JN516x device. The
clock options are:

 Crystal oscillator (XTAL) of frequency 32MHz, derived from external crystal

 Internal high-speed RC oscillator of frequency 27MHz (uncalibrated), but can be
adjusted to 32MHz (calibrated) using the function bAHI_TrimHighSpeedRCOsc()

If used, the external crystal is connected to pins 4 and 5.

The CPU clock and peripheral clock are divided down versions of this clock source.
The CPU clock divisor is controlled using the function bAHI_SetClockRate(). The
peripheral clock is produced by dividing this clock source by two. Thus, the crystal
oscillator will produce a 16MHz peripheral clock and the RC oscillator will produce a
peripheral clock of 13.5MHz (±18%, uncalibrated) or 16MHz (±5% calibrated).

When the RC oscillator is selected, the function allows the crystal oscillator to be
powered down, in order to save power.

If the crystal oscillator is selected using this function but the oscillator is not already
running when the function is called (see vAHI_EnableFastStartUp()), typically 1ms
will be required for the oscillator to become stable once it has powered up. The
function will not return until the oscillator has stabilised.

Parameters

bClkSource System clock source:
TRUE - RC oscillator
FALSE - crystal oscillator

bPowerDown Power down crystal oscillator:
TRUE - power down when not needed
FALSE - leave powered up (when not in Sleep mode)

Returns

None

void vAHI_SelectClockSource(bool_t bClkSource,
bool_t bPowerDown);

Caution: You will not be able to run the full system while
using the RC oscillator. It is possible to execute code while
using this clock source, but it is not possible to transmit or
receive. Further, timing intervals for the timers may need to
be based on a frequency of 13.5MHz.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 157

Chapter 19
System Controller Functions

bAHI_GetClkSource

Description

This function obtains the identity of the clock source for the system clock on the
JN516x device. The clock options are:

 Crystal oscillator (XTAL) of frequency 32MHz, derived from external crystal

 Internal high-speed RC oscillator of frequency 27MHz (uncalibrated), but can be
adjusted to 32MHz (calibrated) using the function bAHI_TrimHighSpeedRCOsc()

If the high-speed RC oscillator is the system clock source, bAHI_GetClkSource()
does not indicate the operating frequency of the oscillator.

Parameters

None

Returns

Clock source, one of:
TRUE - RC oscillator
FALSE - Crystal oscillator

 bool_t bAHI_GetClkSource(void);
158 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SetClockRate

Description

This function is used to select a CPU clock rate on the JN516x device by setting the
divisor used to derive the CPU clock from the system source clock.

The system clock source is selected using the function vAHI_SelectClockSource()
as one of:

 32MHz external crystal oscillator

 High-speed internal RC oscillator of frequency 27MHz (uncalibrated), but can be
adjusted to 32MHz (calibrated) using the function bAHI_TrimHighSpeedRCOsc()

The possible divisors are 1, 2, 4,8, 16 and 32.

Irrespective of the setting made with this function, the CPU clock rate will default to
16MHz or 13.5MHz (clock divisor of 2) following sleep - that is, the clock divisor
configured before sleep is not automatically re-applied after sleep.

Parameters

u8Speed Divisor for desired CPU clock frequency:

Returns

TRUE - successful
FALSE - invalid divisor value specified

bool_t bAHI_SetClockRate(uint8 u8Speed);

u8Speed Clock Divisor
Resulting Frequency (MHz)

From 32MHz From 27MHz

000 8 4 3.38

001 4 8 6.75

010 2 16 13.5

011 1 32 27

100
Invalid

101

110 16 2 1.69

111 32 1 0.84

Note: When the RC oscillator is used as the source, the
resulting CPU clock frequency is dictated by the actual RC
oscillator frequency, which can be 27MHz (±18%) or 32MHz
(±5% when calibrated).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 159

Chapter 19
System Controller Functions

u8AHI_GetSystemClkRate

Description

This function obtains the divisor used to divide down the source clock to produce the
CPU clock on the JN516x device.

The system clock source is selected using the function vAHI_SelectClockSource()
as one of:

 32MHz external crystal oscillator

 High-speed internal RC oscillator of frequency 27MHz (uncalibrated), but can be
adjusted to 32MHz using the function bAHI_TrimHighSpeedRCOsc()

The current clock source can be obtained using the function bAHI_GetClkSource(),
but this function does not indicate the operating frequency of the RC oscillator (if
used).

The divisor for the CPU clock is configured using bAHI_SetClockRate().

The possible divisors are 1, 2, 4, 8, 16 and 32. The CPU clock frequency can be
calculated by dividing the source clock frequency by the divisor returned by this
function. The results are summarised in the table below.

Parameters

None

uint8 u8AHI_GetSystemClkRate(void);

Returned Value Clock Divisor
Resulting Frequency (MHz)

From 32MHz From 27MHz

0 8 4 3.38

1 4 8 6.75

2 2 16 13.5

3 1 32 27

4
Invalid

5

6 16 2 1.69

7 32 1 0.84

Note: When the RC oscillator is used as the source, the
resulting system clock frequency is dictated by the actual RC
oscillator frequency, which can be 27MHz (±18%) or 32MHz
(±5% when calibrated).
160 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Returns

0: Divisor of 8

1: Divisor of 4

2: Divisor of 2

3: Divisor of 1 (source frequency untouched)

6: Divisor of 16

7: Divisor of 32
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 161

Chapter 19
System Controller Functions

bAHI_Clock32MHzStable

Description

This function can be used to check whether the 32MHz crystal oscillator (sourced
externally) is running and stable.

Parameters

None

Returns

TRUE - oscillator is stable

FALSE - oscillator is not stable

bool_t bAHI_Clock32MHzStable(void);
162 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_ClockXtalPull

Description

This function can be used to decrease (pull) the frequency of the 32MHz crystal
oscillator by increasing the crystal load capacitance in the oscillator tuning circuit. If
the JN516x device operates at temperatures in excess of 90°C, it may be necessary
to call this function to maintain the frequency tolerance of the clock to within the
40ppm limit specified by the IEEE 802.15.4 standard.

The crystal pulling coefficient specifies the sensitivity of the crystal frequency with
respect to the crystal load capacitance. Crystals suitable for use with the JN516x will
typically have a crystal pulling coefficient value in the range of 15 to 25 ppm/pF.
Although the crystal pulling coefficient has a positive value, it should be noted that
the crystal frequency will decrease with increasing crystal load capacitance.

The formula for calculating the crystal pulling coefficient (∆f) is given by:

where,

Cm is the crystal motional capacitance (e.g. 4.4fF)
CL is the crystal load capacitance (e.g. 9pF)
CS is the crystal shunt or package capacitance (e.g. 1pF)

The example crystal capacitance values quoted above yield a crystal pulling
coefficient of 22ppm/pF. Therefore, an increase of the crystal load capacitance (CL)
by 1pF will reduce the crystal oscillating frequency by 22ppm.

Parameters

u8PullValue Pull-value controls the additional crystal load capacitance:

0: No additional crystal load capacitance (default)
1: 1pF additional crystal load capacitance (as below)
2: 1pF additional crystal load capacitance (as above)
3: 2pF additional crystal load capacitance

Returns

None

void vAHI_ClockXtalPull(uint8 u8PullValue);

Note: Please refer to the JN516x data sheet and the crystal
manufacturer data sheet for specific details of the crystal
capacitances. Also refer to the Application Note JN516x
Temperature-dependent Operating Guidelines (JN-AN-1186)
for details of the crystal oscillator frequency compensation
over temperature.

f
Cm 106

2 CL CS+ 2
--------------------------------------= ppm F
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 163

Chapter 19
System Controller Functions

vAHI_EnableFastStartUp

Description

This function can be used to modify the (default) fast start-up following sleep. If
required, the function must be called before entering sleep mode.

The external 32MHz crystal oscillator is powered down during sleep and takes some
time to become available again when the JN516x device wakes. A more rapid start-
up from sleep can be achieved by using the internal high-speed RC oscillator
immediately on waking and then switching to the crystal oscillator when it becomes
available. This allows initial processing at wake-up to proceed before the crystal
oscillator is ready. This rapid start-up following sleep occurs automatically by default.

This function can be used to configure the switch to the crystal oscillator to be either
automatic or manual (selected through the bMode parameter):

 Automatic switch: The crystal oscillator starts immediately on waking from sleep
(irrespective of the setting of the bPowerDown parameter - see below), allowing it to
warm up and stabilise while the boot code is running. The crystal oscillator is then
automatically and seamlessly switched to when ready. To determine whether the
switch has taken place, you can use the function bAHI_GetClkSource().

 Manual switch: The switch to the crystal oscillator takes place at any time the
application chooses, using the function vAHI_SelectClockSource(). If the crystal
oscillator is not already running when this manual switch is initiated, the oscillator will
be automatically started. Depending on the oscillator’s progress towards stabilisation at
the time of the switch request, there may be a delay of up to 1ms before the crystal
oscillator is stable and the switch takes place.

It is also possible to use this function to configure the device to keep the RC oscillator
as the source for the system clock when re-starting from sleep. To do this, it is
necessary to select a manual switch (through the bMode parameter) but not perform
any switch.

While the internal high-speed RC oscillator is being used, you should not attempt to
transmit or receive, and you can only use the JN516x peripherals with special care -
see Section 3.1.3.

To conserve power, you can use the bPowerDown parameter to keep the crystal
oscillator powered down until it is needed.

Parameters

bMode Automatic/manual switch to 32MHz crystal oscillator:
TRUE - automatic switch
FALSE - manual switch

bPowerDown Power down crystal oscillator:
TRUE - power down when not needed
FALSE - leave powered up (when not in sleep mode)

Returns

None

void vAHI_EnableFastStartUp(bool_t bMode,
bool_t bPowerDown);
164 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_TrimHighSpeedRCOsc

Description

This function can be used on the JN516x device to adjust the frequency of the
internal high-speed RC oscillator from 27MHz uncalibrated to 32MHz calibrated.

Parameters

None

Returns

TRUE - RC oscillator frequency successfully changed

FALSE - Unable to change RC oscillator frequency

bool_t bAHI_TrimHighSpeedRCOsc(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 165

Chapter 19
System Controller Functions

vAHI_OptimiseWaitStates

Description

This function recalculates the wait-state settings for the internal Flash memory and
EEPROM devices after the system clock source or CPU clock frequency has been
changed to minimise the Flash access time. The function is automatically called after
calling vAHI_SelectClockSource() or bAHI_SetClockRate() but should preferably
be called by the application in either of the following circumstances:

 at the start of an application (cold start or warm restart) with the system clock running
from the internal high-speed RC oscillator

 after switching from the internal high-speed RC oscillator to the external 32MHz crystal

Parameters

None

Returns

None

void vAHI_OptimiseWaitStates(void);

Note: By default, following a reset or on waking from sleep,
the device will automatically switch from using the internal
high-speed RC oscillator to the external 32MHz crystal as the
system clock source once the crystal oscillator has stabilised.
166 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_BrownOutConfigure

Description

This function configures and enables the Supply Voltage Monitor (SVM), which can
be used to detect a brownout condition on the JN516x device.

Brownout is the point at which the chip supply voltage falls to (or below) a pre-defined
level. The default brownout level is set to 2.0 V in the JN516x device during
manufacture. This function can be used to temporarily over-ride the default brownout
voltage with one of several voltage levels. Before the new setting takes effect, there
is a delay of up to 3.3µs.

The occurrence of the brownout condition is tracked by an internal ‘brownout bit’ in
the device, which is set to:

 ‘1’ when the brownout state is entered - that is, when the supply voltage crosses the
brownout voltage from above (decreasing supply voltage)

 ‘0’ when the brownout state is exited - that is, when the supply voltage crosses the
brownout voltage from below (increasing supply voltage)

When SVM is enabled, the occurrence of a brownout event can be detected by the
application in one of three ways:

 An automatic device reset (if configured using this function) - the function
bAHI_BrownOutEventResetStatus() is used to check if a brownout caused a reset

 A brownout interrupt (if configured using this function) - see below

 Manual polling using the function u32AHI_BrownOutPoll()

Interrupts can be individually enabled that are generated when the chip goes into and
out of brownout. Brownout interrupts are handled by the System Controller callback
function, which is registered using the function vAHI_SysCtrlRegisterCallback().

void vAHI_BrownOutConfigure(unit8 u8VboSelect,
bool_t bVboRestEn,
bool_t bVboEn,
bool_t bVboIntEnFalling,
bool_t bVboIntEnRising);

Note: Following a device reset or sleep, ‘reset on brownout’
will be re-enabled and the default setting for the brownout
voltage threshold will be re-instated.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 167

Chapter 19
System Controller Functions

Parameters

u8VboSelect Voltage threshold for brownout:
0: 1.95 V
1: 2.0 V (default)
2: 2.1 V
3: 2.2 V
4: 2.3 V
5: 2.4 V
6: 2.7 V
7: 3.0 V

bVboRestEn Enable/disable ‘reset on brownout’:
TRUE to enable reset
FALSE to disable reset

bVboEn Enable/disable SVM:
TRUE to enable SVM
FALSE to disable SVM

bVboIntEnFalling Enable/disable interrupt generated when the brownout bit
falls, indicating that the device has come out of the brownout
state:
TRUE to enable interrupt
FALSE to disable interrupt

bVboIntEnRising Enable/disable interrupt generated when the brownout bit
rises, indicating that the device has entered the brownout
state:
TRUE to enable interrupt
FALSE to disable interrupt

Returns

None
168 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_BrownOutStatus

Description

This function can be used to check whether the current supply voltage to the JN516x
device is above or below the brownout voltage setting (the default value or the value
configured using the function vAHI_BrownOutConfigure()).

The function is useful when deciding on a suitable brownout voltage to configure.

There may be a delay before bAHI_BrownOutStatus() returns, if the brownout
configuration has recently changed - this delay is up to 3.3µs.

Parameters

None

Returns

TRUE - supply voltage is below brownout voltage

FALSE - supply voltage is above brownout voltage

bool_t bAHI_BrownOutStatus(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 169

Chapter 19
System Controller Functions

bAHI_BrownOutEventResetStatus

Description

This function can be called following a JN516x device reset to determine whether the
reset event was caused by a brownout. This allows the application to then take any
necessary action following a confirmed brownout.

Note that by default, a brownout will trigger a reset event. However, if
vAHI_BrownOutConfigure() was called, the ‘reset on brownout’ option must have
been explicitly enabled during this call.

Parameters

None

Returns

TRUE if brownout caused reset, FALSE otherwise

bool_t bAHI_BrownOutEventResetStatus(void);
170 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u32AHI_BrownOutPoll

Description

This function can be used to poll for a brownout on the JN516x device - that is, to
check whether a brownout has occurred. The returned value will indicate whether the
chip supply voltage has fallen below or risen above the brownout voltage (or both).
Polling using this function clears the brownout status, so that a new and valid result
will be obtained the next time the function is called.

Polling in this way is useful when brownout interrupts and ‘reset on brownout’ have
been disabled through vAHI_BrownOutConfigure(). However, to successfully poll,
brownout detection must still have been enabled through the latter function.

Parameters

None

Returns

32-bit value containing brownout status:

 Bit 24 is set (to ‘1’) if the chip has come out of brownout - that is, an increasing supply
voltage has crossed the brownout voltage from below. If the 32-bit return value is
bitwise ANDed with the bitmask E_AHI_SYSCTRL_VFEM_MASK, a non-zero result
indicates this brownout condition.

 Bit 25 is set (to ‘1’) if the chip has gone into brownout - that is, a decreasing supply
voltage has crossed the brownout voltage from above. If the 32-bit return value is
bitwise ANDed with the bitmask E_AHI_SYSCTRL_VREM_MASK, a non-zero result
indicates this brownout condition.

uint32 u32AHI_BrownOutPoll(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 171

Chapter 19
System Controller Functions

vAHI_SwReset

Description

This function generates an internal reset which completely re-starts the system
through the full reset sequence.

Parameters

None

Returns

None

void vAHI_SwReset(void);

Caution: This reset has the same effect as pulling the
external RESETN line low and is likely to result in the loss of
the contents of on-chip RAM.
172 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SetJTAGdebugger

Description

This function can be used to enable or disable the JTAG debugger hardware, and to
select the set of DIOs on which the JTAG signals will be located (DIO15-12 or DIO7-4).
The pin location option allows DIO usage conflicts between the JTAG debugger and
any enabled peripheral to be more easily avoided. The JTAG debugger has the highest
priority for controlling these DIO pins.

This function will typically not be required in an application because the debugger will
be automatically configured by the bootloader depending on makefile build options.

Parameters

bEnable Enable or disable debugger:
TRUE - enable
FALSE - disable

bLocation Set of DIOs on which JTAG signals are located:
TRUE - JTAG on DIO15-12
FALSE - JTAG on DIO7-4

Returns

None

void vAHI_SetJTAGdebugger(bool_t bEnable,
bool_t bLocation);

Note: The bootloader will automatically enable the debugger
hardware if the makefile build option variable
HARDWARE_DEBUG_ENABLED is set to 1. The bootloader
will also configure the DIO pins for the enabled debugger as
directed by the makefile build option variable DEBUG_PORT,
which should be set to UART0 (for DIO7-4) or UART1 (for
DIO15-12).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 173

Chapter 19
System Controller Functions

vAHI_ClearSystemEventStatus

Description

This function clears the specified System Controller interrupt sources on a JN516x
device. A bitmask indicating the interrupt sources to be cleared must be passed into
the function.

Parameters

u32BitMask Bitmask of the System Controller interrupt sources to be
cleared. To clear an interrupt, the corresponding bit must be
set to 1 - for bit numbers, refer to Table 9 on page 394

Returns

None

void vAHI_ClearSystemEventStatus(uint32 u32BitMask);
174 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SysCtrlRegisterCallback

Description

This function registers a user-defined callback function that will be called when a
System Control interrupt is triggered. The source of this interrupt could be the wake
timer, a comparator, a DIO event, a brownout event, a pulse counter or the random
number generator.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Note that the System Controller interrupt handler will clear the interrupt before
invoking the callback function to deal with the interrupt.

Interrupt handling is described in Appendix A.

Parameters

prSysCtrlCallback Pointer to callback function to be registered

Returns

None

void vAHI_SysCtrlRegisterCallback(
PR_HWINT_APPCALLBACK prSysCtrlCallback);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 175

Chapter 19
System Controller Functions

176 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
20. Analogue Peripheral Functions

This chapter describes the functions that are used to control the analogue peripherals
of the JN516x microcontroller. These are the on-chip peripheral types with analogue
inputs or outputs: Analogue-to-Digital Converter (ADC) and comparator.

The analogue peripheral functions are divided into the following sections:

 Common analogue peripheral functions, described in Section 20.1

 ADC functions, described in Section 20.2

 ADC with DMA Engine functions, described in Section 20.3

 Comparator functions, described in Section 20.4

20.1 Common Analogue Peripheral Functions

This section describes functions used to configure functionality shared by the on-chip
analogue peripherals - the ADC and comparator.

The functions are listed below, along with their page references:

Function Page

vAHI_ApConfigure 178

vAHI_ApSetBandGap 180

bAHI_APRegulatorEnabled 181

vAHI_APRegisterCallback 182

Note: For information on the analogue peripherals and
guidance on using these functions in JN516x application
code, refer to Chapter 4.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 177

Chapter 20
Analogue Peripheral Functions

vAHI_ApConfigure

Description

This function configures common parameters for all on-chip analogue resources.

 The regulator used to power the analogue peripherals must be enabled for the
remaining input parameters to take effect and for the ADC to operate. The regulator
minimises digital noise and is sourced from the analogue supply pin VDD1.

 Interrupts can be enabled that are generated after each ADC conversion.

 The divisor is specified to obtain the ADC clock from the peripheral clock.

 The ‘sampling interval’ is specified as a number of clock periods.

 The source of the reference voltage, Vref, is specified.

The peripheral clock runs at 16MHz when the system clock is sourced from the
external 32MHz crystal. The supplied clock divisor enumerations (see the parameter
u8ClockDivRatio below) for producing the ADC clock are based on a 16MHz
peripheral clock. If the peripheral clock frequency is not exactly 16MHz, the resultant
ADC clock frequency will be scaled accordingly.

For the ADC, the input signal is integrated over 3 x sampling interval, where sampling
interval is defined as 2, 4, 6 or 8 clock cycles. The total conversion period (for a single
value) is given by

[(3 x sampling interval) + 13] x clock period

Parameters

bAPRegulator Enable/disable the regulator used to power the analogue
peripherals:
E_AHI_AP_REGULATOR_ENABLE
E_AHI_AP_REGULATOR_DISABLE

bIntEnable Enable/disable interrupt when ADC conversion completes:
E_AHI_AP_INT_ENABLE
E_AHI_AP_INT_DISABLE

u8SampleSelect Sampling interval in terms of divided clock periods:
E_AHI_AP_SAMPLE_2 (2 clock periods)
E_AHI_AP_SAMPLE_4 (4 clock periods)
E_AHI_AP_SAMPLE_6 (6 clock periods)
E_AHI_AP_SAMPLE_8 (8 clock periods)

u8ClockDivRatio Clock divisor (frequencies based on16MHz peripheral clock):
E_AHI_AP_CLOCKDIV_2MHZ (divisor of 8)
E_AHI_AP_CLOCKDIV_1MHZ (divisor of 16)
E_AHI_AP_CLOCKDIV_500KHZ (divisor of 32)
E_AHI_AP_CLOCKDIV_250KHZ (divisor of 64)
(500kHz is recommended for ADC)

void vAHI_ApConfigure(bool_t bAPRegulator,
bool_t bIntEnable,
uint8 u8SampleSelect,
uint8 u8ClockDivRatio,
bool_t bRefSelect);
178 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bRefSelect Source of reference voltage, Vref:
E_AHI_AP_EXTREF (external from VREF pin)
E_AHI_AP_INTREF (internal)

Returns

None
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 179

Chapter 20
Analogue Peripheral Functions

vAHI_ApSetBandGap

Description

This function allows the device’s internal band-gap cell to be routed to the VREF pin,
in order to provide internal reference voltage de-coupling.

Note that:

 Before calling vAHI_ApSetBandGap(), you must ensure that protocol power is
enabled, by calling vAHI_ProtocolPower() if necessary, otherwise an exception will
occur. Also, subsequently disabling protocol power will cause the band-gap cell setting
to be lost.

 A call to vAHI_ApSetBandGap() is only valid if an internal source for Vref has been
selected through the function vAHI_ApConfigure().

Parameters

bBandGapEnable Enable/disable routing of band-gap cell to VREF:
E_AHI_AP_BANDGAP_ENABLE (enable routing)
E_AHI_AP_BANDGAP_DISABLE (disable routing)

Returns

None

void vAHI_ApSetBandGap(bool_t bBandGapEnable);

Caution: Never call this function to enable the use of the
internal band-gap cell after selecting an external source for
Vref through vAHI_ApConfigure(), otherwise damage to the
device may result.
180 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_APRegulatorEnabled

Description

This function enquires whether the regulator used to power the analogue peripherals
has powered up. The function should be called after enabling the regulator through
vAHI_ApConfigure(). When the regulator is enabled, it will take a little time to start
- this period is 16µs.

Parameters

None

Returns

TRUE if powered up, FALSE if still waiting

bool_t bAHI_APRegulatorEnabled(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 181

Chapter 20
Analogue Peripheral Functions

vAHI_APRegisterCallback

Description

This function registers a user-defined callback function that will be called when an
analogue peripheral interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A. Analogue peripheral interrupt handling
is further described in Section 4.4.

Parameters

prApCallback Pointer to callback function to be registered

Returns

None

void vAHI_APRegisterCallback(
PR_HWINT_APPCALLBACK prApCallback);

Note: Among the analogue peripherals, only the ADC
generates Analogue peripheral interrupts. The comparator
generates System Controller interrupts (see Section 3.5).
182 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
20.2 ADC Functions

This section describes the functions that can be used to control the on-chip 10-bit ADC
(Analogue-to-Digital Converter). The ADC can be switched between 6 different
sources - 4 pins on the device, an on-chip temperature sensor and a voltage monitor.
The ADC can be configured to perform a single conversion or convert continuously
(until stopped). It is also possible to operate the ADC in accumulation mode, in which
a number of consecutive samples are added together for averaging.

The ADC functions are listed below, along with their page references:

Function Page

vAHI_AdcEnable 184

vAHI_AdcStartSample 185

vAHI_AdcStartAccumulateSamples 186

bAHI_AdcPoll 187

u16AHI_AdcRead 188

vAHI_AdcDisable 189

Note 1: In order to use the ADC, the regulator used to
power the analogue peripherals must first be enabled
using the function vAHI_ApConfigure(). You must also
check that the regulator has started, using the function
bAHI_APRegulatorEnabled().

Note 2: When an ADC input which is shared with a DIO
is used, the associated DIO should be configured as an
input with the pull-up disabled (using DIO functions
detailed in Chapter 21).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 183

Chapter 20
Analogue Peripheral Functions

vAHI_AdcEnable

Description

This function configures and enables the ADC. Note that this function does not start
the conversions (this is done using the function vAHI_AdcStartSample() or, in the
case of accumulation mode, using vAHI_AdcStartAccumulateSamples()).

The function allows the ADC mode of operation to be set to one of:

 Single-shot mode: ADC will perform a single conversion and then stop

 Continuous mode: ADC will perform conversions repeatedly until stopped using the
function vAHI_AdcDisable()

If using the ADC in accumulation mode then the mode set here is ignored.

The function also allows the input source for the ADC to be selected as one of four
pins, the on-chip temperature sensor or the internal voltage monitor. The voltage
range for the analogue input to the ADC can also be selected as 0 to Vref or 0 to 2Vref.

Note that:

 The source of Vref is defined using vAHI_ApConfigure().

 The internal voltage monitor measures the voltage on the pin VDD1.

Before enabling the ADC, the regulator used to power the analogue peripherals must
have been enabled using the function vAHI_ApConfigure(). You must also check
that the regulator has started, using the function bAHI_APRegulatorEnabled().

Parameters

bContinuous Conversion mode of ADC:
E_AHI_ADC_CONTINUOUS (continous mode)
E_AHI_ADC_SINGLE_SHOT (single-shot mode)

bInputRange Input voltage range:
E_AHI_AP_INPUT_RANGE_1 (0 to Vref)
E_AHI_AP_INPUT_RANGE_2 (0 to 2Vref)

u8Source Source for conversions:
E_AHI_ADC_SRC_ADC_1 (ADC1 input)
E_AHI_ADC_SRC_ADC_2 (ADC2 input)
E_AHI_ADC_SRC_ADC_3 (ADC3 input)
E_AHI_ADC_SRC_ADC_4 (ADC4 input)
E_AHI_ADC_SRC_TEMP (on-chip temperature sensor)
E_AHI_ADC_SRC_VOLT (internal voltage monitor)

Returns

None

void vAHI_AdcEnable(bool_t bContinuous,
bool_t bInputRange,
uint8 u8Source);
184 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_AdcStartSample

Description

This function starts the ADC sampling in single-shot or continuous mode, depending
on which mode has been configured using vAHI_AdcEnable().

If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), an
interrupt will be triggered when a result becomes available. Alternatively, if interrupts
are disabled, you can use bAHI_AdcPoll() to check for a result. Once a conversion
result becomes available, it should be read with u16AHI_AdcRead().

Once sampling has been started in continuous mode, it can be stopped at any time
using the function vAHI_AdcDisable().

Parameters

None

Returns

None

void vAHI_AdcStartSample(void);

Note: If you wish to use the ADC in accumulation mode, start
sampling using vAHI_AdcStartAccumulateSamples()
instead.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 185

Chapter 20
Analogue Peripheral Functions

vAHI_AdcStartAccumulateSamples

Description

This function starts the ADC sampling in accumulation mode, which allows a
specified number of consecutive samples to be added together to facilitate the
averaging of output samples. Note that before calling this function, the ADC must be
configured and enabled using vAHI_AdcEnable().

In accumulation mode, the output will become available after the specified number
of consecutive conversions (2, 4, 8 or 16), where this output is the sum of these
conversion results. Conversion will then stop. The cumulative result can be obtained
using the function u16AHI_AdcRead(), but the application must then perform the
averaging calculation itself (by dividing the result by the appropriate number of
samples).

If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), an
interrupt will be triggered when the accumulated result becomes available.
Alternatively, if interrupts are disabled, you can use the function bAHI_AdcPoll() to
check whether the conversions have completed.

In this mode, conversion can be stopped at any time using the function
vAHI_AdcDisable().

Parameters

u8AccSamples Number of samples to add together:
E_AHI_ADC_ACC_SAMPLE_2 (2 samples)
E_AHI_ADC_ACC_SAMPLE_4 (4 samples)
E_AHI_ADC_ACC_SAMPLE_8 (8 samples)
E_AHI_ADC_ACC_SAMPLE_16 (16 samples)

Returns

None

void vAHI_AdcStartAccumulateSamples(
uint8 u8AccSamples);
186 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_AdcPoll

Description

This function can be used when the ADC is operating in single-shot mode,
continuous mode or accumulation mode, to check whether the ADC is still busy
performing a conversion:

 In single-shot mode, the poll result indicates whether the sample has been taken and is
ready to be read.

 In continuous mode, the poll result indicates whether a new sample is ready to be read.

 In accumulation mode, the poll result indicates whether the final sample for the
accumulation has been taken.

You may wish to call this function before attempting to read the conversion result
using u16AHI_AdcRead(), particularly if you are not using the analogue peripheral
interrupts.

Parameters

None

Returns

TRUE if ADC is busy, FALSE if conversion complete

bool_t bAHI_AdcPoll(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 187

Chapter 20
Analogue Peripheral Functions

u16AHI_AdcRead

Description

This function reads the most recent ADC conversion result.

 If sampling was started using the function vAHI_AdcStartSample(), the most recent
ADC conversion will be returned.

 If sampling was started using the function vAHI_AdcStartAccumulateSamples(), the
last accumulated conversion result will be returned.

If analogue peripheral interrupts have been enabled in vAHI_ApConfigure(), you
must call this read function from a callback function invoked when an interrupt has
been generated to indicate that an ADC result is ready (this user-defined callback
function is registered using the function vAHI_APRegisterCallback()). Alternatively,
if interrupts have not been enabled, before calling the read function, you must first
check whether a result is ready using the function bAHI_AdcPoll().

Parameters

None

Returns

Most recent single conversion result or accumulated conversion result:

 A single conversion result is contained in the least significant 10 bits of the 16-bit
returned value

 An accumulated conversion result is contained in the least significant 14 bits of the
16-bit returned value

uint16 u16AHI_AdcRead(void);
188 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_AdcDisable

Description

This function disables the ADC. It can be used to stop the ADC when operating in
continuous mode or accumulation mode.

Parameters

None

Returns

None

void vAHI_AdcDisable(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 189

Chapter 20
Analogue Peripheral Functions

20.3 ADC with DMA Engine Functions

This section describes the functions that can be used to control the on-chip 10-bit ADC
(Analogue-to-Digital Converter) when used in conjunction with the DMA engine, in
‘sample buffer mode’. In this mode, ADC data samples are produced at regular
intervals and transferred into a buffer in RAM as 16-bit samples, where this data
transfer and storage is performed by the DMA engine independently of the CPU.

The ADC with DMA Engine functions are listed below, along with their page
references:

Function Page

bAHI_AdcEnableSampleBuffer 191

vAHI_AdcDisableSampleBuffer 193

u16AHI_AdcSampleBufferOffset 194

Note 1: In order to use the ADC, the regulator used to
power the analogue peripherals must first be enabled
using the function vAHI_ApConfigure(). You must also
check that the regulator has started, using the function
bAHI_APRegulatorEnabled().

Note 2: When an ADC input which is shared with a DIO
is used, the associated DIO should be configured as an
input with the pull-up disabled (using DIO functions
detailed in Chapter 21).
190 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_AdcEnableSampleBuffer

Description

This function configures and starts the ADC in sample buffer mode, in which 10-bit
samples are produced repeatedly by the ADC and are transferred into a RAM buffer
by the DMA engine as 16-bit samples.

Sampling is triggered by a JN516x timer, which must be specified through this
function as Timer 0, 1, 2, 3 or 4. The chosen timer must have been configured and
started in ‘Timer repeat’ mode before this function is called.

The function allows the input source(s) for the ADC to be selected from four external
input pins (DIOs), the on-chip temperature sensor and the internal voltage monitor.
Sample buffer mode allows multiple inputs to be selected (through a bitmap) and
multiplexed - in this case, on each timer trigger, samples will be produced from each
of the selected inputs, in turn, and written to the buffer. The inputs are sampled in the
following order: ADC1 input, ADC2 input, ADC3 input, ADC4 input, temperature
sensor, voltage monitor. Note that the internal voltage monitor measures the voltage
on the pin VDD1.

The RAM buffer must be specified in terms of a pointer to the start of the buffer and
the size of the buffer (in 16-bit samples, up to a maximum of 2047). The option for
buffer to wrap around can also be selected - in this case, once the buffer is full, data
will be written to the start of the buffer again. If this option is not selected, conversions
will stop once the buffer is full.

The condition(s) on which DMA interrupts will be generated can also be selected.
These interrupts reflect the state of the RAM buffer and at least one must be
selected:

 Buffer is half-full

 Buffer is full

 Buffer is full and has wrapped around

These interrupts must be serviced by the user-defined callback function registered
using vAHI_APRegisterCallback().

The voltage range for the analogue input to the ADC can also be selected as 0 to Vref
or 0 to 2Vref. Note that the source of Vref is defined using vAHI_ApConfigure().

Before starting the ADC using this function, the regulator used to power the analogue
peripherals must have been enabled using the function vAHI_ApConfigure(). You
must also check that the regulator has started, using the function
bAHI_APRegulatorEnabled().

bool_t bAHI_AdcEnableSampleBuffer(
bool_t bInputRange,
uint8 u8Timer,
uint8 u8SourceBitmap,
uint16 *pu16Buffer,
uint16 u16BufferSize,
bool_t bBufferWrap,
uint8 u8InterruptModes);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 191

Chapter 20
Analogue Peripheral Functions

Parameters

bInputRange Input voltage range:
E_AHI_AP_INPUT_RANGE_1 (0 to Vref)
E_AHI_AP_INPUT_RANGE_2 (0 to 2Vref)

u8Timer Identity of timer to use for trigger:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

u8Source Source(s) for conversions - any combination of:
E_AHI_ADC_SRC_ADC_1 (ADC1 input)
E_AHI_ADC_SRC_ADC_2 (ADC2 input)
E_AHI_ADC_SRC_ADC_3 (ADC3 input)
E_AHI_ADC_SRC_ADC_4 (ADC4 input)
E_AHI_ADC_SRC_TEMP (on-chip temperature sensor)
E_AHI_ADC_SRC_VOLT (internal voltage monitor)

*pu16Buffer Pointer to start of RAM buffer in which samples will be stored

u16BufferSize Size of RAM buffer, in 16-bit samples (valid range is 1-2047)

bBufferWrap Indicates whether buffer will wrap around:
TRUE - Buffer wrap enabled
FALSE - Buffer wrap disabled

u8InterruptModes DMA interrupt(s) to be generated (must select at least one):
E_AHI_AP_INT_DMA_OVER_MASK (buffer wrapped)
E_AHI_AP_INT_DMA_END_MASK (buffer full)
E_AHI_AP_INT_DMA_MID_MASK (buffer half-full)

Returns

TRUE - conversions successfully started

FALSE - conversions not successfully started (e.g. parameter error)
192 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_AdcDisableSampleBuffer

Description

This function can be used to stop the ADC operation when it has been started in
sample buffer mode using the function bAHI_AdcEnableSampleBuffer(). In
particular, the function can be used to stop the ADC when buffer wrap has been
enabled and, therefore, the ADC will otherwise operate indefinitely.

Parameters

None

Returns

None

void vAHI_AdcDisableSampleBuffer(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 193

Chapter 20
Analogue Peripheral Functions

u16AHI_AdcSampleBufferOffset

Description

This function can be used in sample buffer mode to obtain the location in the RAM
buffer where the next sample will be written. The function is primarily intended to be
used as a diagnostic tool during application development to determine the progress
of the DMA transfer to the buffer.

The location is returned as an offset (in 16-bit samples) from the start of the buffer.
Note that when the buffer is full:

 if buffer wrap is not enabled, the returned value will be 2047

 if buffer wrap is enabled, the returned value will be 0

Parameters

None

Returns

Offset of next free location from start of buffer (range of possible values is 0 to 2047)

uint16 u16AHI_AdcSampleBufferOffset(void);
194 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
20.4 Comparator Functions

This section describes the functions that can be used to control the on-chip
comparator.

A comparator compares its signal input with a reference input, and can be
programmed to provide an interrupt when the difference between its inputs changes
sense. It can also be used to wake the chip from sleep. The inputs to the comparator
use dedicated pins on the chip. The signal input is provided on the comparator ‘+’ pin
and the reference input is provided on the comparator ‘-’ pin or by the internal
reference voltage Vref.

The Comparator functions are listed below, along with their page references:

Function Page

vAHI_ComparatorEnable 196

vAHI_ComparatorDisable 198

vAHI_ComparatorLowPowerMode 199

vAHI_ComparatorIntEnable 200

u8AHI_ComparatorStatus 201

u8AHI_ComparatorWakeStatus 202

Note 1: If the comparator is to be used to wake the
device from sleep mode then only the comparator ‘+’
and ‘-’ pins can be used. The internal reference voltage
cannot be used.

Note 2: The analogue peripherals regulator must be
enabled while configuring a comparator, although it can
be disabled once configuration is complete.

Note 3: When a comparator pin is used, the associated
DIO should be configured as an input with the pull-up
disabled (using DIO functions detailed in Chapter 21).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 195

Chapter 20
Analogue Peripheral Functions

vAHI_ComparatorEnable

Description

This function configures and enables the comparator. The input signal, reference
signal and hysteresis setting must be specified.

The external input signal to be monitored can be provided on the comparator ‘+’ pin
(COMP1P) or ‘-’ pin (COMP1M). This signal is compared with a reference signal
which is either an external input on the other comparator pin or the internal reference
voltage (Vref). The input and reference signals are selected through a single
parameter (u8SignalSelect) using one of following enumerations:

The hysteresis voltage selected should be greater than:

 the noise level in the input signal (on the comparator ‘+’ or ‘-’ pin, as selected), if
comparing the signal on this pin with the internal reference voltage or DAC output

 the differential noise between the signals on the comparator ‘+’ and ‘-’ pins, if
comparing the signals on these two pins

Once enabled using this function, the comparator can be disabled using the function
vAHI_ComparatorDisable().

void vAHI_ComparatorEnable(uint8 u8Comparator,
uint8 u8Hysteresis,
uint8 u8SignalSelect);

Input Signal Reference Signal Enumeration (u8SignalSelect)

COMP1P COMP1M E_AHI_COMP_SEL_EXT

COMP1P Vref E_AHI_COMP_SEL_BANDGAP

COMP1M COMP1M E_AHI_COMP_SEL_EXT_INVERSE

COMP1M Vref E_AHI_COMP_SEL_BANDGAP_INVERSE

Note: This function puts the comparator into standard-power
mode in which it draws 73µA of current. The comparator can
subsequently be put into low-power mode, in which it draws
0.8µA of current, by calling the function
vAHI_ComparatorLowPowerMode().
196 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Parameters

u8Comparator Identity of comparator:
E_AHI_AP_COMPARATOR_1

u8Hysteresis Hysteresis setting (controllable from 0 to 40mV)
E_AHI_COMP_HYSTERESIS_0MV (0mV)
E_AHI_COMP_HYSTERESIS_10MV (10mV)
E_AHI_COMP_HYSTERESIS_20MV (20mV)
E_AHI_COMP_HYSTERESIS_40MV (40mV)

u8SignalSelect Selection of input and reference signals (see table above):
E_AHI_COMP_SEL_EXT
E_AHI_COMP_SEL_BANDGAP
E_AHI_COMP_SEL_EXT_INVERSE
E_AHI_COMP_SEL_BANDGAP_INVERSE

Returns

None
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 197

Chapter 20
Analogue Peripheral Functions

vAHI_ComparatorDisable

Description

This function disables the comparator.

Parameters

u8Comparator Identity of comparator:
E_AHI_AP_COMPARATOR_1

Returns

None

void vAHI_ComparatorDisable(uint8 u8Comparator);
198 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_ComparatorLowPowerMode

Description

This function can be used to enable or disable low-power mode on the comparator.

In low-power mode, a comparator draws 0.8µA of current, compared with 73µA when
operating in standard-power mode. Low-power mode is ideal for energy harvesting.
The mode is also automatically enabled when the device is sleeping.

When the comparator is enabled using vAHI_ComparatorEnable(), it is put into
standard-power mode by default. Therefore, to use the comparator in low-power
mode, you must call vAHI_ComparatorLowPowerMode() to enable this mode.

Parameters

bLowPowerEnable Enable/disable low-power mode:
TRUE - enable
FALSE - disable

Returns

None

void vAHI_ComparatorLowPowerMode(
bool_t bLowPowerEnable);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 199

Chapter 20
Analogue Peripheral Functions

vAHI_ComparatorIntEnable

Description

This function enables interrupts for the comparator. An interrupt can be used to wake
the device from sleep or as a normal interrupt.

If enabled, an interrupt is generated on one of the following conditions (which must
be configured):

 The input signal rises above the reference signal (plus hysteresis level, if non-zero)

 The input signal falls below the reference signal (minus hysteresis level, if non-zero)

Comparator interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters

u8Comparator Identity of comparator:
E_AHI_AP_COMPARATOR_1

bIntEnable Enable/disable interrupts:
TRUE to enable interrupts
FALSE to disable interrupts

bRisingNotFalling Triggering condition for interrupt:
TRUE for interrupt when input signal rises above reference
FALSE for interrupt when input signal falls below reference

Returns

None

void vAHI_ComparatorIntEnable(uint8 u8Comparator,
bool_t bIntEnable,
bool_t bRisingNotFalling);
200 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_ComparatorStatus

Description

This function obtains the status of the comparator.

To obtain the status of the comparator, the returned value must be bitwise ANDed
with the mask E_AHI_AP_COMPARATOR_MASK_1.

The result is interpreted as follows:

 0 indicates that the input signal is lower than the reference signal

 1 indicates that the input signal is higher than the reference signal

Parameters

None

Returns

Value containing the status of comparator (see above)

uint8 u8AHI_ComparatorStatus(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 201

Chapter 20
Analogue Peripheral Functions

u8AHI_ComparatorWakeStatus

Description

This function returns the wake-up interrupt status of the comparator. The value is
cleared after reading.

To obtain the wake-up interrupt status of the comparator, the returned value must be
bitwise ANDed with the mask E_AHI_AP_COMPARATOR_MASK_1.

The result is interpreted as follows:

 Zero indicates that a wake-up interrupt has not occurred

 Non-zero value indicates that a wake-up interrupt has occurred

Parameters

None

Returns

Value containing wake-up interrupt status of comparator (see above)

uint8 u8AHI_ComparatorWakeStatus(void);

Note: If you wish to use this function to check whether the
comparator caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.

Note 2: If using the JenNet protocol, do not call this function
to obtain the comparator interrupt status on waking from
sleep. At wake-up, JenNet calls u32AHI_Init() internally and
clears the interrupt status before passing control to the
application. The System Controller callback function must be
used to obtain the interrupt status, if required.
202 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
21. DIO and DO Functions

This chapter describes the functions that can be used to control the digital input/output
lines, referred to as DIOs, and the digital output lines, referred to as DOs. The JN516x
microcontroller has:

 20 DIOs, numbered DIO0 to DIO19

 2 DOs, numbered DO0 and DO1

Each DIO/DO can be individually configured. However, the pins for the DIO/DO lines
are shared with other peripherals (see Chapter 5) and are not available when those
peripherals are enabled. For details of the shared pins, refer to the data sheet for your
microcontroller.

In addition to normal operation, when configured as inputs, the DIOs can be used to
generate interrupts and wake the device from sleep.

The DIO/DO functions are listed below, along with their page references:

Function Page

vAHI_DioSetDirection 204

vAHI_DioSetOutput 205

u32AHI_DioReadInput 206

vAHI_DioSetPullup 207

vAHI_DioSetByte 208

u8AHI_DioReadByte 209

vAHI_DioInterruptEnable 210

vAHI_DioInterruptEdge 211

u32AHI_DioInterruptStatus 212

vAHI_DioWakeEnable 213

vAHI_DioWakeEdge 214

u32AHI_DioWakeStatus 215

bAHI_DoEnableOutputs 216

vAHI_DoSetDataOut 217

vAHI_DoSetPullup 218

In some of the above functions, a 32-bit bitmap is used to represent the set of DIOs.
In the bitmap, each of bits 0 to 19 represents a DIO pin, where bit 0 represents DIO0
and bit 19 represents DIO19 (bits 20-31 are unused).

Note: For guidance on using the DIO functions in
JN516x application code, refer to Chapter 5.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 203

Chapter 21
DIO and DO Functions

vAHI_DioSetDirection

Description

This function sets the direction for the DIO pins individually as either input or output
(note that they are set as inputs, by default, on reset). This is done through two
bitmaps for inputs and outputs, u32Inputs and u32Outputs respectively. In these
values, each bit represents a DIO pin, as described on page 203. Setting a bit in one
of these bitmaps configures the corresponding DIO as an input or output, depending
on the bitmap.

Note that:

 Not all DIO pins must be defined (in other words, u32Inputs bitwise ORed with
u32Outputs does not need to produce all ones for the DIO bits).

 Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32Inputs and u32Outputs, it will default to becoming an input.

 If a DIO is assigned to another peripheral which is enabled, this function call will not
immediately affect the relevant pin. However, the DIO setting specified by this function
will take effect if/when the relevant peripheral is subsequently disabled.

 This function does not change the DIO pull-up status - this must be done separately
using vAHI_DioSetPullup().

Parameters

u32Inputs Bitmap of inputs - a bit set means that the corresponding DIO
pin will become an input

u32Outputs Bitmap of outputs - a bit set means that the corresponding DIO
pin will become an output

Returns

None

void vAHI_DioSetDirection(uint32 u32Inputs,
uint32 u32Outputs);
204 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_DioSetOutput

Description

This function sets individual DIO outputs on or off, driving an output high or low,
respectively. This is done through two bitmaps for on-pins and off-pins, u32On and
u32Off respectively. In these values, each bit represents a DIO pin, as described on
page 203. Setting a bit in one of these bitmaps configures the corresponding DIO
output as on or off, depending on the bitmap.

Note that:

 Not all DIO pins must be defined (in other words, u32On bitwise ORed with u32Off
does not need to produce all ones for the DIO bits).

 Any DIO pins that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32On and u32Off, the DIO pin will default to off.

 This call has no effect on DIO pins that are not defined as outputs (see
vAHI_DioSetDirection()), until a time when they are re-configured as outputs.

 If a DIO is assigned to another peripheral which is enabled, this function call will not
affect the relevant DIO, until a time when the relevant peripheral is disabled.

Parameters

u32On Bitmap of on-pins - a bit set means that the corresponding DIO
pin will be set to on

u32Off Bitmap of off-pins - a bit set means that the corresponding DIO
pin will be set to off

Returns

None

void vAHI_DioSetOutput(uint32 u32On, uint32 u32Off);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 205

Chapter 21
DIO and DO Functions

u32AHI_DioReadInput

Description

This function returns the value of each of the DIO pins (irrespective of whether the
pins are used as inputs, as outputs or by other enabled peripherals).

Parameters

None

Returns

Bitmap representing set of DIOs, as described on page 203 - a bit is set to 1 if the
correponding DIO pin is high or to 0 if the pin is low (unused bits are always 0).

uint32 u32AHI_DioReadInput (void);
206 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_DioSetPullup

Description

This function sets the pull-ups on individual DIO pins as on or off. A pull-up can be
set irrespective of whether the pin is an input or output. This is done through two
bitmaps for ‘pull-ups on’ and ‘pull-ups off’, u32On and u32Off respectively. In these
values, each bit represents a DIO pin, as described on page 203.

Note that:

 By default, the pull-ups are enabled (on) at power-up.

 Not all DIO pull-ups must be set (in other words, u32On bitwise ORed with u32Off does
not need to produce all ones for the DIO bits).

 Any DIO pull-ups that are not set by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32On and u32Off, the corresponding DIO pull-up will default to off.

 If a DIO is assigned to another peripheral which is enabled, this function call will still
apply to the relevant pin, except in the case of a DIO connected to an external 32kHz
crystal.

Parameters

u32On Bitmap of ‘pull-ups on’ - a bit set means that the corresponding
pull-up will be enabled

u32Off Bitmap of ‘pull-ups off’ - a bit set means that the corresponding
pull-up will be disabled

Returns

None

void vAHI_DioSetPullup(uint32 u32On, uint32 u32Off);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 207

Chapter 21
DIO and DO Functions

vAHI_DioSetByte

Description

This function can be used to output a byte on either DIO0-7 or DIO8-15, where bit 0
or 8 is used for the least significant bit of the byte.

Before calling this function, the relevant DIOs must be configured as outputs using
the function vAHI_DioSetDirection().

Parameters

bDIOSelect Set of DIO lines on which to output the byte:
FALSE selects DIO0-7
TRUE selects DIO8-15

u8DataByte Byte to output on the DIO pins

Returns

None

void vAHI_DioSetByte(bool_t bDIOSelect, uint8 u8DataByte);
208 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_DioReadByte

Description

This function can be used to read a byte input on either DIO0-7 or DIO8-15, where
bit 0 or 8 is used for the least significant bit of the byte.

Before calling this function, the relevant DIOs must be configured as inputs using the
function vAHI_DioSetDirection().

Parameters

bDIOSelect Set of DIO lines on which to read the input byte:
FALSE selects DIO0-7
TRUE selects DIO8-15

Returns

The byte read from DIO0-7 or DIO8-15

uint8 u8AHI_DioReadByte(bool_t bDIOSelect);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 209

Chapter 21
DIO and DO Functions

vAHI_DioInterruptEnable

Description

This function enables/disables interrupts on the DIO pins - that is, whether the signal
on a DIO pin will generate an interrupt. This is done through two bitmaps for
‘interrupts enabled’ and ‘interrupts disabled’, u32Enable and u32Disable
respectively. In these values, each bit represents a DIO pin, as described on page
203. Setting a bit in one of these bitmaps enables/disables interrupts on the
corresponding DIO, depending on the bitmap (by default, all DIO interrupts are
disabled).

Note that:

 Not all DIO interrupts must be defined (in other words, u32Enable bitwise ORed with
u32Disable does not need to produce all ones for bits 0-20).

 Any DIO interrupts that are not defined by a call to this function (the relevant bits being
cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32Enable and u32Disable, the corresponding DIO interrupt will
default to disabled.

 This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).

 DIOs assigned to enabled JN516x peripherals are affected by this function.

 The DIO interrupt settings made with this function are retained during sleep.

The signal edge on which each DIO interrupt is generated can be configured using
the function vAHI_DioInterruptEdge() (the default is ‘rising edge’).

DIO interrupts are handled by the System Controller callback function, registered
using the function vAHI_SysCtrlRegisterCallback().

Parameters

u32Enable Bitmap of DIO interrupts to enable - a bit set means that
interrupts on the corresponding DIO will be enabled

u32Disable Bitmap of DIO interrupts to disable - a bit set means that
interrupts on the corresponding DIO will be disabled

Returns

None

void vAHI_DioInterruptEnable(uint32 u32Enable,
uint32 u32Disable);

Caution: This function has the same effect as
vAHI_DioWakeEnable() - both functions access the same
JN516x register bits. Therefore, do not allow the two functions
to conflict in your code.
210 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_DioInterruptEdge

Description

This function configures enabled DIO interrupts by controlling whether individual
DIOs will generate interrupts on a rising or falling edge of the DIO signal. This is done
through two bitmaps for ‘rising edge’ and ‘falling edge’, u32Rising and u32Falling
respectively. In these values, each bit represents a DIO pin, as described on page
203. Setting a bit in one of these bitmaps configures interrupts on the corresponding
DIO to occur on a rising or falling edge, depending on the bitmap (by default, all DIO
interrupts are ‘rising edge’).

Note that:

 Not all DIO interrupts must be configured (in other words, u32Rising bitwise ORed with
u32Falling does not need to produce all ones for the DIO bits).

 Any DIO interrupts that are not configured by a call to this function (the relevant bits
being cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32Rising and u32Falling, the corresponding DIO interrupt will
default to ‘rising edge’.

 This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).

 DIOs assigned to enabled JN516x peripherals are affected by this function.

 The DIO interrupt settings made with this function are retained during sleep.

The DIO interrupts can be individually enable/disabled using the function
vAHI_DioInterruptEnable().

Parameters

u32Rising Bitmap of DIO interrupts to configure - a bit set means that
interrupts on the corresponding DIO will be generated on a
rising edge

u32Falling Bitmap of DIO interrupts to configure - a bit set means that
interrupts on the corresponding DIO will be generated on a
falling edge

Returns

None

void vAHI_DioInterruptEdge(uint32 u32Rising,
uint32 u32Falling);

Caution: This function has the same effect as
vAHI_DioWakeEdge() - both functions access the same
JN516x register bits. Therefore, do not allow the two functions
to conflict in your code.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 211

Chapter 21
DIO and DO Functions

u32AHI_DioInterruptStatus

Description

This function obtains the interrupt status of all the DIO pins. It is used to poll the DIO
interrupt status when DIO interrupts are disabled (and therefore not generated).

The returned value is a bitmap in which a bit is set if an interrupt has occurred on the
corresponding DIO pin (see below). In addition, this bitmap reports other DIO events
that have occurred. After reading, the interrupt status and any other reported DIO
events are cleared.

The results are valid irrespective of whether the pins are used as inputs, as outputs
or by other enabled peripherals. They are also valid immediately following sleep.

Parameters

None

Returns

Bitmap representing set of DIOs, as described in page 203 - a bit is set to 1 if the
corresponding DIO interrupt has occurred or to 0 if the interrupt has not occurred
(unused bits are always 0).

uint32 u32AHI_DioInterruptStatus(void);

Tip: If you wish to generate DIO interrupts instead of using
this function to poll, you must enable DIO interrupts using
vAHI_DioInterruptEnable() and incorporate DIO interrupt
handling in the System Controller callback function registered
using vAHI_SysCtrlRegisterCallback().

Note: This function has the same effect as
vAHI_DioWakeStatus() - both functions access the same
JN516x register bits.
212 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_DioWakeEnable

Description

This function enables/disables wake interrupts on the DIO pins - that is, whether
activity on a DIO input will be able to wake the device from Sleep or Doze mode. This
is done through two bitmaps for ‘wake enabled’ and ‘wake disabled’, u32Enable and
u32Disable respectively. In these values, each bit represents a DIO pin, as described
on page 203. Setting a bit in one of these bitmaps enables/disables wake interrupts
on the corresponding DIO, depending on the bitmap.

Note that:

 Not all DIO wake interrupts must be defined (in other words, u32Enable bitwise ORed
with u32Disable does not need to produce all ones for the DIO bits).

 Any DIO wake interrupts that are not defined by a call to this function (the relevant bits
being cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32Enable and u32Disable, the corresponding DIO wake interrupt
will default to disabled.

 This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).

 DIOs assigned to enabled JN516x peripherals are affected by this function.

 The DIO wake interrupt settings made with this function are retained during sleep.

The signal edge on which each DIO wake interrupt is generated can be configured
using the function vAHI_DioWakeEdge() (the default is ‘rising edge’).

DIO wake interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters

u32Enable Bitmap of DIO wake interrupts to enable - a bit set means that
wake interrupts on the corresponding DIO will be enabled

u32Disable Bitmap of DIO wake interrupts to disable - a bit set means that
wake interrupts on the corresponding DIO will be disabled

Returns

None

void vAHI_DioWakeEnable(uint32 u32Enable,
uint32 u32Disable);

Caution: This function has the same effect as
vAHI_DioInterruptEnable() - both functions access the
same JN516x register bits. Therefore, do not allow the two
functions to conflict in your code.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 213

Chapter 21
DIO and DO Functions

vAHI_DioWakeEdge

Description

This function configures enabled DIO wake interrupts by controlling whether
individual DIOs will generate wake interrupts on a rising or falling edge of the DIO
input. This is done through two bitmaps for ‘rising edge’ and ‘falling edge’, u32Rising
and u32Falling respectively. In these values, each bit represents a DIO pin, as
described on page 203. Setting a bit in one of these bitmaps configures wake
interrupts on the corresponding DIO to occur on a rising or falling edge, depending
on the bitmap (by default, all DIO wake interrupts are ‘rising edge’).

Note that:

 Not all DIO wake interrupts must be configured (in other words, u32Rising bitwise
ORed with u32Falling does not need to produce all ones for the DIO bits).

 Any DIO wake interrupts that are not configured by a call to this function (the relevant
bits being cleared in both bitmaps) will be left in their previous states.

 If a bit is set in both u32Rising and u32Falling, the corresponding DIO wake interrupt
will default to ‘rising edge’.

 This call has no effect on DIO pins that are not defined as inputs (see
vAHI_DioSetDirection()).

 DIOs assigned to enabled JN516x peripherals are affected by this function.

 The DIO wake interrupt settings made with this function are retained during sleep.

The DIO wake interrupts can be individually enable/disabled using the function
vAHI_DioWakeEnable().

Parameters

u32Rising Bitmap of DIO wake interrupts to configure - a bit set means
that wake interrupts on the corresponding DIO will be
generated on a rising edge

u32Falling Bitmap of DIO wake interrupts to configure - a bit set means
that wake interrupts on the corresponding DIO will be
generated on a falling edge

Returns

None

void vAHI_DioWakeEdge(uint32 u32Rising,
uint32 u32Falling);

Caution: This function has the same effect as
vAHI_DioInterruptEdge() - both functions access the same
JN516x register bits. Therefore, do not allow the two functions
to conflict in your code.
214 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u32AHI_DioWakeStatus

Description

This function returns the wake status of all the DIO input pins - that is, whether the
DIO pins were used to wake the device from sleep.

The returned value is a bitmap in which a bit is set if a wake interrupt has occurred
on the corresponding DIO input pin (see below). In addition, this bitmap reports other
DIO events that have occurred. After reading, the wake status and any other reported
DIO events are cleared.

The results are not valid for DIO pins that are configured as outputs or assigned to
other enabled peripherals.

Parameters

None

Returns

Bitmap representing set of DIOs, as described on page 203 - a bit is set to 1 if the
corresponding DIO wake interrupt has occurred or to 0 if the interrupt has not
occurred (unused bits are always 0).

uint32 u32AHI_DioWakeStatus(void);

Note 1: If you wish to use this function to check whether a
DIO caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.

Note 2: When waking from deep sleep, this function will not
indicate a DIO wake source because the device will have
completed a full reset. When waking from sleep, the function
may indicate more than one wake source if multiple DIO
events occurred while the device was booting.

Note 3: If using the JenNet protocol, do not call this function
to obtain the DIO interrupt status on waking from sleep. At
wake-up, JenNet calls u32AHI_Init() internally and clears the
interrupt status before passing control to the application. The
System Controller callback function must be used to obtain
the interrupt status, if required.

Note: This function has the same effect as
vAHI_DioInterruptStatus() - both functions access the same
JN516x register bits.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 215

Chapter 21
DIO and DO Functions

bAHI_DoEnableOutputs

Description

This function can be used to enable both digital output pins (DO0 and DO1) for
general-purpose use.

When enabled for general-purpose use, these pins cannot be used by the SPI
Master, and Timers 2 and 3.

Parameters

bEnable Enable or disable digital outputs:
TRUE - enable
FALSE - disable

Returns

TRUE - DO(s) successfully enabled

FALSE - DO(s) used by SPI Master, so not available to be driven

bool_t bAHI_DoEnableOutputs(bool_t bEnable);

Note: From reset, during sleep and on waking from sleep, the
DO pins revert to being disabled as general-purpose outputs
with pull-ups enabled.
216 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_DoSetDataOut

Description

This function sets individual digital outputs (DO0 and DO1) on or off, driving an output
high or low, respectively. This is done through two bitmaps for on-pins and off-pins,
u8On and u8Off respectively. In these values, bit 0 represents the DO0 pin and bit 1
represents the DO1 pin. Setting a bit in one of these bitmaps configures the
corresponding digital output as on or off, depending on the bitmap.

Note that:

 By default, the digital outputs are high (on) at power-up.

 Both DO pins do not need to be defined (in other words, u8On bitwise ORed with u8Off
does not need to produce all ones for the DO bits).

 A DO pin that is not defined by a call to this function (the relevant bit being cleared in
both bitmaps) will be left in its previous state.

 If a bit is set in both u8On and u8Off, the DO pin will default to off.

 If a DO is assigned to another peripheral which is enabled, this function call will not
affect the relevant DO, until a time when the relevant peripheral is disabled.

Before this function is called, the function bAHI_DoEnableOutputs() must have
been called to enable the relevant DO(s) and must have returned TRUE.

Parameters

u8On Bitmap of on-pins (only bits 0 and 1 are relevant) - a bit set
means that the corresponding DO pin will be set to on

u8Off Bitmap of off-pins (only bits 0 and 1 are relevant) - a bit set
means that the corresponding DO pin will be set to off

Returns

None

void vAHI_DoSetDataOut(uint8 u8On, uint8 u8Off);

Note: From reset, during sleep and on waking from sleep, the
DO pins revert to being disabled as general-purpose outputs
with pull-ups enabled.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 217

Chapter 21
DIO and DO Functions

vAHI_DoSetPullup

Description

This function sets the pull-ups on individual DO pins (DO0 and DO1) as on or off. This
is done through two bitmaps for ‘pull-ups on’ and ‘pull-ups off’, u8On and u8Off
respectively. In these values, bit 0 represents the DO0 pull-up and bit 1 represents
the DO1 pull-up. Setting a bit in one of these bitmaps configures the corresponding
DO pull-up as on or off, depending on the bitmap.

Note that:

 By default, the pull-ups are enabled (on) at power-up.

 Both DO pull-ups do not need to be set (in other words, u8On bitwise ORed with u8Off
does not need to produce all ones for the DIO bits).

 A DO pull-ups that is not set by a call to this function (the relevant bit being cleared in
both bitmaps) will be left in its previous state.

 If a bit is set in both u8On and u8Off, the corresponding DIO pull-up will default to off.

Before this function is called, the function bAHI_DoEnableOutputs() must have
been called to enable the relevant DO(s) and must have returned TRUE. In addition,
the SPI Master should not be subsequently enabled.

Parameters

u8On Bitmap of ‘pull-ups on’ (only bits 0 and 1 are relevant) - a bit
set means that the corresponding pull-up will be enabled

u8Off Bitmap of ‘pull-ups off’ (only bits 0 and 1 are relevant) - a bit
set means that the corresponding pull-up will be disabled

Returns

None

void vAHI_DoSetPullup(uint8 u8On, uint8 u8Off);

Note: From reset, during sleep and on waking from sleep, the
DO pins revert to being disabled as general-pupose outputs
with pull-ups enabled.
218 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
22. UART Functions

This chapter details the functions for controlling the 16550-compatible UARTs
(Universal Asynchronous Receiver Transmitters). The JN516x microcontroller has
two UARTs, denoted UART0 and UART1, which can be independently enabled.

 UART0 uses four pins (shared with the DIOs) for the following signals: Transmit
Data (TxD) output, Receive Data (RxD) input, Request-To-Send (RTS) output
and Clear-To-Send (CTS) input. This UART can be used in 4-wire mode (using
all four signals) or 2-wire mode (using only the TxD and RxD signals). 4-wire
mode is used to implement flow control and is the default mode.

 UART1 uses two pins (shared with the DIOs) for the following signals: Transmit
Data (TxD) output and Receive Data (RxD) input. This UART can be used in 2-
wire mode (using both signals) or 1-wire mode (using only the TxD signal). 2-
wire mode is the default mode.

The UART functions are listed below, along with their page references:

Function Page

bAHI_UartEnable 221

vAHI_UartEnable 223

vAHI_UartDisable 225

vAHI_UartSetLocation 226

vAHI_UartSetBaudRate 227

vAHI_UartSetBaudDivisor 228

vAHI_UartSetClocksPerBit 229

vAHI_UartSetControl 230

vAHI_UartSetInterrupt 231

vAHI_UartTxOnly 232

vAHI_UartSetRTSCTS 233

vAHI_UartSetRTS 234

vAHI_UartSetAutoFlowCtrl 235

vAHI_UartSetBreak 237

vAHI_UartReset 238

u16AHI_UartReadRxFifoLevel 239

u16AHI_UartReadTxFifoLevel 240

u8AHI_UartReadRxFifoLevel 241

u8AHI_UartReadTxFifoLevel 242

u8AHI_UartReadLineStatus 243

Note: For information on the UARTs and guidance on
using the UART functions in JN516x application code,
refer to Chapter 6.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 219

Chapter 22
UART Functions

u8AHI_UartReadModemStatus 244

u8AHI_UartReadInterruptStatus 245

vAHI_UartWriteData 246

u8AHI_UartReadData 247

u16AHI_UartBlockWriteData 248

u16AHI_UartBlockReadData 249

vAHI_Uart0RegisterCallback 250

vAHI_Uart1RegisterCallback 251
220 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_UartEnable

Description

This function enables the specified UART and configures the FIFO Transmit and
Receive buffers for the UART. It must be the first UART function called, except when
using UART0 in 2-wire mode or UART1 in 1-wire mode (see below).

Be sure to enable the UART using this function before writing to the UART using the
function vAHI_UartWriteData(), otherwise an exception will result.

The UARTs should be operated from a peripheral clock which runs at 16MHz (i.e. the
system clock should be sourced from an external crystal oscillator). Therefore, this
system clock must be set up before calling this function (for clock set-up, refer to
Section 3.1).

The function specifies the size (in bytes) and location in RAM of the Transmit and
Receive FIFOs. The size of each buffer can be set between 16 and 2047 bytes
(inclusive). A valid size and pointer value for the Transmit FIFO must always be set.
If the Receive FIFO is not required (e.g. in 1-wire mode for UART1) then its pointer
value should be set to NULL (its size will be ignored in this case).

The UARTs use the following sets of DIO lines (primary and alternative sets):

The UART signals can be moved from the default DIO4-7 to DIO12-15 for UART0,
and from the default DIO14-15 to DIO11 /DIO9 for UART1. In both cases, this is done
using vAHI_UartSetLocation() which must be called before bAHI_UartEnable().

 UART0 may use all four signals (CTS, RTS, TxD, RxD), in which case it is said to
operate in 4-wire mode in which flow control is implemented

 UART0 and UART1 may use just two signals (TxD and RxD), in which case they are
said to operate in 2-wire mode (in which no flow control is implemented)

 UART1 may alternatively use just one signal (TxD), in which case it is said to operate in
1-wire mode

For UART0, 4-wire mode (with flow control) is enabled by default when
bAHI_UartEnable() is called. If you wish to implement 2-wire mode, you will need to

bool_t bAHI_UartEnable(uint8 u8Uart,
uint8 *pu8TxBufAd,
uint16 u16TxBufLen,
uint8 *pu8RxBufAd,
uint16 u16RxBufLen);

UART Signal DIOs for UART0 DIOs for UART1

CTS DIO4 DIO12 - -

RTS DIO5 DIO13 - -

TxD DIO6 DIO14 DIO14 DIO11

RxD DIO7 DIO15 DIO15 DIO9
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 221

Chapter 22
UART Functions

call vAHI_UartSetRTSCTS() before calling bAHI_UartEnable() in order to release
control of the DIOs used for RTS and CTS.

For UART1, 2-wire mode is enabled by default when bAHI_UartEnable() is called.
If you wish to implement 1-wire mode, you will need to call vAHI_UartTxOnly()
before calling bAHI_UartEnable() in order to release control of the DIO used for
RxD.

When bAHI_UartEnable() is called to enable UART0, the JTAG debugger on the
JN516x device is automatically disabled (as it uses the same pins as UART0).

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

*pu8TxBufAd Pointer to start of Transmit FIFO

u16TxBufLen Size of Transmit FIFO, in range 16 to 2047 bytes

*pu8RxBufAd Pointer to start of Receive FIFO (if this FIFO is not needed, set
to NULL)

u16RxBufLen Size of Receive FIFO, in range 16 to 2047 bytes (this
parameter is ignored when pu8RxBufAd is set to NULL)

Returns

TRUE if UART was successfully intialised, FALSE if UART was not successfully
initialised (e.g. UART specified via u8Uart is invalid, pu8TxBufAd is set to NULL or
u16TxBufLen is outside valid range)
222 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartEnable

Description

This function enables the specified UART. It must be the first UART function called.

Be sure to enable the UART using this function before writing to the UART using the
function vAHI_UartWriteData(), otherwise an exception will result.

The UARTs should be operated from a peripheral clock which runs at 16MHz (i.e. the
system clock should be sourced from an external crystal oscillator). Therefore, this
system clock must be set up before calling this function (for clock set-up, refer to
Section 3.1).

The UARTs use the following sets of DIO lines (primary and alternative sets):

The UART signals can be moved from the default DIO4-7 to DIO12-15 for UART0,
and from the default DIO14-15 to DIO11 /DIO9 for UART1. In both cases, this is done
using vAHI_UartSetLocation() which must be called before vAHI_UartEnable().

 UART0 may use all four signals (CTS, RTS, TxD, RxD), in which case it is said to
operate in 4-wire mode in which flow control is implemented

 UART0 and UART1 may use just two signals (TxD and RxD), in which case they are
said to operate in 2-wire mode (in which no flow control is implemented)

 UART1 may alternatively use just one signal (TxD), in which case it is said to operate in
1-wire mode

For UART0, 4-wire mode (with flow control) is enabled by default when
vAHI_UartEnable() is called. If you wish to implement 2-wire mode, you will need to

void vAHI_UartEnable(uint8 u8Uart);

Note: This function is provided only for backward
compatibility with application code developed for the JN514x
microcontrollers. New code for the JN516x microcontrollers
should use the function bAHI_UartEnable() instead,
described on page 221.

UART Signal DIOs for UART0 DIOs for UART1

CTS DIO4 DIO12 - -

RTS DIO5 DIO13 - -

TxD DIO6 DIO14 DIO14 DIO11

RxD DIO7 DIO15 DIO15 DIO9
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 223

Chapter 22
UART Functions

call vAHI_UartSetRTSCTS() before calling vAHI_UartEnable() in order to release
control of the DIOs used for RTS and CTS.

For UART1, 2-wire mode is enabled by default when vAHI_UartEnable() is called. If
you wish to implement 1-wire mode, you will need to call vAHI_UartTxOnly() before
calling vAHI_UartEnable() in order to release control of the DIO used for RxD.

When vAHI_UartEnable() is called to enable UART0, the JTAG debugger on the
JN516x device is automatically disabled (as it uses the same pins as UART0).

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

None
224 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartDisable

Description

This function disables the specified UART by powering it down.

Be sure to re-enable the UART using bAHI_UartEnable() before attempting to write
to the UART using the function vAHI_UartWriteData(), otherwise an exception will
result.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

None

void vAHI_UartDisable(uint8 u8Uart);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 225

Chapter 22
UART Functions

vAHI_UartSetLocation

Description

This function can be used to select the set of DIOs on which the specified UART will
operate:

 For UART0, DIO4-7 (default) or DIO12-15

 For UART1, DIO14-15 (default) or DIO11 and DIO9

The function only needs to be called if the alternative DIOs are to be used.

If required, this function must be called before bAHI_UartEnable() is called.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bLocation DIOs on which UART will operate:
TRUE - DIO12-15 (UART0) or DIO11/DIO9 (UART1)
FALSE - DIO4-7 (UART0) or DIO14-15 (UART1)

Returns

None

void vAHI_UartSetLocation(uint8 u8Uart, bool_t bLocation);
226 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetBaudRate

Description

This function sets the baud-rate for the specified UART to one of a number of
standard rates.

The possible baud-rates are:

 4800 bps

 9600 bps

 19200 bps

 38400 bps

 76800 bps

 115200 bps

To set the baud-rate to other values, use the function vAHI_UartSetBaudDivisor().

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8BaudRate Desired baud-rate:
E_AHI_UART_RATE_4800 (4800 bps)
E_AHI_UART_RATE_9600 (9600 bps)
E_AHI_UART_RATE_19200 (19200 bps)
E_AHI_UART_RATE_38400 (38400 bps)
E_AHI_UART_RATE_76800 (76800 bps)
E_AHI_UART_RATE_115200 (115200 bps)

Returns

None

void vAHI_UartSetBaudRate(uint8 u8Uart,
uint8 u8BaudRate);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 227

Chapter 22
UART Functions

vAHI_UartSetBaudDivisor

Description

This function sets an integer divisor to derive the baud-rate from a 1MHz frequency
for the specified UART. The function allows baud-rates to be set that are not
available through the function vAHI_UartSetBaudRate().

The baud-rate produced is defined by:

baud-rate = 1000000/u16Divisor

For example:

Note that other baud-rates (including higher baud-rates) can be achieved by
subsequently calling the function vAHI_UartSetClocksPerBit().

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u16Divisor Integer divisor

Returns

None

void vAHI_UartSetBaudDivisor(uint8 u8Uart,
uint16 u16Divisor);

u16Divisor Baud-rate (bits/s)

1 1000000

2 500000

9 115200 (approx.)

26 38400 (approx.)
228 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetClocksPerBit

Description

This function sets the baud-rate used by the specified UART to a value derived from
a 16MHz peripheral clock. The function allows higher baud-rates to be set than those
available through vAHI_UartSetBaudRate() and vAHI_UartSetBaudDivisor().

The obtained baud-rate, in Mbits/s, is given by:

where Cpb is set in this function and Divisor is set in vAHI_UartSetBaudDivisor().
Therefore, the function vAHI_UartSetBaudDivisor() must be called to set Divisor
before calling vAHI_UartSetClocksPerBit().

Example baud-rates that can be achieved are listed below:

Note that 4 Mbits/s is the highest baud rate that is recommended.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8Cpb Cpb value in above formula, in range 0-15
(note that values 0-2 are not recommended)

Returns

None

void vAHI_UartSetClocksPerBit(uint8 u8Uart, uint8 u8Cpb);

Divisor Cpb Baud-rate (Mbits/s)

1 3 4.000

1 4 3.200

1 5 2.667

1 6 2.286

1 7 2.000

1 15 1.000

2 11 0.667

2 15 0.500

3 15 0.333

16
Divisor Cpb 1+

JN-UG-3087 v1.1 © NXP Laboratories UK 2013 229

Chapter 22
UART Functions

vAHI_UartSetControl

Description

This function sets various control bits for the specified UART.

Note that RTS for UART0 cannot be controlled automatically - it can only be set/
cleared under software control (this setting will be ignored for UART1).

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bEvenParity Type of parity to be applied (if enabled):
E_AHI_UART_EVEN_PARITY (even parity)
E_AHI_UART_ODD_PARITY (odd parity)

bEnableParity Enable/disable parity check:
E_AHI_UART_PARITY_ENABLE
E_AHI_UART_PARITY_DISABLE

u8WordLength Word length (in bits):
E_AHI_UART_WORD_LEN_5 (word is 5 bits)
E_AHI_UART_WORD_LEN_6 (word is 6 bits)
E_AHI_UART_WORD_LEN_7 (word is 7 bits)
E_AHI_UART_WORD_LEN_8 (word is 8 bits)

bOneStopBit Number of stop bits - 1 stop bit, or 1.5 or 2 stop bits
(depending on word length), enumerated as:
E_AHI_UART_1_STOP_BIT (TRUE - 1 stop bit)
E_AHI_UART_2_STOP_BITS (FALSE - 1.5 or 2 stop bits)

bRtsValue Set/clear RTS signal (UART0 only):
E_AHI_UART_RTS_HIGH (TRUE - set RTS to high)
E_AHI_UART_RTS_LOW (FALSE - clear RTS to low)

Returns

None

void vAHI_UartSetControl(uint8 u8Uart,
bool_t bEvenParity,
bool_t bEnableParity,
uint8 u8WordLength,
bool_t bOneStopBit,
bool_t bRtsValue);
230 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetInterrupt

Description

This function enables or disables the interrupts generated by the specified UART and
sets the Receive FIFO trigger-level - that is, the number of bytes required in the
Receive FIFO to trigger a ‘receive data available’ interrupt.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bEnableModemStatus Enable/disable ‘modem status’ interrupt (e.g. CTS change
detected for UART0):
TRUE to enable
FALSE to disable

bEnableRxLineStatus Enable/disable ‘receive line status’ interrupt (break
indication, framing error, parity error or over-run):
TRUE to enable
FALSE to disable

bEnableTxFifoEmpty Enable/disable ‘Transmit FIFO empty’ interrupt:
TRUE to enable
FALSE to disable

bEnableRxData Enable/disable ‘receive data available’ interrupt:
TRUE to enable
FALSE to disable

u8FifoLevel Number of bytes in Receive FIFO required to trigger a
‘receive data available’ interrupt:
E_AHI_UART_FIFO_LEVEL_1 (1 byte)
E_AHI_UART_FIFO_LEVEL_4 (4 bytes)
E_AHI_UART_FIFO_LEVEL_8 (8 bytes)
E_AHI_UART_FIFO_LEVEL_14 (14 bytes)

Returns

None

void vAHI_UartSetInterrupt(uint8 u8Uart,
bool_t bEnableModemStatus,
bool_t bEnableRxLineStatus,
bool_t bEnableTxFifoEmpty,
bool_t bEnableRxData,
uint8 u8FifoLevel);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 231

Chapter 22
UART Functions

vAHI_UartTxOnly

Description

This function enables or disables 1-wire mode on the specified UART. In this mode,
the UART can only transmit - only the TxD pin is used and the RxD is released for
other uses.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bEnable Enable/disable 1-wire mode:
TRUE to enable
FALSE to disable

Returns

None

void vAHI_UartTxOnly(uint8 u8Uart, bool_t bEnable);

Note: Currently, 1-wire mode is supported on UART1 only
and this function will have no effect if UART0 is specified.
232 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetRTSCTS

Description

This function instructs UART0 to take or release control of the DIO lines used for RTS
and CTS in flow control (depending on the DIOs selected):

 DIO4 (default) or DIO12 for CTS

 DIO5 (default) or DIO13 for RTS

The function must be called before vAHI_UartEnable() is called.

UART0 operates by default in 4-wire mode. If you wish to use this UART in 2-wire
mode, it will be necessary to call vAHI_UartSetRTSCTS() before calling
bAHI_UartEnable() in order to release control of the RTS and CTS lines.

Parameters

u8Uart Identity of UART: set to E_AHI_UART_0

bRTSCTSEn Take/release control of DIO lines for RTS and CTS:
TRUE to take control
FALSE to release control (allow use for other operations)

Returns

None

void vAHI_UartSetRTSCTS(uint8 u8Uart,
bool_t bRTSCTSEn);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 233

Chapter 22
UART Functions

vAHI_UartSetRTS

Description

This function instructs UART0 to set or clear its RTS signal in 4-wire mode.

In order to use this function, the UART must be in 4-wire mode without automatic flow
control enabled.

The function must be called after bAHI_UartEnable() is called.

Parameters

u8Uart Identity of UART: set to E_AHI_UART_0

bRtsValue Set/clear RTS signal:
E_AHI_UART_RTS_HIGH (TRUE - set RTS to high)
E_AHI_UART_RTS_LOW (FALSE - clear RTS to low)

Returns

None

void vAHI_UartSetRTS(uint8 u8Uart, bool_t bRtsValue);
234 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetAutoFlowCtrl

Description

This function allows Automatic Flow Control (AFC) to be configured and enabled for
UART0 operating in 4-wire mode. The function parameters allow the following to be
selected/set:

 Automatic RTS (bAutoRts): This is the automatic control of the outgoing RTS signal
based on the Receive FIFO fill-level. RTS is de-asserted when the Receive FIFO fill-
level is greater than or equal to the specified trigger level (u8RxFifoLevel). RTS is then
re-asserted as soon as Receive FIFO fill-level falls below the trigger level.

 Automatic CTS (bAutoCts): This is the automatic control of transmissions based on
the incoming CTS signal. The transmission of a character is only started if the CTS
input is asserted.

 Receive FIFO Automatic RTS trigger level (u8RxFifoLevel): This is the level at which
the outgoing RTS signal is de-asserted when the Automatic RTS feature is enabled
(using bAutoRts). If using a USB/FTDI cable to connect to the UART, use a setting of
13 bytes or lower (otherwise the Receive FIFO will overflow and data will be lost, as the
FTDI device sends up to 3 bytes of data even once RTS has been de-asserted).

 Flow Control Polarity (bFlowCtrlPolarity): This is the active level (active-low or active-
high) of the RTS and CTS hardware flow control signals when using the AFC feature.
This setting has no effect when not using AFC (in this case, the software decides the
active level, sets the outgoing RTS value and monitors the incoming CTS value).

In order to use the RTS and CTS lines, UART0 must be enabled in 4-wire mode,
which is its default mode.

Parameters

u8Uart Identity of UART: set to E_AHI_UART_0

u8RxFifoLevel Receive FIFO automatic RTS trigger level:
E_AHI_UART_FIFO_ARTS_LEVEL_8: 8 bytes
E_AHI_UART_FIFO_ARTS_LEVEL_11: 11 bytes
E_AHI_UART_FIFO_ARTS_LEVEL_13: 13 bytes
E_AHI_UART_FIFO_ARTS_LEVEL_15: 15 bytes

bFlowCtrlPolarity Active level (low or high) of RTS and CTS flow control:
FALSE: RTS and CTS are active-low
TRUE: RTS and CTS are active-high

bAutoRts Enable/disable Automatic RTS feature:
TRUE to enable
FALSE to disable

bAutoCts Enable/disable Automatic CTS feature:
TRUE to enable
FALSE to disable

void vAHI_UartSetAutoFlowCtrl(uint8 u8Uart,
uint8 u8RxFifoLevel,
bool_t bFlowCtrlPolarity,
bool_t bAutoRts,
bool_t bAutoCts);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 235

Chapter 22
UART Functions

Returns

None
236 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_UartSetBreak

Description

This function instructs the specified UART to initiate or clear a transmission break.

On setting the break condition using this function, the data byte that is currently being
transmitted is corrupted and transmission then stops. On clearing the break
condition, transmission resumes to transfer the data remaining in the Transmit FIFO.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bBreak Instruction for UART:
TRUE to initiate break (no data)
FALSE to clear break (and resume data transmission)

Returns

None

void vAHI_UartSetBreak(uint8 u8Uart, bool_t bBreak);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 237

Chapter 22
UART Functions

vAHI_UartReset

Description

This function resets the Transmit and Receive FIFOs of the specified UART. The
character currently being transferred is not affected. The Transmit and Receive
FIFOs can be reset individually or together.

The function also sets the FIFO trigger-level to single-byte trigger. The Receive FIFO
interrupt trigger-level can be set via vAHI_UartSetInterrupt().

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

bTxReset Transmit FIFO reset:
TRUE to reset the Transmit FIFO
FALSE not to reset the Transmit FIFO

bRxReset Receive FIFO reset:
TRUE to reset the Receive FIFO
FALSE not to reset the Receive FIFO

Returns

None

void vAHI_UartReset(uint8 u8Uart,
bool_t bTxReset,
bool_t bRxReset);
238 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_UartReadRxFifoLevel

Description

This function obtains the fill-level of the Receive FIFO of the specified UART - that is,
the number of characters currently in the FIFO.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Number of characters in the specified Receive FIFO

uint16 u16AHI_UartReadRxFifoLevel(uint8 u8Uart);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 239

Chapter 22
UART Functions

u16AHI_UartReadTxFifoLevel

Description

This function obtains the fill-level of the Transmit FIFO - that is, the number of
characters currently in the FIFO.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Number of characters in the specified Transmit FIFO

uint16 u16AHI_UartReadTxFifoLevel(uint8 u8Uart);
240 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_UartReadRxFifoLevel

Description

This function obtains the fill-level of the Receive FIFO of the specified UART on the
JN516x device - that is, the number of characters currently in the FIFO.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Number of characters in the specified Receive FIFO

uint8 u8AHI_UartReadRxFifoLevel(uint8 u8Uart);

Note: This function is provided only for backward
compatibility with application code developed for the JN514x
microcontrollers. New code for the JN516x microcontrollers
should use the function u16AHI_UartReadRxFifoLevel()
instead, described on page 239.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 241

Chapter 22
UART Functions

u8AHI_UartReadTxFifoLevel

Description

This function obtains the fill-level of the Transmit FIFO of the specified UART on the
JN516x device - that is, the number of characters currently in the FIFO.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Number of characters in the specified Transmit FIFO

uint8 u8AHI_UartReadTxFifoLevel(uint8 u8Uart);

Note: This function is provided only for backward
compatibility with application code developed for the JN514x
microcontrollers. New code for the JN516x microcontrollers
should use the function u16AHI_UartReadTxFifoLevel()
instead, described on page 240.
242 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_UartReadLineStatus

Description

This function returns line status information in a bitmap for the specified UART.

Note that the following bits are cleared after reading:

E_AHI_UART_LS_ERROR
E_AHI_UART_LS_BI
E_AHI_UART_LS_FE
E_AHI_UART_LS_PE
E_AHI_UART_LS_OE

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Bitmap:

uint8 u8AHI_UartReadLineStatus(uint8 u8Uart);

Bit Description

E_AHI_UART_LS_ERROR This bit will be set if a parity error, framing error
or break indication has been received

E_AHI_UART_LS_TEMT This bit will be set if the Transmit Shift Register
is empty

E_AHI_UART_LS_THRE This bit will be set if the Transmit FIFO is empty

E_AHI_UART_LS_BI This bit will be set if a break indication has been
received (line held low for a whole character)

E_AHI_UART_LS_FE This bit will be set if a framing error has been
received

E_AHI_UART_LS_PE This bit will be set if a parity error has been
received

E_AHI_UART_LS_OE This bit will be set if a receive over-run has
occurred, i.e. the receive buffer is full but
another character arrives

E_AHI_UART_LS_DR This bit will be set if there is data in the Receive
FIFO
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 243

Chapter 22
UART Functions

u8AHI_UartReadModemStatus

Description

This function obtains modem status information from UART0 as a bitmap which
includes the CTS and ‘CTS has changed’ status (which can be extracted as
described below).

Parameters

u8Uart Identity of UART: set to E_AHI_UART_0

Returns

Bitmap in which:

 CTS input status is bit 4 (‘1’ indicates CTS is high, ‘0’ indicates CTS is low).

 ‘CTS has changed’ status is bit 0 (‘1’ indicates that CTS input has changed). If the
return value bitwise ANDed with E_AHI_UART_MS_DCTS is non-zero, the CTS input
has changed.

uint8 u8AHI_UartReadModemStatus(uint8 u8Uart);
244 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_UartReadInterruptStatus

Description

This function returns a pending interrupt for the specified UART as a bitmap.

Interrupts are returned one at a time, according to their priorities, so there may need
to be multiple calls to this function. If interrupts are enabled, the interrupt handler
processes this activity and posts each interrupt to the queue or to a callback function.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Bitmap:

The above table lists the UART interrupts (bits 1-3) from highest to lowest priority.

uint8 u8AHI_UartReadInterruptStatus(uint8 u8Uart);

Bit range Value/Enumeration Description

Bit 0 0 More interrupts pending

1 No more interrupts pending

Bits 1-3 E_AHI_UART_INT_RXLINE (3) Receive line status interrupt (highest prioritry)

E_AHI_UART_INT_RXDATA (2) Receive data available interrupt (next highest priority)

E_AHI_UART_INT_TIMEOUT (6) Timeout interrupt (next highest priority)

E_AHI_UART_INT_TX (1) Transmit FIFO empty interrupt (next highest priority)

E_AHI_UART_INT_MODEM (0) Modem status interrupt (lowest priority)
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 245

Chapter 22
UART Functions

vAHI_UartWriteData

Description

This function writes a data byte to the Transmit FIFO of the specified UART. The data
byte will start to be transmitted as soon as it reaches the head of the FIFO.

If no flow control or manual flow control is being implemented for data transmission,
the data in the Transmit FIFO will be transmitted as soon as possible (irrespective of
the state of the local CTS line). Therefore, the function vAHI_UartWriteData()
should be called only when the destination device is able to receive the data.

For UART0, if automatic flow control has been enabled for the local CTS line using
the function vAHI_UartSetAutoFlowCtrl(), the data in the Transmit FIFO will only be
transmitted once the CTS line has been asserted. In this case,
vAHI_UartWriteData() can be called at any time to load data into the Transmit FIFO,
provided that there is enough free space in the FIFO.

Refer to the description of u16AHI_UartReadTxFifoLevel() or
u8AHI_UartReadLineStatus() for details of how to determine whether the Transmit
FIFO already contains data.

Before this function is called, the UART must be enabled using the function
bAHI_UartEnable(), otherwise an exception will result.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

u8Data Byte to transmit

Returns

None

void vAHI_UartWriteData(uint8 u8Uart, uint8 u8Data);
246 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_UartReadData

Description

This function returns a single byte read from the Receive FIFO of the specified
UART. If the FIFO is empty, the returned value is not valid.

Refer to the description of u16AHI_UartReadRxFifoLevel() or
u8AHI_UartReadLineStatus() for details of how to determine whether the Receive
FIFO is empty.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

Returns

Received byte

uint8 u8AHI_UartReadData (uint8 u8Uart);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 247

Chapter 22
UART Functions

u16AHI_UartBlockWriteData

Description

This function writes a block of data to the Transmit FIFO of the specified UART. The
transmission of the data will then be handled by the on-chip DMA engine.

If no flow control or manual flow control is being implemented for data transmission,
the data in the Transmit FIFO will be transmitted as soon as possible (irrespective of
the state of the local CTS line). Therefore, u16AHI_UartBlockWriteData() should be
called only when the destination device is able to receive the data.

For UART0, if automatic flow control has been enabled for the local CTS line using
the function vAHI_UartSetAutoFlowCtrl(), the data in the Transmit FIFO will only be
transmitted once the CTS line has been asserted. In this case,
u16AHI_UartBlockWriteData() can be called at any time to load data into the
Transmit FIFO, provided that there is enough free space in the FIFO.

Refer to the description of u16AHI_UartReadTxFifoLevel() or
u8AHI_UartReadLineStatus() for details of how to determine whether the Transmit
FIFO already contains data.

Before this function is called, the UART must be enabled using the function
bAHI_UartEnable(), otherwise an exception will result.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

*pu8Data Pointer to start of data block to be written to Transmit FIFO

u16DataLength Size of data block, in bytes

Returns

Number of bytes of data successfully written to the Transmit FIFO

uint16 u16AHI_UartBlockWriteData(uint8 u8Uart,
uint8 *pu8Data,
uint16 u16DataLength);
248 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_UartBlockReadData

Description

This function reads a block of data from the Receive FIFO of the specified UART. If
the FIFO is empty, the returned value is not valid.

A data buffer in RAM to receive the read data block must be specified.

Refer to the description of u16AHI_UartReadRxFifoLevel() or
u8AHI_UartReadLineStatus() for details of how to determine whether the Receive
FIFO is empty.

Parameters

u8Uart Identity of UART:
E_AHI_UART_0 (UART0)
E_AHI_UART_1 (UART1)

*pu8DataBuffer Pointer to data buffer in RAM to receive read data block

u16DataBufferLength Size of data buffer, in bytes

Returns

Number of bytes of data successfully read from Receive FIFO

uint16 u16AHI_UartBlockReadData(
uint8 u8Uart,
uint8 *pu8DataBuffer,
uint16 u16DataBufferLength);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 249

Chapter 22
UART Functions

vAHI_Uart0RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
UART0 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prUart0Callback Pointer to callback function to be registered

Returns

None

void vAHI_Uart0RegisterCallback(
PR_HWINT_APPCALLBACK prUart0Callback);
250 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Uart1RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
UART1 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prUart1Callback Pointer to callback function to be registered

Returns

None

void vAHI_Uart1RegisterCallback(
PR_HWINT_APPCALLBACK prUart1Callback);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 251

Chapter 22
UART Functions

252 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
23. Timer Functions

This chapter describes the functions that can be used to control the on-chip timers.
The JN516x device has five times: Timer 0, Timer 1, Timer 2, Timer 3 and Timer 4
(Timers 1-4 have no external inputs and only support modes without inputs)

They are distinct from the wake timers described in Chapter 8 and tick timer described
in Chapter 9.

The Timer functions are listed below, along with their page references:

Function Page

vAHI_TimerEnable 254

vAHI_TimerClockSelect 256

vAHI_TimerConfigureOutputs 257

vAHI_TimerConfigureInputs 258

vAHI_TimerSetLocation 259

vAHI_TimerStartSingleShot 260

vAHI_TimerStartRepeat 261

vAHI_TimerStartCapture 262

vAHI_TimerStartDeltaSigma 263

u16AHI_TimerReadCount 265

vAHI_TimerReadCapture 266

vAHI_TimerReadCaptureFreeRunning 267

vAHI_TimerStop 268

vAHI_TimerDisable 269

vAHI_TimerDIOControl 270

vAHI_TimerFineGrainDIOControl 271

u8AHI_TimerFired 272

vAHI_Timer0RegisterCallback 273

vAHI_Timer1RegisterCallback 274

vAHI_Timer2RegisterCallback 275

vAHI_Timer3RegisterCallback 276

vAHI_Timer4RegisterCallback 277

Note: For information on the timers and guidance on
using the timer functions in JN516x application code,
refer to Chapter 7.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 253

Chapter 23
Timer Functions

vAHI_TimerEnable

Description

This function configures and enables the specified timer, and must be the first timer
function called. The timer is derived from the peripheral clock, which can be divided
down to produce the timer clock (a system clock sourced from the external crystal
oscillator gives the most stable results). The timer can be used in various modes,
introduced in Section 7.1 (note that Timers 1-4 have no external inputs and therefore
only support modes without inputs).

The parameters of this enable function cover the following features:

 Prescaling (u8Prescale): The timer’s source clock is divided down to produce a slower
clock for the timer, the divisor being 2u8Prescale. Therefore:

Timer clock frequency = Source clock frequency / 2u8Prescale

 Interrupts (bIntRiseEnable and bIntPeriodEnable): Interrupts can be generated:

 in Timer or PWM mode, on a low-to-high transition (rising output) and/or on a
high-to-low transition (end of the timer period)

 in Counter mode, on reaching target counts

You can register a user-defined callback function for timer interrupts using the function
vAHI_Timer0RegisterCallback() for Timer 0, vAHI_Timer1RegisterCallback() for
Timer 1, vAHI_Timer2RegisterCallback() for Timer 2,
vAHI_Timer3RegisterCallback() for Timer 3 or vAHI_Timer4RegisterCallback() for
Timer 4. Alternatively, timer interrupts can be disabled.

 Timer output (bOutputEnable): When operating in PWM mode or Delta-Sigma mode,
the timer’s signal is output on a DIO pin (see Section 7.2.1), which must be enabled. If
this option is enabled, the other DIOs associated with the timer cannot be used for
general-purpose input/output.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

u8Prescale Prescale index, in range 0 to 16, used in dividing down source
clock (divisor is 2u8Prescale)

bIntRiseEnable Enable/disable interrupt on rising output (low-to-high):
TRUE to enable
FALSE to disable

bIntPeriodEnable Enable/disable interrupt at end of timer period (high-to-low):
TRUE to enable
FALSE to disable

void vAHI_TimerEnable(uint8 u8Timer,
uint8 u8Prescale,
bool_t bIntRiseEnable,
bool_t bIntPeriodEnable,
bool_t bOutputEnable);
254 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bOutputEnable Enable/disable output of timer signal on DIO:
TRUE to enable (PWM or Delta-Sigma mode)
FALSE to disable (Timer mode)

Returns

None
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 255

Chapter 23
Timer Functions

vAHI_TimerClockSelect

Description

This function can be used to enable/disable an external clock input for Timer 0. If
enabled, the external input is taken from the DIO8 pin.

Note the following:

 This function should only be called when using the timer in Counter mode - in this
mode, the timer is used to count edges on an input clock or pulse train.

 Output gating can be enabled when the internal clock is used.

If required, this function must be called after vAHI_TimerEnable().

Parameters

u8Timer Identity of timer: set to E_AHI_TIMER_0

bExternalClock Clock source:
TRUE to use an external source (Counter mode only)
FALSE to use the internal 16MHz clock

bInvertClock TRUE to gate the output pin when the gate input is high and
invert the clock
FALSE to gate the output pin when the gate input is low and
not invert the clock

Returns

None

void vAHI_TimerClockSelect(uint8 u8Timer,
bool_t bExternalClock,
bool_t bInvertClock);
256 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerConfigureOutputs

Description

This function configures certain parameters relating to the operation of the specified
timer in the following modes (introduced in Section 7.1):

 Timer mode: The internal peripheral clock drives the timer’s counter in order to
produce a pulse cycle in either ‘single shot’ or ‘repeat’ mode. The clock may be
temporarily interrupted by a gating input on a DIO (see Section 7.2.1 for the relevant
DIOs). Clock gating can be enabled/disabled using this function for Timer 0 only (there
are no gating inputs for Timers 1-4).

 Pulse Width Modulation (PWM) mode: The PWM signal produced in Timer mode
(see above) is output, where this output can be enabled in vAHI_TimerEnable(). The
signal is output on a DIO which depends on the timer selected (see Section 7.2.1 for
the relevant DIOs). If required, the output signal can be inverted using this function on
any of the timers operating in PWM mode.

This function must be called after the specified timer has been enabled through
vAHI_TimerEnable() and before the timer is started.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

bInvertPwmOutput Enable/disable inversion of PWM output:
TRUE to enable inversion
FALSE to disable inversion

bGateDisable Enable/disable external gating input for Timer mode:
TRUE to disable clock gating input
FALSE to enable clock gating input
(for Timers 1-4, set to TRUE)

Returns

None

void vAHI_TimerConfigureOutputs(uint8 u8Timer,
bool_t bInvertPwmOutput,
bool_t bGateDisable);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 257

Chapter 23
Timer Functions

vAHI_TimerConfigureInputs

Description

This function configures certain parameters relating to the operation of Timer 0 (there
are no external signal inputs for Timers 1-4) in the following modes (introduced in
Section 7.1):

 Capture mode: An external signal is sampled on every tick of the timer. The results of
the capture allow the period and pulse width of the sampled signal to be obtained. The
input signal can be inverted using this function, allowing the low-pulse width to be
measured (instead of the high-pulse width). This external signal is input on the DIO9
pin.

 Counter mode: The timer is used to count the number of transitions on an external
input (selected using vAHI_TimerClockSelect()). This configure function allows
selection of the transitions on which the count will be performed - on low-to-high
transitions, or on both low-to-high and high-to-low transitions.

This function must be called after the timer has been enabled through
vAHI_TimerEnable() and before the timer is started.

Parameters

u8Timer Identity of timer: set to E_AHI_TIMER_0

bInvCapt Enable/disable inversion of the capture input signal:
TRUE to enable inversion
FALSE to disable inversion

bEventEdge Determines the edge(s) of the external input on which the
count will be incremented in counter mode:
TRUE - on both low-to-high and high-to-low transitions
FALSE - on low-to-high transition

Returns

None

void vAHI_TimerConfigureInputs(uint8 u8Timer,
bool_t bInvCapt,
bool_t bEventEdge);
258 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerSetLocation

Description

This function can be used to select the set of pins on which the specified timer(s) will
operate. The affected timers can be Timer 0 alone or the other four timers (1, 2, 3
and 4) collectively:

 Timer 0 can use DIO8-10 (default) or alternatively DIO2-4

 Timers 1, 2, 3 and 4 can use DIO11-13 and 17 (default) or alternatively DIO5-8

Note that specifying any one of Timers 1-4 in the bLocation parameter will relocate
the DIOs for all four of these timers. However, it is possible to relocate Timer 3 onto
DO1 and Timer 2 onto DO0 (Digital Output 1 and Digital Output 0, and not DIOs)
using the bLocationOverridePWM3andPWM2 parameter, which over-rides the
bLocation setting for these two timers.

The function only needs to be called if the alternative DIOs are preferred.

Parameters

u8Timer Timer(s) to which DIO re-location will be applied:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timers 1-4)
E_AHI_TIMER_2 (Timers 1-4)
E_AHI_TIMER_3 (Timers 1-4)
E_AHI_TIMER_4 (Timers 1-4)

bLocation DIOs on which specified timer(s) will operate:
TRUE - DIO2-4 (Timer 0) or DIO5-8 (Timers 1-4)
FALSE - DIO8-10 (Timer 0) or DIO11-13 & 17 (Timers 1-4)

bLocationOverridePWM3andPWM2

Relocate Timers 3 and 2 onto DO1 and DO0:
TRUE - relocate to DO1 and DO0
FALSE - relocate as specified by bLocation

Returns

None

void vAHI_TimerSetLocation(
uint8 u8Timer,
bool_t bLocation,
bool_t bLocationOverridePWM3andPWM2);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 259

Chapter 23
Timer Functions

vAHI_TimerStartSingleShot

Description

This function starts the specified timer in ‘single-shot’ mode. The function relates to
Timer mode, PWM mode and Counter mode (introduced in Section 7.1).

In Timer or PWM mode, during one pulse cycle produced, the timer signal starts low
and then goes high:

1. The output is low until u16Hi clock periods have passed, when it goes high.

2. The output remains high until u16Lo clock periods have passed since the timer was
started and then goes low again (marking the end of the pulse cycle).

If enabled through vAHI_TimerEnable(), an interrupt can be triggered at the low-
high transition and/or the high-low transition.

In Counter mode, this function is used differently:

 At a count of u16Hi, an interrupt (E_AHI_TIMER_RISE_MASK) will be generated
(if enabled).

 At a count of u16Lo, another interrupt (E_AHI_TIMER_PERIOD_MASK) will be
generated (if enabled) and the timer will stop.

Again, interrupts are enabled through vAHI_TimerEnable().

Note that Counter mode is only available for Timer 0.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

u16Hi Number of clock periods after starting a timer before the
output goes high (Timer or PWM mode) or count at which first
interrupt generated (Counter mode)

u16Lo Number of clock periods after starting a timer before the
output goes low again (Timer or PWM mode) or count at which
second interrupt generated and timer stops (Counter mode)

Returns

None

void vAHI_TimerStartSingleShot(uint8 u8Timer,
uint16 u16Hi,
uint16 u16Lo);
260 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerStartRepeat

Description

This function starts the specified timer in ‘repeat’ mode. The function relates to Timer
mode, PWM mode and Counter mode (introduced in Section 7.1).

In Timer or PWM mode, during each pulse cycle produced, the timer signal starts
low and then goes high:

1. The output is low until u16Hi clock periods have passed, when it goes high.

2. The output remains high until u16Lo clock periods have passed since the timer was
started and then goes low again.

The above process repeats until the timer is stopped using vAHI_TimerStop().

If enabled through vAHI_TimerEnable(), an interrupt can be triggered at the low-
high transition and/or the high-low transition.

In Counter mode, this function is used differently:

 At a count of u16Hi, an interrupt (E_AHI_TIMER_RISE_MASK) will be generated
(if enabled).

 At a count of u16Lo, another interrupt (E_AHI_TIMER_PERIOD_MASK) will be
generated (if enabled) and the count will then be re-started from zero.

Again, interrupts are enabled through vAHI_TimerEnable().

The current count can be read at any time using u16AHI_TimerReadCount().

Note that Counter mode is only available for Timer 0.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

u16Hi Number of clock periods after starting a timer before the
output goes high (Timer or PWM mode) or count at which first
interrupt generated (Counter mode)

u16Lo Number of clock periods after starting a timer before the
output goes low again (Timer or PWM mode) or count at which
second interrupt generated (Counter mode)

Returns

None

void vAHI_TimerStartRepeat(uint8 u8Timer,
uint16 u16Hi,
uint16 u16Lo);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 261

Chapter 23
Timer Functions

vAHI_TimerStartCapture

Description

This function starts Timer 0 in Capture mode (Timers 1-4 cannot operate in Capture
mode). This mode must first be configured using the function
vAHI_TimerConfigureInputs().

An input signal must be provided on the DIO9 pin. The incoming signal is timed and
the captured measurements are:

 number of clock cycles to the last low-to-high transition of the input signal

 number of clock cycles to the last high-to-low transition of the input signal

These values are placed in registers to be read later using the function
vAHI_TimerReadCapture() or vAHI_TimerReadCaptureFreeRunning(). They
allow the input pulse width to be determined.

Parameters

u8Timer Identity of timer: set to E_AHI_TIMER_0

Returns

None

void vAHI_TimerStartCapture(uint8 u8Timer);
262 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerStartDeltaSigma

Description

This function starts the specified timer in Delta-Sigma mode, which allows the timer
to be used as a low-rate DAC.

To use this mode, the DIO output for the timer (see Section 7.2.1 for the relevant
DIOs) must be enabled through vAHI_TimerEnable(). In addition, an RC circuit must
be inserted on the DIO output pin in the arrangement shown below (also see Note
below).

The 16MHz peripheral clock is used as the timer source and the conversion period
of the ‘DAC’ is 65536 clock cycles. In Delta-Sigma mode, the timer outputs a number
of randomly spaced clock pulses as specified by the value being converted. When
RC-filtered, this produces an analogue voltage proportional to the conversion value.

If the RTZ (Return-to-Zero) option is enabled, a low clock cycle is inserted after every
clock cycle, so that there are never two consecutive high clock cycles. This doubles
the conversion period, but improves linearity if the rise and fall times of the outputs
are different from one another.

void vAHI_TimerStartDeltaSigma(uint8 u8Timer,
uint16 u16Hi,
uint16 0x0000,
bool_t bRtzEnable);

Note: For more information on ‘Delta-Sigma’ mode, refer to
the data sheet for your microcontroller.

R

C

DIO Vout
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 263

Chapter 23
Timer Functions

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

u16Hi Number of 16MHz clock cycles for which the output will be
high during a conversion period, in the range 0 to 65535 (full
period is 65536 clock cycles)

0x0000 Fixed null value

bRtzEnable Enable/disable RTZ (Return-to-Zero) option:
TRUE to enable
FALSE to disable

Returns

None
264 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_TimerReadCount

Description

This function obtains the current count value of the specified timer.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

Returns

Current count value of timer

uint16 u16AHI_TimerReadCount(uint8 u8Timer);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 265

Chapter 23
Timer Functions

vAHI_TimerReadCapture

Description

This function stops Timer 0 and then obtains the results from a 'capture' started using
the function vAHI_TimerStartCapture().

The values returned are offsets from the start of capture, as follows:

 number of clock cycles to the last low-to-high transition of the input signal

 number of clock cycles to the last high-to-low transition of the input signal

The width of the last pulse can be calculated from the difference of these results,
provided that the results were requested during a low period. However, since it is not
possible to be sure of this, the results obtained from this function may not always be
valid for calculating the pulse width.

If you wish to measure the pulse period of the input signal, you should use the
function vAHI_TimerReadCaptureFreeRunning(), which does not stop the timer.

Capture mode and this function are relevant to Timer 0 only.

Parameters

u8Timer Identity of timer: set to E_AHI_TIMER_0

*pu16Hi Pointer to location which will receive clock period at which last
low-high transition occurred

*pu16Lo Pointer to location which will receive clock period at which last
high-low transition occurred

Returns

None

void vAHI_TimerReadCapture(uint8 u8Timer,
uint16 *pu16Hi,
uint16 *pu16Lo);
266 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerReadCaptureFreeRunning

Description

This function obtains the results from a 'capture' started on Timer 0 using the function
vAHI_TimerStartCapture(). This function does not stop the timer.

Alternatively, the function vAHI_TimerReadCapture() can be used, which stops the
timer before reporting the capture measurements.

The values returned are offsets from the start of capture, as follows:

 number of clock cycles to the last low-to-high transition of the input signal

 number of clock cycles to the last high-to-low transition of the input signal

The width of the last pulse can be calculated from the difference of these results,
provided that the results were requested during a low period. However, since it is not
possible to be sure of this, the results obtained from this function may not always be
valid for calculating the pulse width.

If you wish to measure the pulse period of the input signal, you should call this
function twice during consecutive pulse cycles. For example, a call to this function
could be triggered by an interrupt generated on a particular type of transition (low-to-
high or high-to-low). The pulse period can then be obtained by calculating the
difference between the results for consecutive low-to-high transitions or the
difference between the results for consecutive high-to-low transitions.

Capture mode and this function are relevant to Timer 0 only.

Parameters

u8Timer Identity of timer: set to E_AHI_TIMER_0

*pu16Hi Pointer to location which will receive clock period at which last
low-high transition occurred

*pu16Lo Pointer to location which will receive clock period at which last
high-low transition occurred

Returns

None

void vAHI_TimerReadCaptureFreeRunning(uint8 u8Timer,
uint16 *pu16Hi,
uint16 *pu16Lo);

Caution: Since it is not possible to be sure of the state of the
input signal when capture started, the results of the first call to
this function after starting capture should be discarded.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 267

Chapter 23
Timer Functions

vAHI_TimerStop

Description

This function stops the specified timer.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

Returns

None

void vAHI_TimerStop (uint8 u8Timer);
268 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerDisable

Description

This function disables the specified timer. As well as stopping the timer from running,
the clock to the timer block is switched off in order to reduce power consumption. This
means that any subsequent attempt to access the timer will be unsuccessful until
vAHI_TimerEnable() is called to re-enable the block.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

Returns

None

void vAHI_TimerDisable (uint8 u8Timer);

Caution: An attempt to access the timer while it is disabled
will result in an exception.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 269

Chapter 23
Timer Functions

vAHI_TimerDIOControl

Description

This function enables/disables DIO usage for any one of the timers on the JN516x
device. The function configures the DIO(s) for the specified timer:

 DIO8, DIO9 and DIO10 for Timer 0

 DIO11 for Timer 1

 DIO12 for Timer 2

 DIO13 for Timer 3

 DIO17 for Timer 4

Refer to Section 7.2.1 for the timer signals on these DIOs.

By default, the above DIOs are enabled for timer use. If disabled, a DIO can be used
as a GPIO (General Purpose Input/Output). You should perform this configuration
before the timers are enabled using vAHI_TimerEnable(), in order to avoid glitching
on the GPIOs during timer operation.

You can alternatively use the function AHI_TimerFineGrainDIOControl() to
configure the use of the DIOs for all the timers (0-4) at the same time and to enable/
disable individual DIOs for Timer 0.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

bDIOEnable Enable/disable use of associated DIO(s) by timer:
TRUE to enable
FALSE to disable (so available for GPIO)

Returns

None

void vAHI_TimerDIOControl(uint8 u8Timer,
bool_t bDIOEnable);
270 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TimerFineGrainDIOControl

Description

This function allows the DIOs associated with the timers to be enabled/disabled for
timer use, permitting the DIOs for all five timers (Timers 0 to 4) to be configured in
one call. It also allows the individual configuration of the three DIOs allocated to
Timer 0.

By default, all these DIOs are enabled for timer use. Therefore, you can use this
function to release those DIOs that you do not wish to use for the timers. The
released DIOs will then be available as GPIOs (General Purpose Inputs/Outputs).
You should perform this configuration before the timers are enabled using
vAHI_TimerEnable(), in order to avoid glitching on the GPIOs during timer
operation.

The DIO configuration information is passed into the function as an 8-bit bitmap. The
bit interpretations in this bitmap are detailed in the table below. A bit is set to 0 to
enable the corresponding DIO for timer use and is set to 1 to release the DIO from
timer use.

Parameters

u8BitMask Bitmap containing DIO configuration information for all timers

Returns

None

void vAHI_TimerFineGrainDIOControl(uint8 u8BitMask);

Bit Timer Input/Output

0 Timer 0 external gate/event input

1 Timer 0 capture input

2 Timer 0 PWM output

3 Timer 1 PWM output

4 Timer 2 PWM output

5 Timer 3 PWM output

6 Timer 4 PWM output

7 Reserved
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 271

Chapter 23
Timer Functions

u8AHI_TimerFired

Description

This function obtains the interrupt status of the specified timer. The function also
clears interrupt status after reading it.

Parameters

u8Timer Identity of timer:
E_AHI_TIMER_0 (Timer 0)
E_AHI_TIMER_1 (Timer 1)
E_AHI_TIMER_2 (Timer 2)
E_AHI_TIMER_3 (Timer 3)
E_AHI_TIMER_4 (Timer 4)

Returns

Bitmap:

Returned value bitwise ANDed with E_AHI_TIMER_RISE_MASK - will be
non-zero if interrupt for low-to-high transition (output rising) has been set

Returned value bitwise ANDed with E_AHI_TIMER_PERIOD_MASK - will be
non-zero if interrupt for high-to-low transition (end of period) has been set

uint8 u8AHI_TimerFired(uint8 u8Timer);

Caution: This function should not be called within a Timer
callback function which is invoked as the result of a Timer
event, since the interrupt status of the timer is cleared before
entering the callback function. The function should only be
used when polling for the interrupt status of a timer.
272 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Timer0RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Timer 0 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

PrTimer0Callback Pointer to callback function to be registered

Returns

None

void vAHI_Timer0RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer0Callback);

Note: The function u8AHI_TimerFired() should not be called
within the Timer callback function - for more information, refer
to the function description on page 272.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 273

Chapter 23
Timer Functions

vAHI_Timer1RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Timer 1 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

PrTimer1Callback Pointer to callback function to be registered

Returns

None

void vAHI_Timer1RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer1Callback);

Note: The function u8AHI_TimerFired() should not be called
within the Timer callback function - for more information, refer
to the function description on page 272.
274 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Timer2RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Timer 2 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

PrTimer2Callback Pointer to callback function to be registered

Returns

None

void vAHI_Timer2RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer2Callback);

Note: The function u8AHI_TimerFired() should not be called
within the Timer callback function - for more information, refer
to the function description on page 272.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 275

Chapter 23
Timer Functions

vAHI_Timer3RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Timer 3 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

PrTimer3Callback Pointer to callback function to be registered

Returns

None

void vAHI_Timer3RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer3Callback);

Note: The function u8AHI_TimerFired() should not be called
within the Timer callback function - for more information, refer
to the function description on page 272.
276 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_Timer4RegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Timer 4 interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

PrTimer4Callback Pointer to callback function to be registered

Returns

None

void vAHI_Timer4RegisterCallback(
PR_HWINT_APPCALLBACK PrTimer4Callback);

Note: The function u8AHI_TimerFired() should not be called
within the Timer callback function - for more information, refer
to the function description on page 272.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 277

Chapter 23
Timer Functions

278 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
24. Wake Timer Functions

This chapter details the functions for controlling the wake timers. The JN516x
microcontroller includes two wake timers, denoted Wake Timer 0 and Wake Timer 1,
where each is a 41-bit counter.

The wake timers are normally used to time sleep periods and can be programmed to
generate interrupts when the timeout period is reached. They can also be used
outside of sleep periods, while the CPU is running (although there is another set of
timers with more functionality that can operate only while the CPU is running - see
Chapter 7).

The wake timers run at a nominal 32kHz, being driven from the 32kHz clock. This
clock can be sourced internally or externally, as described in Section 3.1.4 (this clock
selection is preserved during sleep). If sourced from the internal RC oscillator, the
wake timers may run up to 18% fast or slow, depending on temperature, supply
voltage and manufacturing tolerance. To achieve more accurate timings in this case,
the self-calibration facility should be used to measure the 32kHz clock against the
peripheral clock, which should be running at 16MHz with the system clock sourced
from the external crystal oscillator.

The Wake Timer functions are listed below, along with their page references:

Function Page

vAHI_WakeTimerEnable 280

vAHI_WakeTimerStartLarge 281

vAHI_WakeTimerStop 282

u64AHI_WakeTimerReadLarge 283

u8AHI_WakeTimerStatus 284

u8AHI_WakeTimerFiredStatus 285

u32AHI_WakeTimerCalibrate 286

Note: For guidance on using the Wake Timer functions
in JN516x application code, refer to Chapter 8.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 279

Chapter 24
Wake Timer Functions

vAHI_WakeTimerEnable

Description

This function allows the wake timer interrupt (which is generated when the timer fires)
to be enabled/disabled. If this function is called for a wake timer that is already
running, it will stop the wake timer.

The interrupt configuration specified using this function will take effect the next time
the wake timer is started. The wake timer can be started using the function
vAHI_WakeTimerStart().

Note that:

 If the wake timer interrupt is enabled and the timer is started, the device will be woken if
the wake timer expires during sleep

 If the wake timer interrupt is disabled and the timer is started, the device will not be
woken if the wake timer expires during sleep

Wake timer interrupts are handled by the System Controller callback function,
registered using the function vAHI_SysCtrlRegisterCallback().

Parameters

u8Timer Identity of timer:
E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

bIntEnable Interrupt enable/disable:
TRUE to enable interrupt when wake timer fires
FALSE to disable interrupt

Returns

None

void vAHI_WakeTimerEnable(uint8 u8Timer,
bool_t bIntEnable);
280 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_WakeTimerStartLarge

Description

This function starts the specified wake timer with the specified count value. The wake
timer will count down from this value, which is set according to the desired timer
duration. On reaching zero, the timer ‘fires’, rolls over to 0x1FFFFFFFFFF and
continues to count down.

The count value, u64Count, is set as the required number of 32kHz periods. Thus:

Timer duration (in seconds) = u64Count / 32000

If the 32kHz clock, which drives the wake timer, is sourced from the internal 32kHz
RC oscillator then the wake timer may run up to 18% fast or slow. For accurate
timings in this case, you are advised to first calibrate the clock using the function
u32AHI_WakeTimerCalibrate() and adjust the specified count value accordingly.

If you wish to enable interrupts for the wake timer, you must call
vAHI_WakeTimerEnable() before calling vAHI_WakeTimerStartLarge(). The
wake timer can be subsequently stopped using vAHI_WakeTimerStop() and can be
read using u64AHI_WakeTimerReadLarge(). Stopping the timer does not affect
interrupts that have been set using vAHI_WakeTimerEnable().

Parameters

u8Timer Identity of timer:
E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

u64Count Count value in 32kHz periods, i.e. 32 is 1 millisecond
(this value must not exceed 0x1FFFFFFFFFF, and the values
0 and 1 must not be used)

Returns

None

void vAHI_WakeTimerStartLarge(uint8 u8Timer,
uint64 u64Count);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 281

Chapter 24
Wake Timer Functions

vAHI_WakeTimerStop

Description

This function stops the specified wake timer.

Note that no interrupt will be generated.

Parameters

u8Timer Identity of timer:
E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

Returns

None

void vAHI_WakeTimerStop(uint8 u8Timer);
282 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u64AHI_WakeTimerReadLarge

Description

This function obtains the current value of the specified wake timer counter (which
counts down), without stopping the counter.

Note that on reaching zero, the timer ‘fires’, rolls over to 0x1FFFFFFFFFF and
continues to count down. The count value obtained using this function then allows
the application to calculate the time that has elapsed since the wake timer fired.

Parameters

u8Timer Identity of timer:
E_AHI_WAKE_TIMER_0 (Wake Timer 0)
E_AHI_WAKE_TIMER_1 (Wake Timer 1)

Returns

Current value of wake timer counter

uint64 u64AHI_WakeTimerReadLarge(uint8 u8Timer);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 283

Chapter 24
Wake Timer Functions

u8AHI_WakeTimerStatus

Description

This function determines which wake timers are active. It is possible to have more
than one wake timer active at the same time. The function returns a bitmap where
the relevant bits are set to show which wake timers are active.

Note that a wake timer remains active after its countdown has reached zero (when
the timer rolls over to 0x1FFFFFFFFFF and continues to count down).

Parameters

None

Returns

Bitmap:

Returned value bitwise ANDed with E_AHI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 is active

Returned value bitwise ANDed with E_AHI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 is active

uint8 u8AHI_WakeTimerStatus(void);
284 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_WakeTimerFiredStatus

Description

This function determines which wake timers have fired (by having passed zero). The
function returns a bitmap where the relevant bits are set to show which timers have
fired. Any fired timer status is cleared as a result of this call.

Parameters

None

Returns

Bitmap:

Returned value bitwise ANDed with E_AHI_WAKE_TIMER_MASK_0 will be
non-zero if Wake Timer 0 has fired
Returned value bitwise ANDed with E_AHI_WAKE_TIMER_MASK_1 will be
non-zero if Wake Timer 1 has fired

uint8 u8AHI_WakeTimerFiredStatus(void);

Note 1: If you wish to use this function to check whether a
wake timer caused a wake-up event, you must call it before
u32AHI_Init(). Alternatively, you can determine the wake
source as part of your System Controller callback function.
For more information, refer to Appendix A.

Note 2: If using the JenNet protocol, do not call this function
to obtain the wake timer interrupt status on waking from sleep.
At wake-up, JenNet calls u32AHI_Init() internally and clears
the interrupt status before passing control to the application.
The System Controller callback function must be used to
obtain the interrupt status, if required.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 285

Chapter 24
Wake Timer Functions

u32AHI_WakeTimerCalibrate

Description

This function requests a calibration of the 32kHz clock (on which the wake timers run)
against the more accurate peripheral clock which must be running at 16MHz (i.e. the
system clock is sourced from the external crystal oscillator). This calibration may be
required if the 32kHz clock is sourced from the internal 32kHz RC oscillator, which
has a tolerance of ±18% (uncalibrated).

The function uses Wake Timer 0 and takes twenty 32kHz clock periods to complete
the calibration.

The returned result, n, is interpreted as follows:

 n = 10000 clock running at 32kHz

 n > 10000 clock running slower than 32kHz

 n < 10000 clock running faster than 32kHz

The returned value can be used to adjust the time interval value used to program a
wake timer. If the required timer duration is T seconds, the count value N that must
be specified in vAHI_WakeTimerStart() or vAHI_WakeTimerStartLarge() is given
by N = (10000/n) x 32000 x T.

Parameters

None

Returns

Calibration measurement, n (see above)

uint32 u32AHI_WakeTimerCalibrate(void);
286 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
25. Tick Timer Functions

This chapter details the functions for controlling the Tick Timer on the JN516x
microcontrollers - this is a hardware timer, derived from the peripheral clock. It can be
used to generate timing interrupts to software.

The Tick Timer can be used to implement:

 regular events, such as ticks for software timers or an operating system

 a high-precision timing reference

 system monitor timeouts, as used in a watchdog timer

The Tick Timer functions are listed below, along with their page references:

Function Page

vAHI_TickTimerConfigure 288

vAHI_TickTimerInterval 289

vAHI_TickTimerWrite 290

u32AHI_TickTimerRead 291

vAHI_TickTimerIntEnable 292

bAHI_TickTimerIntStatus 293

vAHI_TickTimerIntPendClr 294

vAHI_TickTimerRegisterCallback 295

Note 1: For guidance on using the Tick Timer functions
in JN516x application code, refer to Chapter 9.

Note 2: For high-precision Tick Timer operation, the
peripheral clock should run at 16MHz with the system
clock sourced from the external crystal oscillator. For
system clock information, refer to Section 3.1.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 287

Chapter 25
Tick Timer Functions

vAHI_TickTimerConfigure

Description

This function configures the operating mode of the Tick Timer and enables the timer.
It can also be used to disable the timer.

The Tick Timer counts upwards until the count matches a pre-defined reference
value. This function determines what the timer will do once the reference count has
been reached. The options are:

 Continue counting upwards

 Restart the count from zero

 Stop counting (single-shot mode)

The reference count is set using the function vAHI_TickTimerInterval(). An interrupt
can be enabled which is generated on reaching the reference count - see the
description of vAHI_TickTimerIntEnable().

The Tick Timer will start running as soon as vAHI_TickTimerConfigure() enables it
in one of the above modes, irrespective of the state of its counter. In practice, to use
the Tick Timer:

1. Call vAHI_TickTimerConfigure() to disable the Tick Timer.

2. Call vAHI_TickTimerWrite() to set an appropriate starting value for the count.

3. Call vAHI_TickTimerInterval() to set the reference count.

4. Call vAHI_TickTimerConfigure() again to start the Tick Timer in the desired mode.

On device power-up/reset, the Tick Timer is disabled. However, you are advised to
always follow the above sequence of function calls to start the timer.

If the Tick Timer is enabled in single-shot mode, once it has stopped (on reaching the
reference count), it can be started again simply by setting another starting value
using vAHI_TickTimerWrite().

Parameters

u8Mode Tick Timer operating mode

Action to take on reaching reference count:
E_AHI_TICK_TIMER_CONT (continue counting)
E_AHI_TICK_TIMER_RESTART (restart from zero)
E_AHI_TICK_TIMER_STOP (stop timer)

Disable timer:
E_AHI_TICK_TIMER_DISABLE (disable timer)

Returns

None

void vAHI_TickTimerConfigure(uint8 u8Mode);
288 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TickTimerInterval

Description

This function sets the 28-bit reference count for the Tick Timer.

This is the value with which the actual count of the Tick Timer is compared. The
action taken when the count reaches this reference value is determined using the
function vAHI_TickTimerConfigure(). An interrupt can be also enabled which is
generated on reaching the reference count - see the function
vAHI_TickTimerIntEnable().

Parameters

u32Interval Tick Timer reference count (in the range 0 to 0x0FFFFFFF)

Returns

None

void vAHI_TickTimerInterval(uint32 u32Interval);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 289

Chapter 25
Tick Timer Functions

vAHI_TickTimerWrite

Description

This function sets the initial count of the Tick Timer. If the timer is enabled, it will
immediately start counting from this value.

By specifying a count of zero, the function can be used to reset the Tick Timer count
to zero at any time.

Parameters

u32Count Tick Timer count (in the range 0 to 0xFFFFFFFF)

Returns

None

void vAHI_TickTimerWrite(uint32 u32Count);
290 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u32AHI_TickTimerRead

Description

This function obtains the current value of the Tick Timer counter.

Parameters

None

Returns

Value of the Tick Timer counter

uint32 u32AHI_TickTimerRead(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 291

Chapter 25
Tick Timer Functions

vAHI_TickTimerIntEnable

Description

This function can be used to enable Tick Timer interrupts, which are generated when
the Tick Timer count reaches the reference count specified using the function
vAHI_TickTimerInterval().

A user-defined callback function, which is invoked when the interrupt is generated,
can be registered using the function vAHI_TickTimerRegisterCallback().

Note that Tick Timer interrupts can be used to wake the CPU from Doze mode.

Parameters

bIntEnable Enable/disable interrupts:
TRUE to enable interrupts
FALSE to disable interrupts

Returns

None

void vAHI_TickTimerIntEnable(bool_t bIntEnable);
292 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_TickTimerIntStatus

Description

This function obtains the current interrupt status of the Tick Timer.

Parameters

None

Returns

TRUE if an interrupt is pending, FALSE otherwise

bool_t bAHI_TickTimerIntStatus(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 293

Chapter 25
Tick Timer Functions

vAHI_TickTimerIntPendClr

Description

This function clears any pending Tick Timer interrupt.

Parameters

None

Returns

None

void vAHI_TickTimerIntPendClr(void);
294 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_TickTimerRegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Tick Timer interrupt is triggered.

Note that the callback function will be executed in interrupt context. You must
therefore ensure that it returns to the main program in a timely manner.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prTickTimerCallback Pointer to callback function to be registered

Returns

None

void vAHI_TickTimerRegisterCallback(
PR_HWINT_APPCALLBACK prTickTimerCallback);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 295

Chapter 25
Tick Timer Functions

296 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
26. Watchdog Timer Functions

This chapter describes the functions for configuring and controlling the Watchdog
Timer on the JN516x microcontroller.

The Watchdog Timer functions are listed below, along with their page references:

Function Page

vAHI_WatchdogStart 298

vAHI_WatchdogStop 299

vAHI_WatchdogRestart 300

u16AHI_WatchdogReadValue 301

bAHI_WatchdogResetEvent 302

vAHI_WatchdogException 303

Note: For information on the Watchdog Timer and
guidance on using the Watchdog Timer functions in
JN516x application code, refer to Chapter 10.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 297

Chapter 26
Watchdog Timer Functions

vAHI_WatchdogStart

Description

This function starts the Watchdog Timer and sets the timeout period. Note that the
Watchdog Timer is enabled by default and is run with the maximum possible timeout
period of 16392ms. If this function is called while the Watchdog Timer is running, it
allows the timer to continue uninterrupted but modifies the timeout period.

The timeout period of the Watchdog Timer is determined by an index, specified
through the parameter u8Prescale, and is calculated according to the formulae:

Timeout Period = 8ms if u8Prescale = 0

Timeout Period = [2(Prescale - 1) + 1] x 8ms if 1 u8Prescale 12

If the Watchdog Timer is sourced from an internal RC oscillator, the actual timeout
period obtained may be up to 18% less than the calculated value due to variations in
the oscillator.

Be sure to set the Watchdog timeout period to be greater than the worst-case Flash
memory read-write cycle. If the Watchdog times out during a Flash memory access,
the JN516x microcontroller will enter programming mode. For information on read-
write cycle times, refer to the relevant Flash memory data sheet.

Note that the Watchdog Timer will continue to run during Doze mode but not during
Sleep or Deep Sleep mode, or when the hardware debugger has taken control of the
CPU (it will, however, automatically restart using the same prescale value when the
debugger un-stalls the CPU).

Parameters

u8Prescale Index in the range 0 to 12, which determines the Watchdog
timeout period (see above formulae) - gives timeout periods in
the range 8 to 16392ms

Returns

None

void vAHI_WatchdogStart(uint8 u8Prescale);
298 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_WatchdogStop

Description

This function stops the Watchdog Timer and freezes the timer count.

Parameters

None

Returns

None

void vAHI_WatchdogStop(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 299

Chapter 26
Watchdog Timer Functions

vAHI_WatchdogRestart

Description

This function re-starts the Watchdog Timer from the beginning of the timeout period.

Parameters

None

Returns

None

void vAHI_WatchdogRestart(void);
300 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u16AHI_WatchdogReadValue

Description

This function obtains an indication of the progress of the Watchdog Timer towards its
timeout period.

The returned value is an integer in the range 0 to 255, where:

 0 indicates that the timer has just started a new count

 255 indicates that the timer has almost reached the timeout period

Thus, each increment of the returned value represents 1/256 of the Watchdog period
- for example, a reported value of 128 indicates that the timer is about half-way
through its count.

If this function is called on a transition (increment) of the Watchdog counter, the result
will be unreliable. You are therefore advised to call this function repeatedly until two
consecutive results are the same.

Parameters

None

Returns

Integer value in the range 0 to 255, indicating the progress of the Watchdog Timer

uint16 u16AHI_WatchdogReadValue(void);

Tip: This function is useful during code development and
debug to ensure that the application does not reset the
Watchdog Timer too close to the Watchdog timeout period.
The function should not be needed in the final application.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 301

Chapter 26
Watchdog Timer Functions

bAHI_WatchdogResetEvent

Description

This function determines whether the last device reset was caused by a Watchdog
Timer expiry event.

Parameters

None

Returns

TRUE if a reset occurred due to a Watchdog event, FALSE otherwise

bool_t bAHI_WatchdogResetEvent(void);
302 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_WatchdogException

Description

This function can be used to enable (or disable) an exception that will be invoked
when the Watchdog Timer expires. The Watchdog exception is serviced by the stack
overflow exception handler, which can call bAHI_WatchdogResetEvent() to
determine if the Watchdog exception occurred.

If Watchdog exception handling is not enabled using this function, then the JN516x
will be reset when the Watchdog Timer expires. The exception handling option is
provided to allow debug on a Watchdog timeout during application development.

The stack overflow exception handler function should first be developed before
enabling the Watchdog exception option.

Parameters

bEnable Enable/disable exception handling:
TRUE to enable
FALSE to disable (default)

Returns

None

void vAHI_WatchdogException(bool_t bEnable);

Note: The stack overflow exception handler function should
have the following prototype definition:

PUBLIC void vException_StackOverflow(void);

We would not expect an exception handler written in C to
return - once it has performed any actions, it should either sit
in a loop or reset the device.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 303

Chapter 26
Watchdog Timer Functions

304 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
27. Pulse Counter Functions

This chapter details the functions for controlling and monitoring the pulse counters on
the JN516x device. A pulse counter detects and counts pulses on an external signal
that is input on an associated DIO pin.

Two 16-bit pulse counters are provided on the JN516x device, Pulse Counter 0 and
Pulse Counter 1. The two counters can be combined together to provide a single 32-
bit counter, if desired.

The Pulse Counter functions are listed below, along with their page references:

Function Page

bAHI_PulseCounterConfigure 306

vAHI_PulseCounterSetLocation 308

bAHI_SetPulseCounterRef 309

bAHI_StartPulseCounter 310

bAHI_StopPulseCounter 311

u32AHI_PulseCounterStatus 312

bAHI_Read16BitCounter 313

bAHI_Read32BitCounter 314

bAHI_Clear16BitPulseCounter 315

bAHI_Clear32BitPulseCounter 316

Note: For information on the pulse counters and
guidance on using the Pulse Counter functions in
JN516x application code, refer to Chapter 11.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 305

Chapter 27
Pulse Counter Functions

bAHI_PulseCounterConfigure

Description

This function configures the specified pulse counter. The input signal will
automatically be taken from the DIO associated with the specified counter: DIO1 for
Pulse Counter 0 and DIO8 for Pulse Counter 1 (the input signal for the combined
pulse counter can be taken from either of these DIOs).

The following features are configured:

 Edge detected (bEdgeType): The counter can be configured to detect a pulse on its
rising edge (low-to-high transition) or falling edge (high-to-low transition).

 Debounce (u8Debounce): This feature can be enabled so that a number of identical
consecutive input samples are required before a change in the input signal is
recognised. When disabled, the device can sleep with the 32kHz oscillator off.

 Combined counter (u8Combine): The two 16-bit pulse counters can be combined into
a single 32-bit pulse counter. The combined counter is configured according to the
Pulse Counter 0 settings (the Pulse Counter 1 settings are ignored) but the input signal
can be taken from the input pin for either counter.

 Interrupts (bIntEnable): Interrupts can be configured to occur when the count passes a
reference value, specified using bAHI_SetPulseCounterRef(). These interrupts are
handled as System Controller interrupts by the callback function registered with
vAHI_SysCtrlRegisterCallback() - also refer to Appendix A.

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

bEdgeType Edge type on which pulse detected (and count incremented):
0: Rising edge (low-to-high transition)
1: Falling edge (high-to-low transition)

u8Debounce Debounce setting - number of identical consecutive input samples
before change in input value is recognised:
0: No debounce (maximum input frequency of 100kHz)
1: 2 samples (maximum input frequency of 3.7kHz)
2: 4 samples (maximum input frequency of 2.2kHz)
3: 8 samples (maximum input frequency of 1.2kHz)

bool_t bAHI_PulseCounterConfigure(uint8 u8Counter,
bool_t bEdgeType,
uint8 u8Debounce,
uint8 u8Combine,
bool_t bIntEnable);

Note: The input for Pulse Counter 0 can be moved from DIO1
to DIO4 and for Pulse Counter 1 can be moved from DIO8 to
DIO5 using the function vAHI_PulseCounterSetLocation().
306 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8Combine Enable/disable combined 32-bit counter:
E_AHI_PC_COMBINE_OFF (0 - Pulse counters not combined)
E_AHI_PC_COMBINE_ON0 (1 - Counters combined using PC0 input)
E_AHI_PC_COMBINE_ON1 (2 - Counters combined using PC1 input)

bIntEnable Enable/disable pulse counter interrupts:
TRUE - Enable interrupts
FALSE - Disable interrrupts

Returns

TRUE if valid pulse counter specified, FALSE otherwise
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 307

Chapter 27
Pulse Counter Functions

vAHI_PulseCounterSetLocation

Description

This function can be used to select the DIO on which the specified pulse counter will
operate:

 Pulse Counter 0 can take its input from DIO1 or DIO4 - by default, DIO1 is used, so the
function only needs to be called if DIO4 is preferred

 Pulse Counter 1 can take its input from DIO8 or DIO5 - by default, DIO8 is used, so the
function only needs to be called if DIO5 is preferred

For the combined pulse counter, the input can be taken from the input pin used by
Pulse Counter 0 or Pulse Counter 1, as configured in the call to
bAHI_PulseCounterConfigure().

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0)
E_AHI_PC_1 (Pulse Counter 1)

bLocation DIO on which pulse counter will operate:
TRUE - DIO4 (Pulse Counter 0) or DIO5 (Pulse Counter 1)
FALSE - DIO1 (Pulse Counter 0) or DIO8 (Pulse Counter 1)

Returns

None

void vAHI_PulseCounterSetLocation(uint8 u8Counter,
 bool_t bLocation);
308 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SetPulseCounterRef

Description

This function can be used to set the reference value for the specified pulse counter.

If pulse counter interrupts are enabled through bAHI_PulseCounterConfigure(), an
interrupt will be generated when the counter passes the reference value - that is,
when the count reaches (reference value + 1). This value is retained during sleep
and, when generated, the pulse counter interrupt can wake the device from sleep.

The reference value must be 16-bit when specified for the individual pulse counters,
but can be a 32-bit value when specified for the combined counter (enabled through
bAHI_PulseCounterConfigure()). The reference value can be modified at any time.

The pulse counter can increment beyond its reference value and when it reaches its
maximum value (65535, or 4294967295 for the combined counter), it will wrap
around to zero.

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

u32RefValue Reference value to be set - as a 16-bit value, it must be
specified in the lower 16 bits of this 32-bit parameter, unless
for the combined counter when a full 32-bit value should be
specified

Returns

TRUE if valid pulse counter and reference count

FALSE if invalid pulse counter or reference count (>16 bits for single counter)

bool_t bAHI_SetPulseCounterRef(uint8 u8Counter,
uint32 u32RefValue);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 309

Chapter 27
Pulse Counter Functions

bAHI_StartPulseCounter

Description

This function starts the specified pulse counter.

Note that the count may increment by one when this function is called (even though
no pulse has been detected).

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

Returns

TRUE if valid pulse counter has been specified and started, FALSE otherwise

bool_t bAHI_StartPulseCounter(uint8 u8Counter);
310 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_StopPulseCounter

Description

This function stops the specified pulse counter.

Note that the count will freeze when this function is called. Thus, this count can
subsequently be read using bAHI_Read16BitCounter() or
bAHI_Read32BitCounter() for the combined counter.

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0 or combined counter)
E_AHI_PC_1 (Pulse Counter 1)

Returns

TRUE if valid pulse counter has been specified and stopped, FALSE otherwise

bool_t bAHI_StopPulseCounter(uint8 u8Counter);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 311

Chapter 27
Pulse Counter Functions

u32AHI_PulseCounterStatus

Description

This function obtains the status of the pulse counters. It can be used to check
whether the pulse counters have reached their reference values (set using the
function bAHI_SetPulseCounterRef()).

The status of each pulse counter is returned by this function in a 32-bit bitmap value
- bit 22 for Pulse Counter 0 and bit 23 for Pulse Counter 1. If the combined pulse
counter is in use, its status is returned through bit 22.

If a pulse counter has reached its reference value then once the function has
returned this status, the internal status bit is cleared for the corresponding pulse
counter.

The function can be used to poll the pulse counters. Alternatively, interrupts can be
enabled (through bAHI_PulseCounterConfigure()) that are generated when the
pulse counters pass their reference values.

Parameters

None

Returns

32-bit value in which bit 23 indicates the status of Pulse Counter 1 and bit 22
indicates the status of Pulse Counter 0 or the combined counter. The bit values are
interpreted as follows:

1 - pulse counter has reached its reference value
0 - pulse counter is still counting or is not in use

uint32 u32AHI_PulseCounterStatus(void);
312 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_Read16BitCounter

Description

This function obtains the current count of the specified 16-bit pulse counter, without
stopping the counter or clearing the count.

Note that this function can only be used to read the value of an individual 16-bit
counter (Pulse Counter 0 or Pulse Counter 1) and cannot read the value of the
combined 32-bit counter. If the combined counter is in use, its count value can be
obtained using the function bAHI_Read32BitCounter().

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0)
E_AHI_PC_1 (Pulse Counter 1)

*pu16Count Pointer to location to receive 16-bit count

Returns

TRUE if valid pulse counter specified, FALSE otherwise

bool_t bAHI_Read16BitCounter(uint8 u8Counter,
uint16 *pu16Count);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 313

Chapter 27
Pulse Counter Functions

bAHI_Read32BitCounter

Description

This function obtains the current count of the combined 32-bit pulse counter, without
stopping the counter or clearing the count.

Note that this function can only be used to read the value of the combined 32-bit
pulse counter and cannot read the value of a 16-bit pulse counter used in isolation.
The returned Boolean value of this function indicates if the pulse counters have been
combined. If the combined counter is not use, the count value of an individual 16-bit
pulse counter can be obtained using the function bAHI_Read16BitCounter().

Parameters

*pu32Count Pointer to location to receive 32-bit count

Returns

TRUE if combined 32-bit counter in use, FALSE otherwise

bool_t bAHI_Read32BitCounter(uint32 *pu32Count);
314 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_Clear16BitPulseCounter

Description

This function clears the count of the specified 16-bit pulse counter.

Note that this function can only be used to clear the count of an individual 16-bit
counter (Pulse Counter 0 or Pulse Counter 1) and cannot clear the count of the
combined 32-bit counter. To clear the latter, use the function
bAHI_Clear32BitPulseCounter().

Parameters

u8Counter Identity of pulse counter:
E_AHI_PC_0 (Pulse Counter 0)
E_AHI_PC_1 (Pulse Counter 1)

Returns

TRUE if valid pulse counter specified, FALSE otherwise

bool_t bAHI_Clear16BitPulseCounter(uint8 const u8Counter);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 315

Chapter 27
Pulse Counter Functions

bAHI_Clear32BitPulseCounter

Description

This function clears the count of the combined 32-bit pulse counter.

Note that this function can only be used to clear the count of the combined 32-bit
pulse counter and cannot clear the count of a 16-bit pulse counter used in isolation.
To clear the latter, use the function bAHI_Clear16BitPulseCounter().

Parameters

None

Returns

TRUE if combined 32-bit counter in use, FALSE otherwise

bool_t bAHI_Clear32BitPulseCounter(void);
316 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
28. Infra-Red Transmitter Functions

This chapter details the functions for controlling and monitoring the infra-red
transmitter on the JN516x device. Infra-red transmission is a special feature of Timer
2 in which the timer is used to generate a carrier waveform that is modulated by a
programmable bit sequence and output on the associated Timer 2 output pin.

The Infra-Red Transmitter functions are listed below, along with their page references:

Function Page

bAHI_InfraredEnable 318

vAHI_InfraredDisable 319

bAHI_InfraredStart 320

bAHI_InfraredStatus 321

vAHI_InfraredRegisterCallback 322

Note: For information and guidance on using the infra-
red transmitter functions in JN516x application code,
refer to Chapter 12.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 317

Chapter 28
Infra-Red Transmitter Functions

bAHI_InfraredEnable

Description

This function enables Timer 2 for infra-red transmission and configures the carrier
waveform, data-bit period, output polarity and interrupt behaviour. The function must
be initially called before any of the other functions is this chapter.

A single interrupt can be enabled to indicate the end of transmission. This interrupt
is handled as an Infra-Red Transmitter interrupt by the callback function registered
with vAHI_InfraredRegisterCallback() - also refer to Appendix A.

Parameters

u8Prescale Prescale index (0 to 16) used to divide down the
peripheral clock to produce the timer clock (divider is
2u8Prescale)

u16Hi Number of clock periods after starting the timer
before the carrier goes high (i.e. carrier low
duration)

u16Lo Number of clock periods after starting the timer
before the carrier goes low again (i.e. carrier period)

u16BitPeriodsInCarrierPeriods Bit-period in units of the carrier period (1 to 256)

bInvertOutput Output polarity:
TRUE - Output polarity is inverted
FALSE - Output polarity is non-inverted

bInterruptEnable Enable/disable infra-red transmitter interrupt:
TRUE - Enable interrupt
FALSE - Disable interrrupt

Returns

TRUE if parameters valid, FALSE otherwise

bool_t bAHI_InfraredEnable(
uint8 u8Prescale,
uint16 u16Hi,
uint16 u16Lo,
uint16 u16BitPeriodInCarrierPeriods,
bool_t bInvertOutput,
bool_t bInterruptEnable);

Note: If enabling infra-red transmission, none of the Timer
functions listed in Chapter 23 should be called for Timer 2
except vAHI_TimerSetLocation() and
vAHI_TimerFineGrainDIOControl().
318 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_InfraredDisable

Description

This function can be used to disable Timer 2 from infra-red transmission. If required,
this function must be called after bAHI_InfraredEnable().

Parameters

None

Returns

None

void vAHI_InfraredDisable(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 319

Chapter 28
Infra-Red Transmitter Functions

bAHI_InfraredStart

Description

This function is used to start the infra-red transmission of a programmed bit-
sequence stored in a 32-bit wide data array (i.e. transmit buffer). This function should
be called after bAHI_InfraredEnable().

Parameters

*pu32BufferAddress Pointer to start of transmit buffer in RAM

u16TransmissionLengthInBits Length of transmission sequence in bits (1 to 4096)

Returns

TRUE if transmission will start (due to valid input parameter values)

FALSE if transmission will not start (due to invalid input parameter values)

bool_t bAHI_InfraredStart(
uint32 *pu32BufferAddress,
uint16 u16TransmissionLengthInBits);
320 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_InfraredStatus

Description

This function can be used to check the status of the infra-red transmission. If
required, this function must be called after bAHI_InfraredEnable().

Parameters

None

Returns

TRUE if a transmission is in progress

FALSE if a transmission is not (or no-longer) in progress

bool_t bAHI_InfraredStatus(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 321

Chapter 28
Infra-Red Transmitter Functions

vAHI_InfraredRegisterCallback

Description

This function registers a user-defined callback function that will be called when the
Infra-Red Transmitter interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prInfraredCallback Pointer to callback function to be registered

Returns

None

void vAHI_InfraredRegisterCallback(
PR_HWINT_APPCALLBACK prInfraredCallback);
322 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
29. Serial Interface (2-wire) Functions

This chapter details the functions for controlling the 2-wire Serial Interface (SI) on the
JN516x microcontroller. The Serial Interface is logic-compatible with similar interfaces
such as I2C and SMbus.

Two sets of functions are described in this chapter, one set for an SI master and
another set for an SI slave:

 Functions for controlling the SI master are described in Section 29.1.

 Functions for controlling the SI slave are described in Section 29.2.

General functions that apply to both SI master and SI slave modes are described in
Section 29.3.

Tip: The protocol used by the Serial Interface is detailed

in the I2C Specification (available from www.nxp.com).

Note: For guidance on using the SI functions in JN516x
application code, refer to Chapter 13.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 323

Chapter 29
Serial Interface (2-wire) Functions

29.1 SI Master Functions

This section details the functions for controlling a 2-wire Serial Interface (SI) master
on a JN516x microcontroller.

The SI master can implement bi-directional communication with a slave device on the
SI bus (SI slave functions are also provided and are described in Section 29.2). Note
that the SI bus on the JN516x device can have more than one master, but multiple
masters cannot use the bus at the same time - to avoid this, an arbitration scheme is
provided.

When enabled, this interface uses DIO14 as a clock and DIO15 as a bi-directional data
line, but these signals can be moved to DIO16 and DIO17, respectively. The clock is
scaled from the peripheral clock, which must run at 16MHz with the system clock
sourced from the external crystal oscillator (for system clock information, refer to
Section 3.1).

The SI Master functions are listed below, along with their page references:

Function Page

vAHI_SiMasterConfigure 325

vAHI_SiMasterDisable 326

bAHI_SiMasterSetCmdReg 327

vAHI_SiMasterWriteSlaveAddr 329

vAHI_SiMasterWriteData8 330

u8AHI_SiMasterReadData8 331

bAHI_SiMasterPollBusy 332

bAHI_SiMasterPollTransferInProgress 333

bAHI_SiMasterCheckRxNack 334

bAHI_SiMasterPollArbitrationLost 335
324 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SiMasterConfigure

Description

This function is used to configure and enable the 2-wire Serial Interface (SI) master.
This function must be called to enable the SI block before any other SI Master
function is called. To later disable the interface, the function
vAHI_SiMasterDisable() must be used.

The operating frequency, derived from the 16MHz peripheral clock using the
specified prescaler u8PreScaler, is given by:

Operating frequency = 16/[(PreScaler + 1) x 5] MHz

The prescaler is an 8-bit value.

A pulse suppression filter can be enabled to suppress any spurious pulses (high or
low) with a pulse width less than 62.5ns on the clock and data lines.

Parameters

bPulseSuppressionEnable Enable/disable pulse suppression filter:
TRUE - enable
FALSE - disable

bInterruptEnable Enable/disable Serial Interface interrupt:
TRUE - enable
FALSE - disable

u8PreScaler 8-bit clock prescaler (see above)

Returns

None

void vAHI_SiMasterConfigure(
bool_t bPulseSuppressionEnable,
bool_t bInterruptEnable,
uint8 u8PreScaler);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 325

Chapter 29
Serial Interface (2-wire) Functions

vAHI_SiMasterDisable

Description

This function disables (and powers down) the SI master, if it has been previously
enabled using the function vAHI_SiMasterConfigure().

Parameters

None

Returns

None

void vAHI_SiMasterDisable(void);
326 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SiMasterSetCmdReg

Description

This function configures the combination of I2C-protocol commands for a transfer on
the SI bus and starts the transfer of the data held in the SI master’s transmit buffer.

Up to four commands can be used to perform an I2C-protocol transfer - Start, Stop,
Write, Read. This function allows these commands to be combined to form a
complete or partial transfer sequence. The valid command combinations that can be
specified are summarised below.

The above command combinations will result in the function returning TRUE, while
command combinations that are not in the above list are invalid and will result in a
FALSE return code.

The function must be called immediately after vAHI_SiMasterWriteSlaveAddr(),
which puts the destination slave address (for the subsequent data transfer) into the
transmit buffer. It must then be called immediately after vAHI_SiMasterWriteData()
to start the transfer of data (from the transmit buffer).

For more details of implementing a data transfer on the SI bus, refer to Section 13.1.

bool_t bAHI_SiMasterSetCmdReg(bool_t bSetSTA,
bool_t bSetSTO,
bool_t bSetRD,
bool_t bSetWR,
bool_t bSetAckCtrl,
bool_t bSetIACK);

Start Stop Read Write Resulting Instruction to SI Bus

0 0 0 0 No active command (idle)

1 0 0 1 Start followed by Write

1 1 0 1 Start followed by Write followed by Stop

0 1 1 0 Read followed by Stop

0 1 0 1 Write followed by Stop

0 0 0 1 Write only

0 0 1 0 Read only

0 1 0 0 Stop only

Caution: If interrupts are enabled, this function should not be
called from the user-defined callback function registered via
vAHI_SiRegisterCallback().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 327

Chapter 29
Serial Interface (2-wire) Functions

Parameters

bSetSTA Generate START bit to gain control of the SI bus (must not be
enabled with STOP bit):
E_AHI_SI_START_BIT
E_AHI_SI_NO_START_BIT

bSetSTO Generate STOP bit to release control of the SI bus (must not
be enabled with START bit):
E_AHI_SI_STOP_BIT
E_AHI_SI_NO_STOP_BIT

bSetRD Read from slave (cannot be enabled with slave write):
E_AHI_SI_SLAVE_READ
E_AHI_SI_NO_SLAVE_READ

bSetWR Write to slave (cannot be enabled with slave read):
E_AHI_SI_SLAVE_WRITE
E_AHI_SI_NO_SLAVE_WRITE

bSetAckCtrl Send ACK or NACK to slave after each byte read:
E_AHI_SI_SEND_ACK (to indicate ready for next byte)
E_AHI_SI_SEND_NACK (to indicate no more data required)

bSetIACK Generate interrupt acknowledge (should not normally be
required as interrupt is cleared by the interrupt handler):
E_AHI_SI_IRQ_ACK
E_AHI_SI_NO_IRQ_ACK (normally the required setting)

Returns

TRUE if specified command combination is legal
FALSE if specified command combination is illegal (will result in no action by device)

Note: This function replaces vAHI_SiMasterSetCmdReg(),
which returns no value. However, the previous function is still
available in the API for backward compatibility.
328 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SiMasterWriteSlaveAddr

Description

This function is used in setting up communication with a slave device. In this function,
you must specify the address of the slave (see below) and the operation (read or
write) to be performed on the slave. The function puts this information in the SI
master’s transmit buffer, but the information will be not transmitted on the SI bus until
the function bAHI_SiMasterSetCmdReg() is called.

A slave address can be 7-bit or 10-bit, where this address size is set using the
function vAHI_SiSlaveConfigure() called on the slave device.
vAHI_SiMasterWriteSlaveAddr() is used differently for the two slave addressing
modes:

 For 7-bit addressing, the parameter u8SlaveAddress must be set to the 7-bit slave
address.

 For 10-bit addressing, the parameter u8SlaveAddress must be set to the binary value
011110xx, where xx are the 2 most significant bits of the 10-bit slave address - the code
011110 indicates to the SI bus slaves that 10-bit addressing will be used in the next
communication. The remaining 8 bits of the slave address must subsequently be
specified in a call to vAHI_SiMasterWriteData8().

For more details of implementing a data transfer on the SI bus, refer to Section 13.1.

Parameters

u8SlaveAddress Slave address (see above)

bReadStatus Operation to perform on slave (read or write):
TRUE - configure a read
FALSE - configure a write

Returns

None

void vAHI_SiMasterWriteSlaveAddr(uint8 u8SlaveAddress,
bool_t bReadStatus);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 329

Chapter 29
Serial Interface (2-wire) Functions

vAHI_SiMasterWriteData8

Description

This function writes a single data-byte to the transmit buffer of the SI master.

The contents of the transmit buffer will not be transmitted on the SI bus until the
function bAHI_SiMasterSetCmdReg() is called.

Parameters

u8Out 8 bits of data to transmit

Returns

None

void vAHI_SiMasterWriteData8(uint8 u8Out);
330 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_SiMasterReadData8

Description

This function obtains a data-byte received over the SI bus.

Parameters

None

Returns

Data read from receive buffer of SI master

uint8 u8AHI_SiMasterReadData8(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 331

Chapter 29
Serial Interface (2-wire) Functions

bAHI_SiMasterPollBusy

Description

This function checks whether the SI bus is busy (could be in use by another master).

Parameters

None

Returns

TRUE if busy, FALSE otherwise

bool_t bAHI_SiMasterPollBusy(void);
332 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SiMasterPollTransferInProgress

Description

This function checks whether a transfer is in progress on the SI bus.

Parameters

None

Returns

TRUE if a transfer is in progress, FALSE otherwise

bool_t bAHI_SiMasterPollTransferInProgress(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 333

Chapter 29
Serial Interface (2-wire) Functions

bAHI_SiMasterCheckRxNack

Description

This function checks whether a NACK or an ACK has been received from the slave
device. If a NACK has been received, this indicates that the SI master should stop
sending data to the slave.

Parameters

None

Returns

TRUE if NACK has occurred

FALSE if ACK has occurred

bool_t bAHI_SiMasterCheckRxNack(void);
334 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SiMasterPollArbitrationLost

Description

This function checks whether arbitration has been lost (by the local master) on the SI
bus.

Parameters

None

Returns

TRUE if arbitration loss has occurred, FALSE otherwise

bool_t bAHI_SiMasterPollArbitrationLost(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 335

Chapter 29
Serial Interface (2-wire) Functions

29.2 SI Slave Functions

This section details the functions for controlling a 2-wire Serial Interface (SI) slave on
the JN516x microcontroller.

As in the case of an SI master, the SI slave uses DIO14 as a clock and DIO15 as a bi-
directional data line (but does not supply the clock). These signals can be moved to
DIO16 and DIO17, respectively.

The SI Slave functions are listed below, along with their page references:

Function Page

vAHI_SiSlaveConfigure 337

vAHI_SiSlaveDisable 339

vAHI_SiSlaveWriteData8 340

u8AHI_SiSlaveReadData8 341
336 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SiSlaveConfigure

Description

This function is used to configure and enable the 2-wire Serial Interface (SI) slave.
This function must be called before any other SI Slave function. To later disable the
interface, the function vAHI_SiSlaveDisable() must be used.

You must specify the address of the slave to be configured and enabled. A 7-bit or
10-bit slave address can be used. The address size must also be specified through
bExtendAddr.

The function allows SI slave interrupts to be enabled on an individual basis using an
8-bit bitmask specified through u8InMaskEnable. The SI slave interrupts are
enumerated as follows:

To obtain the bitmask for u8InMaskEnable, the enumerations for the interrupts to be
enabled can be bitwise ORed together.

A pulse suppression filter can be enabled to suppress any spurious pulses (high or
low) with a pulse width less than 62.5ns on the clock and data lines.

Parameters

u16SlaveAddress Slave address (7-bit or 10-bit, as defined by
bExtendAdd)

bExtendAddr Size of slave address (specified through
u16SlaveAddress):
TRUE - 10-bit address
FALSE - 7-bit address

void vAHI_SiSlaveConfigure(
uint16 u16SlaveAddress,
bool_t bExtendAddr,
bool_t bPulseSuppressionEnable,
uint8 u8InMaskEnable,
bool_t bFlowCtrlMode);

Bit Enumeration Interrupt Description

0 E_AHI_SIS_DATA_RR_MASK Data buffer must be written with data to be read by SI
master

1 E_AHI_SIS_DATA_RTKN_MASK Data taken from buffer by SI master - buffer free for
next data

2 E_AHI_SIS_DATA_WA_MASK Data buffer contains data from SI master to be read by
SI slave

3 E_AHI_SIS_LAST_DATA_MASK Last data transferred (end of burst)

4 E_AHI_SIS_ERROR_MASK I2C protocol error
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 337

Chapter 29
Serial Interface (2-wire) Functions

bPulseSuppressionEnable Enable/disable pulse suppression filter:
TRUE - enable
FALSE - disable

u8InMaskEnable Bitmask of SI slave interrupts to be enabled (see above)

bFlowCtrlMode Flow control mode:
TRUE - not valid (reserved for future use)
FALSE - NACK (default)

Returns

None
338 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SiSlaveDisable

Description

This function disables (and powers down) the SI slave, if it has been previously
enabled using the function vAHI_SiSlaveConfigure().

Parameters

None

Returns

None

void vAHI_SiSlaveDisable(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 339

Chapter 29
Serial Interface (2-wire) Functions

vAHI_SiSlaveWriteData8

Description

This function writes a single byte of output data to the data buffer of the SI slave,
ready to be read by the SI master.

Parameters

u8Out 8 bits of output data

Returns

None

void vAHI_SiSlaveWriteData8(uint8 u8Out);
340 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_SiSlaveReadData8

Description

This function reads a single byte of input data from the buffer of the SI slave (where
this data byte has been received from the SI master).

Parameters

None

Returns

Input data-byte read from buffer of SI slave

uint8 u8AHI_SiSlaveReadData8(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 341

Chapter 29
Serial Interface (2-wire) Functions

29.3 General SI Functions

This section describes the General SI functions that can be used for both an SI master
and SI slave on the JN516x microcontroller.

The functions are listed below, along with their page references:

Function Page

vAHI_SiSetLocation 343

vAHI_SiRegisterCallback 344
342 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SiSetLocation

Description

This function can be used to select the pair of DIOs on which the Serial Interface (SI)
will operate: either DIO14-15 or DIO16-17. By default, DIO14-15 are used, so the
function only needs to be called if DIO16-17 are preferred.

The function can be used on an SI master or an SI slave.

Parameters

bLocation DIOs on which interface will operate:
TRUE - DIO16-17
FALSE - DIO14-15 (default)

Returns

None

void vAHI_SiSetLocation(bool_t bLocation);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 343

Chapter 29
Serial Interface (2-wire) Functions

vAHI_SiRegisterCallback

Description

This function registers a user-defined callback function that will be called when a
Serial Interface interrupt is triggered on an SI master or on an SI slave.

Note that this function can be used to register the callback function for the SI master
or for a SI slave, but both callback functions cannot exist in the application at the
same time.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prSiCallback Pointer to callback function to be registered

Returns

None

void vAHI_SiRegisterCallback(
PR_HWINT_APPCALLBACK prSiCallback);
344 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
30. SPI Master Functions

This chapter details the functions for controlling the Serial Peripheral Interface (SPI)
master on the JN516x microcontroller. The SPI allows high-speed synchronous data
transfer between the microcontroller and peripheral devices. When JN516x device
operates as the master on the SPI bus, all other devices connected to the bus are
expected to be slave devices under the control of the microcontroller’s CPU.

The SPI Master functions are listed below, along with their page references:

Function Page

vAHI_SpiConfigure 346

vAHI_SpiReadConfiguration 348

vAHI_SpiRestoreConfiguration 349

vAHI_SpiSelSetLocation 350

vAHI_SpiSelect 351

vAHI_SpiStop 352

vAHI_SpiDisable 353

vAHI_SpiStartTransfer 354

u32AHI_SpiReadTransfer32 355

u16AHI_SpiReadTransfer16 356

u8AHI_SpiReadTransfer8 357

vAHI_SpiContinuous 358

bAHI_SpiPollBusy 359

vAHI_SpiWaitBusy 360

vAHI_SetDelayReadEdge 361

vAHI_SpiRegisterCallback 362

Note 1: For information on the SPI master and guidance
on using the SPI Master functions in JN516x application
code, refer to Chapter 14.

Note 2: SPI Slave functions are detailed in Chapter 31.

Note 3: On a JN516x device, the SPI Master is disabled
by default and shares its pins with other functions - this
is unlike a JN514x device that uses dedicated pins for
the SPI Master, which is enabled from reset in order to
boot from an external Flash device.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 345

Chapter 30
SPI Master Functions

vAHI_SpiConfigure

Description

This function configures and enables the SPI master.

The function allows the number of SPI slaves (of the master) to be set. Up to three
slave-select lines can be set, which use DIO19, DIO0 and DIO1 (but the last two lines
can be moved to DIO14 and DIO15, respectively). Note that once reserved for SPI
use, DIO lines cannot be subsequently released by calling this function again (and
specifying a smaller number of SPI slaves).

The following features are also configurable using this function:

 Data transfer order - whether the least significant bit is transferred first or last

 Clock polarity and phase, which together determine the SPI mode (0, 1, 2 or 3) and
therefore the clock edge on which data is latched:

 SPI Mode 0: polarity=0, phase=0

 SPI Mode 1: polarity=0, phase=1

 SPI Mode 2: polarity=1, phase=0

 SPI Mode 3: polarity=1, phase=1

 Clock divisor - the value used to derive the SPI clock from the peripheral clock

 SPI interrupt - generated when an API transfer has completed (note that interrupts are
only worth using if the SPI clock frequency is much less than 16MHz)

 Automatic slave selection - enable the programmed slave-select line or lines (see
vAHI_SpiSelect()) to be automatically asserted at the start of a transfer and
de-asserted when the transfer completes. If not enabled, the slave-select lines will
reflect the value set by vAHI_SpiSelect() directly.

Parameters

u8SlaveEnable Number of SPI slaves to control. Valid values are 0-3 (higher
values are truncated to 3)

bLsbFirst Enable/disable data transfer with the least significant bit (LSB)
transferred first:
TRUE - enable
FALSE - disable

bPolarity Clock polarity:
FALSE - unchanged
TRUE - inverted

void vAHI_SpiConfigure(uint8 u8SlaveEnable,
bool_t bLsbFirst,
bool_t bPolarity,
bool_t bPhase,
uint8 u8ClockDivider,
bool_t bInterruptEnable,
bool_t bAutoSlaveSelect);
346 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bPhase Phase:
FALSE - latch data on leading edge of clock
TRUE - latch data on trailing edge of clock

u8ClockDivider Clock divisor in the range 0 to 63. Peripheral clock is divided
by 2 x u8ClockDivider, but 0 is a special value used when no
clock division is required

bInterruptEnable Enable/disable interrupt when an SPI transfer has completed:
TRUE - enable
FALSE - disable

bAutoSlaveSelect Enable/disable automatic slave selection:
TRUE - enable
FALSE - disable

Note that the parameters bPolarity and bPhase are named differently in the library
header file.

Returns

None
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 347

Chapter 30
SPI Master Functions

vAHI_SpiReadConfiguration

Description

This function obtains the current configuration of the SPI bus.

This function is intended to be used in a system where the SPI bus is used in multiple
configurations to allow the state to be restored later using the function
vAHI_SpiRestoreConfiguration(). Therefore, no knowledge is needed of the
configuration details.

Parameters

*ptConfiguration Pointer to location to receive obtained SPI configuration

Returns

None

void vAHI_SpiReadConfiguration(
tSpiConfiguration *ptConfiguration);
348 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SpiRestoreConfiguration

Description

This function restores the SPI bus configuration using the configuration previously
obtained using vAHI_SpiReadConfiguration().

Parameters

*ptConfiguration Pointer to SPI configuration to be restored

Returns

None

void vAHI_SpiRestoreConfiguration(
tSpiConfiguration *ptConfiguration);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 349

Chapter 30
SPI Master Functions

vAHI_SpiSelSetLocation

Description

This function can be used to select the DIO on which the specified SPI slave select
line will operate. The DIO for slave select line SPISEL1 or SPISEL2 can be
configured using this function:

 SPISEL1 can use DIO0 (default) or alternatively DIO14

 SPISEL2 can use DIO1 (default) or alternatively DIO15

The function only needs to be called if the alternative DIO is preferred.

Parameters

u8SpiSel Slave select line to be configured:
E_AHI_SPISEL_1 - Slave select 1
E_AHI_SPISEL_2 - Slave select 2

bLocation DIO on which specified slave select line will operate:
TRUE - DIO14 (SPISEL1) or DIO15 (SPISEL2)
FALSE - DIO0 (SPISEL1) or DIO1 (SPISEL2)

Returns

None

void vAHI_SpiSelSetLocation(uint8 u8SpiSel,
bool_t bLocation);
350 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SpiSelect

Description

This function sets the active slave-select line(s) to use.

The slave-select lines are asserted immediately if “automatic slave selection” is
disabled, or otherwise only during data transfers. The number of valid bits in
u8SlaveMask depends on the setting of u8SlaveEnable in a previous call to
vAHI_SpiConfigure(), as follows:

Parameters

u8SlaveMask Bitmap - one bit per slave-select line

Returns

None

void vAHI_SpiSelect(uint8 u8SlaveMask);

u8SlaveEnable Valid bits in u8SlaveMask

0 Bit 0

1 Bits 0, 1

2 Bits 0, 1, 2

3 Bits 0, 1, 2, 3

4 Bits 0, 1, 2, 3, 4
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 351

Chapter 30
SPI Master Functions

vAHI_SpiStop

Description

This function clears any active slave-select lines. It has the same effect as
vAHI_SpiSelect(0).

Parameters

None

Returns

None

void vAHI_SpiStop(void);
352 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SpiDisable

Description

This function disables the SPI Master.

Parameters

None

Returns

None

void vAHI_SpiDisable(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 353

Chapter 30
SPI Master Functions

vAHI_SpiStartTransfer

Description

This function can be used to start a data transfer to selected slave(s). The data length
for the transfer can be specified in the range 1 to 32 bits.

It is assumed that vAHI_SpiSelect() has been called to set the slave(s) to
communicate with. If interrupts are enabled for the SPI master, an interrupt will be
generated when the transfer has completed.

The function u32AHI_SpiReadTransfer32() should be used to read the transferred
data, with the data aligned to the right (lower bits).

Parameters

u8CharLen Value in range 0-31 indicating data length for transfer:
0 - 1-bit data
1 - 2-bit data
2 - 3-bit data
:
31 - 32-bit data

u32Out Data to transmit, aligned to the right
(e.g. for an 8-bit transfer, store the data in bits 0-7)

Returns

None

void vAHI_SpiStartTransfer(uint8 u8CharLen, uint32 u32Out);
354 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u32AHI_SpiReadTransfer32

Description

This function obtains the received data after a SPI transfer has completed that was
started using vAHI_SpiStartTransfer() or vAHI_SpiSetContinuous(). The read
data is aligned to the right (lower bits).

Parameters

None

Returns

Received data (32 bits)

uint32 u32AHI_SpiReadTransfer32(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 355

Chapter 30
SPI Master Functions

u16AHI_SpiReadTransfer16

Description

This function obtains the received data after a 16-bit SPI transfer has completed.

Parameters

None

Returns

Received data (16 bits)

uint16 u16AHI_SpiReadTransfer16(void);
356 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_SpiReadTransfer8

Description

This function obtains the received data after a 8-bit SPI transfer has completed.

Parameters

None

Returns

Received data (8 bits)

uint8 u8AHI_SpiReadTransfer8(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 357

Chapter 30
SPI Master Functions

vAHI_SpiContinuous

Description

This function can be used to enable/disable continuous read mode. The function
allows continuous data transfers to the SPI master and facilitates back-to-back reads
of the received data. In this mode, incoming data transfers are automatically
controlled by hardware - data is received and the hardware then waits for this data
to be read by the software before allowing the next data transfer.

The data length for an individual transfer can be specified in the range 1 to 32 bits.

If used to enable continuous mode, the function will start the transfers (so there is no
need to call a SPI start transfer function. If used to disable continuous mode, the
function will stop any existing transfers (following the function call, one more transfer
is made before the transfers are stopped).

To determine when data is ready to be read, the application should check whether
the interface is busy by calling the function bAHI_SpiPollBusy(). If it is not busy
receiving data, the data from the previous transfer can be read by calling
u32AHI_SpiReadTransfer32(), with the data aligned to the right (lower bits). Once
the data has been read, the next transfer will automatically occur.

Parameters

bEnable Enable/disable continuous read mode and start/stop
transfers:
TRUE - enable mode and start transfers
FALSE - stop transfers and disable mode

u8CharLen Value in range 0-31 indicating data length for transfer:
0 - 1-bit data
1 - 2-bit data
2 - 3-bit data
:
31 - 32-bit data

Returns

None

void vAHI_SpiContinuous(bool_t bEnable,
uint8 u8CharLen);
358 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_SpiPollBusy

Description

This function polls the SPI master to determine whether it is currently busy
performing a data transfer.

Parameters

None

Returns

TRUE if the SPI master is performing a transfer, FALSE otherwise

bool_t bAHI_SpiPollBusy(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 359

Chapter 30
SPI Master Functions

vAHI_SpiWaitBusy

Description

This function waits for the SPI master to complete a transfer and then returns.

Parameters

None

Returns

None

void vAHI_SpiWaitBusy(void);
360 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SetDelayReadEdge

Description

This function can be used to introduce a delay to the SCLK edge used to sample
received data. The delay is by half a SCLK period relative to the normal position (so
is the same edge used by the slave device to transmit the next data bit).

The function should be used when the round-trip delay of SCLK out to MISO IN is
large compared with half a SCLK period (e.g. fast SCLK, low voltage, slow slave
device), to allow a faster transfer rate to be used than would otherwise be possible.

Parameters

bSetDreBit Enable/disable read edge delay:
TRUE - enable
FALSE - disable

Returns

None

void vAHI_SpiSetDelayReadEdge(bool_t bSetDreBit);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 361

Chapter 30
SPI Master Functions

vAHI_SpiRegisterCallback

Description

This function registers an application callback that will be called when the SPI
interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prSpiCallback Pointer to callback function to be registered

Returns

None

void vAHI_SpiRegisterCallback(
PR_HWINT_APPCALLBACK prSpiCallback);
362 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
31. SPI Slave Functions

This chapter details the functions for controlling the Serial Peripheral Interface (SPI)
slave on the JN516x microcontroller.

The SPI Slave functions are listed below, along with their page references:

Function Page

bAHI_SpiSlaveEnable 364

vAHI_SpiSlaveDisable 365

vAHI_SpiSlaveReset 366

vAHI_SpiSlaveTxWriteByte 367

u8AHI_SpiSlaveRxReadByte 368

u8AHI_SpiSlaveTxFillLevel 369

u8AHI_SpiSlaveRxFillLevel 370

u8AHI_SpiSlaveStatus 371

vAHI_SpiSlaveRegisterCallback 372

Note 1: For information on the SPI slave and guidance
on using the SPI Slave functions in JN516x application
code, refer to Chapter 15.

Note 2: SPI Master functions are detailed in Chapter 30.

Note 3: For more details of the data message format,
refer to the data sheet for your microcontroller.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 363

Chapter 31
SPI Slave Functions

bAHI_SpiSlaveEnable

Description

This function initialises and configures the SPI Slave.

Parameters

bPinLocation Configures pin location of SPISMISO and SPISMOSI:
TRUE - SPISMISO : DIO17, SPISMOSI : DIO16
FALSE - SPISMISO : DIO13, SPISMOSI : DIO12

bLsbFirst Configures serial bit-order:
TRUE - SPI data byte transferred LSB first
FALSE - SPI data byte transferred MSB first

*pu8TxBuffer Pointer to start of Transmit buffer in RAM

u8TxBufferLength Length of Transmit buffer, in bytes (1 to 255)

u8TxBufferThreshold Fill threshold of Transmit buffer, in bytes (0 to 255)

*pu8RxBuffer Pointer to start of Receive buffer in RAM

u8RxBufferLength Length of Receive buffer, in bytes (1 to 255)

u8RxBufferThreshold Fill threshold of Receive buffer, in bytes (0 to 255)

u16RxTimeOut Receive timeout duration, in microseconds (0 to 4095)

u16InterruptEnableMask Interrupt enable mask (bit): †
E_AHI_SPIS_INT_RX_FIRST_MASK (0)
E_AHI_SPIS_INT_TX_LAST_MASK (1)
E_AHI_SPIS_INT_RX_CLIMB_MASK (2)
E_AHI_SPIS_INT_TX_FALL_MASK (3)
E_AHI_SPIS_INT_RX_OVER_MASK (4)
E_AHI_SPIS_INT_TX_OVER_MASK (5)
E_AHI_SPIS_INT_RX_UNDER_MASK (6)
E_AHI_SPIS_INT_TX_UNDER_MASK (7)
E_AHI_SPIS_INT_RX_TIMEOUT_MASK (8)

† Refer to Table 17 in Appendix B.2 for a description of each mask bit enumeration.

Returns

TRUE if successfully configured, FALSE otherwise (i.e. invalid input parameters)

bool_t bAHI_SpiSlaveEnable(
bool_t bPinLocation,
bool_t bLsbFirst,
uint8 *pu8TxBuffer,
uint8 u8TxBufferLength,
uint8 u8TxBufferThreshold,
uint8 *pu8RxBuffer,
uint8 u8RxBufferLength,
uint8 u8RxBufferThreshold,
uint16 u16RxTimeOut,
uint16 u16InterruptEnableMask);
364 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SpiSlaveDisable

Description

This function can be used to disable the SPI Slave.

Parameters

None

Returns

None

void vAHI_SpiSlaveDisable(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 365

Chapter 31
SPI Slave Functions

vAHI_SpiSlaveReset

Description

This function can be used to reset the Transmit and/or Receive FIFO buffers.
Following a reset, the internal buffer pointers are re-initialised, the fill-level is reset to
zero and the buffer contents remain unchanged.

Parameters

bTxReset Transmit buffer reset:
TRUE - Reset buffer
FALSE - Do not reset buffer

bRxReset Receive buffer reset:
TRUE - Reset buffer
FALSE - Do not reset buffer

Returns

None

void vAHI_SpiSlaveReset(bool_t bTxReset,
bool_t bRxReset);
366 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_SpiSlaveTxWriteByte

Description

This function writes a byte of data to the Transmit FIFO buffer of the SPI Slave.

Parameters

u8Byte Data byte to write to the Transmit FIFO buffer

Returns

None

void vAHI_SpiSlaveTxWriteByte(uint8 u8Byte);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 367

Chapter 31
SPI Slave Functions

u8AHI_SpiSlaveRxReadByte

Description

This function reads a byte of data from the Receive FIFO of the SPI Slave.

Parameters

None

Returns

Data byte read from the Receive FIFO buffer

uint8 u8AHI_SpiSlaveRxReadByte(void);
368 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_SpiSlaveTxFillLevel

Description

This function returns the fill-level of the Transmit FIFO buffer of the SPI Slave.

Parameters

None

Returns

Fill-level of Transmit FIFO buffer

uint8 u8AHI_SpiSlaveTxFillLevel(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 369

Chapter 31
SPI Slave Functions

u8AHI_SpiSlaveRxFillLevel

Description

This function returns the fill-level of the Receive FIFO buffer of the SPI Slave.

Parameters

None

Returns

Fill-level of Receive FIFO buffer

uint8 u8AHI_SpiSlaveRxFillLevel(void);
370 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
u8AHI_SpiSlaveStatus

Description

This function returns a bitmap indicating the status of the SPI Slave.

Parameters

None

Returns

SPI Slave status bitmap which can be bitwise ANDed with the following masks:

E_AHI_SPIS_STAT_RX_AVAIL_MASK (0x1) Receive buffer not empty

E_AHI_SPIS_STAT_TX_PENDING_MASK (0x2) Transmit buffer not empty

E_AHI_SPIS_STAT_RX_ABOVE_MASK (0x4) Receive buffer fill-level above
threshold

E_AHI_SPIS_STAT_TX_ABOVE_MASK (0x8) Transmit buffer fill-level above
threshold

uint8 u8AHI_SpiSlaveStatus(void);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 371

Chapter 31
SPI Slave Functions

vAHI_SpiSlaveRegisterCallback

Description

This function registers an application callback that will be called when the SPI Slave
interrupt is triggered.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered before calling u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

prSpiCallback Pointer to callback function to be registered

Returns

None

void vAHI_SpiSlaveRegisterCallback(
PR_HWINT_APPCALLBACK prSpiCallback);
372 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
32. Flash Memory Functions

This chapter describes functions for erasing and programming a sector of a Flash
memory device. The Flash memory can be the on-chip device or an external device.

Functions are supplied that can be used to interact with any compatible Flash device
(detailed in Section 16.1). They are able to access any sector of Flash memory - the
application is stored from the first sector (0) and application data is normally stored in
the final sector.

The Flash Memory functions are listed below, along with their page references:

Function Page

bAHI_FlashInit 374

bAHI_FlashEraseSector 375

bAHI_FullFlashProgram 376

bAHI_FullFlashRead 377

vAHI_FlashPowerDown 378

vAHI_FlashPowerUp 379

bAHI_FlashEECerrorInterruptSet 380

Note 1: To access sectors other than the final sector,
you should refer to the data sheet for the Flash device to
obtain the necessary sector details. However, be careful
not to erase essential data such as application code.
The application is stored from Sector 0 of the on-chip
Flash memory.

Note 2: For guidance on using the Flash memory
functions in JN516x application code, refer to
Chapter 16.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 373

Chapter 32
Flash Memory Functions

bAHI_FlashInit

Description

This function selects the type of Flash memory device to be used.

The Flash memory device can be one of the supported device types or a custom
device. In the latter case, a custom table of functions must be supplied for interaction
with the device.

For information on the Flash memory devices supported by each JN516x
microcontroller, refer to Section 16.1.

Parameters

flashType Type of Flash memory device, one of:
E_FL_CHIP_ATMEL_AT25F512 (Atmel AT25F512)
E_FL_CHIP_ST_M25P05_A (ST M25P05A)
E_FL_CHIP_ST_M25P10_A (ST M25P10A)
E_FL_CHIP_ST_M25P20_A (ST M25P20 /

Winbond W25X20B) †
E_FL_CHIP_ST_M25P40_A (ST M25P40)
E_FL_CHIP_SST_25VF010 (Microchip SST25VF010A) ††
E_FL_CHIP_CUSTOM (custom external device)
E_FL_CHIP_INTERNAL (on-chip Flash memory)
E_FL_CHIP_AUTO (on-chip Flash memory)

*pCustomFncTable Pointer to the function table for a custom Flash device
(E_FL_CHIP_CUSTOM). If a supported Flash device is used,
set to NULL.

† The Winbond W25X20B device is similar to the ST M25P20 device and should be
specified as the latter (E_FL_CHIP_ST_M25P20_A).

†† The Microchip SST25VF010A device is supported using 4x32KB overlay blocks
instead of 32x4KB sectors.

Returns

TRUE if initialisation was successful

FALSE if failed

bool_t bAHI_FlashInit(
teFlashChipType flashType,
tSPIflashFncTable *pCustomFncTable);

Note: If you wish to use both internal (on-chip) and external
Flash memory devices, you will need to call bAHI_FlashInit()
when switching between them.
374 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_FlashEraseSector

Description

This function erases the specified sector of Flash memory by setting all bits to 1.

The function can be used with any compatible Flash memory device with up to 8
sectors. Refer to the data sheet of the Flash memory device for details of its sectors.

Parameters

u8Sector Number of the sector to be erased (in the range 2 to 7)

Returns

TRUE if sector erase was successful, FALSE if erase failed

bool_t bAHI_FlashEraseSector(uint8 u8Sector);

Caution: Be careful not to erase essential data such as
application code. The application is stored from the start of
the on-chip Flash memory (starting in Sector 0).
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 375

Chapter 32
Flash Memory Functions

bAHI_FullFlashProgram

Description

This function programs a block of Flash memory by clearing the appropriate bits from
1 to 0. The function can be used to access any sector of a compatible Flash memory
device. This function must only be used to write a block of data containing a multiple
of 16 bytes and this block must be written to a 16-byte boundary.

This mechanism does not allow bits to be set from 0 to 1. It is only possible to set bits
to 1 by erasing the entire sector - therefore, before using this function, you must call the
function bAHI_FlashEraseSector().

Parameters

u32Addr Address of first Flash memory byte to be programmed (must
be on a 16-byte boundary)

u16Len Number of bytes to be programmed (must be a multiple of 16
up to 0x8000)

*pu8Data Pointer to start of data block to be written to Flash memory

Returns

TRUE if write was successful

FALSE if write failed

bool_t bAHI_FullFlashProgram(uint32 u32Addr,
uint16 u16Len,
uint8 *pu8Data);

Caution: Each sector of the internal Flash memory in the
JN516x device is divided into 16-byte pagewords. A write to a
non-blank pageword must not be performed - the sector
containing the non-blank pageword should first be erased
using bAHI_FlashEraseSector() before writing to the
pageword. If the user omits the sector-erase operation, a
subsequent error will likely result when reading from the
pageword - this read-error will trigger an interrupt and execute
the callback function registered using
bAHI_FlashEECerrorInterruptSet().

Caution: The internal Flash memory of the JN516x device
has an endurance limit of 10000 write/erase cycles per sector.
Refer to the device-specific data sheet for the endurance limit
of the external Flash memory.
376 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
bAHI_FullFlashRead

Description

This function reads data from the application data area of Flash memory. The
function can be used to access any sector of a compatible Flash memory device.

If the function parameters are invalid (e.g. by trying to read beyond end of sector),
the function returns without reading anything.

Parameters

u32Addr Address of first Flash memory byte to be read

u16Len Number of bytes to be read: integer in range 1 to 0x8000

*pu8Data Pointer to start of buffer to receive read data.

Returns

TRUE (always)

bool_t bAHI_FullFlashRead(uint32 u32Addr,
uint16 u16Len,
uint8 *pu8Data);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 377

Chapter 32
Flash Memory Functions

vAHI_FlashPowerDown

Description

This function sends a ‘power down’ command to an external Flash memory device
attached to the JN516x device. This allows further power savings to be made when
the microcontroller is put into a sleep mode (including Deep Sleep).

The following Flash devices are supported by this function:

 STM25P05A

 STM25P10A

 STM25P20

 STM25P40

If the function is called for an unsupported Flash device, the function will return
without doing anything.

The application on a JN516x device is responsible for managing the power to
external Flash memory for all sleep modes (including Deep Sleep). If the external
Flash device is to be unpowered while the JN516x device is sleeping, this function
must be called before vAHI_Sleep() is called to put the CPU into Sleep mode. You
must subsequently power up the device using vAHI_FlashPowerUp() after waking
and before attempting to access the Flash memory.

Parameters

None

Returns

None

void vAHI_FlashPowerDown(void);

Caution: This function must not be called when using the
JN516x on-chip Flash memory device - that is, when
bAHI_FlashInit() has been called with the Flash device type
E_FL_CHIP_INTERNAL or E_FL_CHIP_AUTO specified.
Note that when using the JenOS Persistent Data Manager
(PDM), the E_FL_CHIP_AUTO option is used by default, in
which case the on-chip Flash memory device will be detected.
378 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
vAHI_FlashPowerUp

Description

This function sends a ‘power up’ command to an external Flash memory device
attached to the JN516x device.

The following Flash devices are supported by this function:

 STM25P05A

 STM25P10A

 STM25P20

 STM25P40

If the function is called for an unsupported Flash device, the function will return
without doing anything.

The application on a JN516x device is responsible for managing the power to
external Flash memory for all sleep modes (including Deep Sleep). This function
must be called when the JN516x device wakes from sleep if the Flash device was
powered down using vAHI_FlashPowerDown() before the device entered Sleep
mode.

Parameters

None

Returns

None

void vAHI_FlashPowerUp(void);

Caution: This function must not be called when using the
JN516x on-chip Flash memory device - that is, when
bAHI_FlashInit() has been called with the Flash device type
E_FL_CHIP_INTERNAL or E_FL_CHIP_AUTO specified.
Note that when using the JenOS Persistent Data Manager
(PDM), the E_FL_CHIP_AUTO option is used by default, in
which case the on-chip Flash memory device will be detected.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 379

Chapter 32
Flash Memory Functions

bAHI_FlashEECerrorInterruptSet

Description

This function can be used to enable or disable interrupts that are generated when an
error occurs in the on-chip Flash memory device. A user-defined callback function
must be specified which will be invoked when an interrupt of this type occurs.

Note that the callback function will be executed in interrupt context. You must
therefore ensure that it returns to the main program in a timely manner.

The registered callback function is only preserved during sleep modes in which RAM
remains powered. If RAM is powered off during sleep and interrupts are required, the
callback function must be re-registered and the interrupts re-enabled before calling
u32AHI_Init() on waking.

Interrupt handling is described in Appendix A.

Parameters

bEnable Enable or disable internal Flash memory interrupts:
TRUE - enable
FALSE - disable

prFlashEECCallback Pointer to callback function to be registered

Returns

None

bool_t bAHI_FlashEECerrorInterruptSet(
bool_t bEnable,
PR_HWINT_APPCALLBACK prFlashEECCallback);
380 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
33. EEPROM Functions

This chapter describes functions for accessing the EEPROM device on the JN516x
microcontroller - that is, to read from, write to and erase a segment of EEPROM.

The EEPROM functions are listed below, along with their page references:

Function Page

u16AHI_InitialiseEEP 382

iAHI_WriteDataIntoEEPROMsegment 383

iAHI_ReadDataFromEEPROMsegment 384

iAHI_EraseEEPROMsegment 385

Note 1: Although the functions described in this chapter
provide direct access to the EEPROM device, it is
recommended that the JenOS Persistent Data Manager
(PDM) is normally used to access this memory. PDM is
supplied in the NXP JenNet-IP and ZigBee SDKs, and is
described in the JenOS User Guide (JN-UG-3075).

Note 2: For guidance on using the EEPROM functions
in JN516x application code, refer to Chapter 17.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 381

Chapter 33
EEPROM Functions

u16AHI_InitialiseEEP

Description

This function initialises the EEPROM for access and returns the following values:

 The number of bytes in each memory segment is returned in the location pointed to by
pu8SegmentDatalength

 The number of available memory segments in the device is the return value of the
function

Parameters

*pu8SegmentDatalength Pointer to a location to receive the number of bytes per
segment

Returns

Number of available memory segments in the device

uint16 u16AHI_InitialiseEEP(uint8 *pu8SegmentDatalength);
382 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
iAHI_WriteDataIntoEEPROMsegment

Description

This function can be used to write a block of data into a segment of EEPROM.

The data block can be written starting at any point (byte address) within the segment.
The data length must not be greater than the amount of memory space up to the end
of the segment. The function will not allow an attempt to write data beyond the end
of the segment (an overflow) and will return a ‘failure’ status.

Parameters

u16SegmentIndex Index of EEPROM segment to be written to (segments
are numbered from zero)

u8SegmentByteAddress Byte address within the segment of the start location for
writing data (offset from beginning of segment)

*pu8DataBuffer Pointer to start of data block in RAM to be written to
EEPROM

u8Datalength Length of data block to be written, in bytes

Returns

0 - Success

1 - Failure (parameter values were out of range)

int iAHI_WriteDataIntoEEPROMsegment(
uint16 u16SegmentIndex,
uint8 u8SegmentByteAddress,
uint8 *pu8DataBuffer,
uint8 u8Datalength);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 383

Chapter 33
EEPROM Functions

iAHI_ReadDataFromEEPROMsegment

Description

This function can be used to read a block of data from a segment of EEPROM.

The data block to be read can start at any point (byte address) within the segment.
The length of the data block must be specified and must not be greater than the
amount of memory space up to the end of the segment. The function will not allow
an attempt to read data beyond the end of the segment and will return a ‘failure’
status.

Parameters

u16SegmentIndex Index of EEPROM segment to be read (segments are
numbered from zero)

u8SegmentByteAddress Byte address within the segment of the start location for
reading data (offset from beginning of segment)

*pu8DataBuffer Pointer to start location in RAM where the read data is
to be written

u8Datalength Length of data block to be read, in bytes

Returns

0 - Success

1 - Failure (parameter values were out of range)

int iAHI_ReadDataFromEEPROMsegment(
uint16 u16SegmentIndex,
uint8 u8SegmentByteAddress,
uint8 *pu8DataBuffer,
uint8 u8Datalength);
384 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
iAHI_EraseEEPROMsegment

Description

This function can be used to erase the specified segment of EEPROM.

Parameters

u16SegmentIndex Index of segment to erase (segments are numbered from
zero)

Returns

0 - Success

1 - Failure (parameter values were out of range)

int iAHI_EraseEEPROMsegment(uint16 u16SegmentIndex);
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 385

Chapter 33
EEPROM Functions

386 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Part III:
Appendices
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 387

388 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
A. Interrupt Handling

Interrupts from the on-chip peripherals are handled by a set of peripheral-specific
callback functions. These user-defined functions can be introduced using the
appropriate callback registration functions of the Integrated Peripherals API. For
example, you can write your own interrupt handler for UART0 and then register this
callback function using the vAHI_Uart0RegisterCallback() function. The full list of
peripheral interrupt sources and the corresponding callback registration functions is
provided in the table below.

* Includes DIO, comparator, wake timer, pulse counter, random number and brownout interrupts

** Used for both SI master and SI slave interrupts

Interrupt Source Callback Registration Function

System Controller * vAHI_SysCtrlRegisterCallback()

Analogue Peripherals (ADC) vAHI_APRegisterCallback()

UART 0 vAHI_Uart0RegisterCallback()

UART 1 vAHI_Uart1RegisterCallback()

Timer 0 vAHI_Timer0RegisterCallback()

Timer 1 vAHI_Timer1RegisterCallback()

Timer 2 vAHI_Timer2RegisterCallback()

Timer 3 vAHI_Timer3RegisterCallback()

Timer 4 vAHI_Timer4RegisterCallback()

Tick Timer vAHI_TickTimerRegisterCallback()

Serial Interface (2-wire) vAHI_SiRegisterCallback() **

SPI Master vAHI_SpiRegisterCallback()

SPI Slave vAHI_SpiSlaveRegisterCallback()

Internal Flash Memory bAHI_FlashEECerrorInterruptSet()

Infra-Red Transmitter vAHI_InfraredRegisterCallback()

Encryption Engine Refer to AES Coprocessor API Reference Manual (JN-RM-2013)

Table 7: Interrupt Sources and Callback Registration Functions

Note 1: A callback function is executed in interrupt
context. You must therefore ensure that the function
returns to the main program in a timely manner.

Note 2: The priorities of interrupts from the various
interrupt sources can be set using the function
vAHI_InterruptSetPriority().
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 389

Appendices
A.1 Callback Function Prototype and Parameters

The user-defined callback functions for all peripherals must be designed according to
the following prototype:

The parameters of this function prototype are as follows:

 u32DeviceId identifies the peripheral that generated the interrupt. The list of
possible sources is given in Table 7. Enumerations for these sources are
provided in the API and are detailed in Appendix B.1.

 u32ItemBitmap is a bitmap that identifies the specific cause of the interrupt
within the peripheral block identified through u32DeviceId above. Masks are
provided in the API that allow particular interrupt causes to be checked for. The
UART interrupts are an exception as, in their case, an enumerated value is
passed via this parameter instead of a bitmap. The masks and enumerations
are detailed in Appendix B.2.

A.2 Callback Behaviour

Before invoking one of the callback functions, the API clears the source of the
interrupt, so that there is no danger of the same interrupt causing the processor to
enter a state of permanently trying to handle the same interrupt (due to a poorly written
callback function). This also means that it is possible to have a NULL callback function.

The UARTs are the exception to this rule. When generating a 'receive data available'
or 'time-out indication' interrupt, the UARTs will only clear the interrupt once the data
has been read from the UART receive buffer. It is therefore vital that if UART interrupts
are to be enabled, the callback function handles the 'receive data available' and 'time-
out indication' interrupts by reading the data from the UART before returning.

Caution: Registered callback functions are only
preserved during sleep modes in which RAM remains
powered. If RAM is powered off during sleep and
interrupts are required, any callback functions must be
re-registered before calling u32AHI_Init() on waking.

void vHwDeviceIntCallback(uint32 u32DeviceId,
uint32 u32ItemBitmap);

Note: If the Application Queue API is being used, the
above issue with the UART interrupts is handled by this
API, so the application does not need to deal with it. For
more information on this API, refer to the Application
Queue API Reference Manual (JN-RM-2025).
390 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
A.3 Handling Wake Interrupts

A JN516x microcontroller can be woken from sleep by any of the following sources:

 Wake timer

 DIO

 Comparator

 Pulse counter

For the device to be woken by one of the above wake sources, interrupts must be
enabled for that source at some point before the device goes to sleep.

Interrupts from all of the above sources are handled by the user-defined System
Controller callback function which is registered using the function
vAHI_SysCtrlRegisterCallback(). The callback function must be registered before
the device goes to sleep. However, in the case of sleep without RAM held, the
registered callback function will be lost during sleep and must therefore be re-
registered on waking, as part of the cold start routine before the initialisation function
u32AHI_Init() is called. If there are any System Controller interrupts pending, the call
to u32AHI_Init() will result in the callback function being invoked and the interrupts
being cleared. An interrupt bitmap u32ItemBitmap is passed into the callback function
and the particular source of the interrupt (DIO, wake timer, etc) can be obtained from
this bitmap by bitwise ANDing it with masks provided in the API and detailed in
Appendix A.1.

The above wake sources are outlined below.

Wake Timer

There are two wake timers (0 and 1) on the JN516x microcontroller. These timers run
at a nominal 32kHz and are able to operate during sleep periods. When a running
wake timer expires during sleep, an interrupt can be generated which wakes the
device. Control of the wake timers is described in Chapter 8.

Note 1: As an alternative, for some wake sources
‘Status’ functions are available which can be used to
determine whether a particular source was responsible
for a wake-up event (see below). However, if used,
these functions must be called before any pending
interrupts are cleared and therefore before
u32AHI_Init() is called.

Note 2: If using the JenNet protocol, do not call these
functions to obtain the interrupt status on waking from
sleep. At wake-up, JenNet calls u32AHI_Init() internally
and clears the interrupt status before passing control to
the application. The System Controller callback function
must be used to obtain the interrupt status, if required.
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 391

Appendices
Interrupts for a wake timer can be enabled using vAHI_WakeTimerEnable(). The
timed period for a wake timer is set when the wake timer is started.

The function u8AHI_WakeTimerFiredStatus() is provided to indicate whether a
particular wake timer has fired. If used to determine whether a wake timer caused a
wake-up event, this function must be called before u32AHI_Init() - see Note above.

DIO

There are 20 DIO lines (0-19) on the JN516x microcontroller. A JN516x device can be
woken from sleep on the change of state of any DIOs that have been configured as
inputs and as wake sources. Control of the DIOs is described in Chapter 5.

The directions of the DIOs (input or output) are configured using the function
vAHI_DioSetDirection(). Wake interrupts can then be enabled on DIO inputs using
the function vAHI_DioWakeEnable(). The change of state (rising or falling edge) on
which each DIO interrupt will be generated is configured using the function
vAHI_DioWakeEdge().

The function u32AHI_DioWakeStatus() is provided to indicate whether a DIO caused
a wake-up event. If used, this function must be called before u32AHI_Init() - see Note
above.

Comparator

There is one comparator (numbered 1) on the JN516x microcontroller. A JN516x
device can be woken from sleep by a comparator interrupt when either of the following
events occurs:

 The comparator’s input voltage rises above the reference voltage.

 The comparator’s input voltage falls below the reference voltage.

Control of the comparator is described in Section 4.3.

Interrupts for a comparator are configured and enabled using the function
vAHI_ComparatorIntEnable().

A function u8AHI_ComparatorWakeStatus() is provided to indicate whether a
comparator caused a wake-up event. If used, this function must be called before
u32AHI_Init() - see Note above.

Pulse Counter

There are two pulse counters (0 and 1) on the JN516x microcontroller. These counters
are able to run during sleep periods. When a running pulse counter reaches its
reference count during sleep, an interrupt can be generated which wakes the device.
Control of the pulse counters is described in Chapter 11.

Interrupts for a pulse counter can be enabled when the pulse counter is configured
using the function bAHI_PulseCounterConfigure().
392 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
B. Interrupt Enumerations and Masks

This appendix details the enumerations and masks used in the parameters of the
interrupt callback function described in Appendix A.1.

B.1 Peripheral Interrupt Enumerations (u32DeviceId)

The device ID, u32DeviceId, is an enumerated value indicating the peripheral that
generated the interrupt. The enumerations are detailed in Table 8 below.

* Used for both SI master and SI slave interrupts

Enumeration Interrupt Source Callback Registration Function

E_AHI_DEVICE_SYSCTRL System Controller vAHI_SysCtrlRegisterCallback()

E_AHI_DEVICE_ANALOGUE Analogue Peripherals vAHI_APRegisterCallback()

E_AHI_DEVICE_UART0 UART 0 vAHI_Uart0RegisterCallback()

E_AHI_DEVICE_UART1 UART 1 vAHI_Uart1RegisterCallback()

E_AHI_DEVICE_TIMER0 Timer 0 vAHI_Timer0RegisterCallback()

E_AHI_DEVICE_TIMER1 Timer 1 vAHI_Timer1RegisterCallback()

E_AHI_DEVICE_TIMER2 Timer 2 vAHI_Timer2RegisterCallback()

E_AHI_DEVICE_TIMER3 Timer 3 vAHI_Timer3RegisterCallback()

E_AHI_DEVICE_TIMER4 Timer 4 vAHI_Timer4RegisterCallback()

E_AHI_DEVICE_TICK_TIMER Tick Timer vAHI_TickTimerRegisterCallback()
vAHI_TickTimerInit()

E_AHI_DEVICE_SI * Serial Interface (2-wire) vAHI_SiRegisterCallback() *

E_AHI_DEVICE_SPIM SPI Master vAHI_SpiRegisterCallback()

E_AHI_DEVICE_SPIS SPI Slave vAHI_SpiSlaveRegisterCallback()

E_AHI_DEVICE_FEC Internal Flash Memory bAHI_FlashEECerrorInterruptSet()

E_AHI_DEVICE_INFRARED Infra-Red Transmitter vAHI_InfraredRegisterCallback()

E_AHI_DEVICE_AES Encryption Engine Refer to AES Coprocessor API Refer-
ence Manual (JN-RM-2013)

Table 8: u32DeviceId Enumerations
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 393

Appendices
B.2 Peripheral Interrupt Sources (u32ItemBitmap)

The parameter u32ItemBitmap is a 32-bit bitmask indicating the individual interrupt
source within the peripheral (except for the UARTs, for which the parameter returns
an enumerated value). The bits and their meanings are detailed in the tables below.

Mask (Bit) Description

E_AHI_SYSCTRL_CKEM_MASK (31) System clock source has been changed

E_AHI_SYSCTRL_RNDEM_MASK (30) A new value has been generated by the Ran-
dom Number Generator

E_AHI_SYSCTRL_COMP1_MASK (29)
E_AHI_SYSCTRL_COMP0_MASK (28)

Comparator (0 and 1) events

E_AHI_SYSCTRL_WK1_MASK (27)
E_AHI_SYSCTRL_WK0_MASK (26)

Wake Timer events

E_AHI_SYSCTRL_VREM_MASK (25)
E_AHI_SYSCTRL_VFEM_MASK (24)

Brownout condition entered
Brownout condition exited

E_AHI_SYSCTRL_PC1_MASK (23)
E_AHI_SYSCTRL_PC0_MASK (22)

Pulse Counter (0 or 1) has reached its pre-con-
figured reference value

E_AHI_DIO20_INT (20)
E_AHI_DIO19_INT (19)
E_AHI_DIO18_INT (18)
E_AHI_DIO17_INT (17)
.
.
.
E_AHI_DIO0_INT (0)

Digital IO (DIO) events

Table 9: System Controller

Mask (Bit) Description

E_AHI_AP_ACC_INT_STATUS_MASK (1 and 0) Asserted in ADC accumulation mode to indi-
cate that conversion is complete and the accu-
mulated sample is available

E_AHI_AP_CAPT_INT_STATUS_MASK (0) Asserted in all ADC modes to indicate that an
individual conversion is complete and the
resulting sample is available

Table 10: Analogue Peripherals
394 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide

Mask (Bit) Description

E_AHI_TIMER_RISE_MASK (1) Interrupt status, generated on timer rising edge
(low-to-high transition) - will be non-zero if
interrupt for timer rising output has been set

E_AHI_TIMER_PERIOD_MASK (0) Interrupt status, generated on end of timer
period (high-to-low transition) - will be non-zero
if interrupt for end of timer period has been set

Table 11: Timers (identical for all timers)

Mask (Bit) Description

0 Single source for Tick-timer interrupt, therefore
returns 1 every time

Table 12: Tick Timer

Mask (Bit) Description

E_AHI_INFRARED_TX_MASK (0) Asserted to indicate transmission complete

Table 13: Infra-Red Transmitter

Mask (Bit) Description

E_AHI_SIM_RXACK_MASK (7) Asserted if no acknowledgement is received
from the addressed slave

E_AHI_SIM_BUSY_MASK (6) Asserted if a START signal is detected
Cleared if a STOP signal is detected

E_AHI_SIM_AL_MASK (5) Asserted to indicate loss of arbitration

E_AHI_SIM_ICMD_MASK (2) Asserted to indicate invalid command

E_AHI_SIM_TIP_MASK (1) Asserted to indicate transfer in progress

E_AHI_SIM_INT_STATUS_MASK (0) Interrupt status - interrupt indicates loss of arbi-
tration or that byte transfer has completed

Table 14: Serial Interface (2-wire) Master
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 395

Appendices

Mask (Bit) Description

E_AHI_SIS_ERROR_MASK (4) I2C protocol error

E_AHI_SIS_LAST_DATA_MASK (3) Last data transferred (end of burst)

E_AHI_SIS_DATA_WA_MASK (2) Buffer contains data to be read by SI slave

E_AHI_SIS_DATA_RTKN_MASK (1) Data taken from buffer by SI master
(buffer free for next data to be loaded)

E_AHI_SIS_DATA_RR_MASK (0) Buffer needs loading with data for SI master

Table 15: Serial Interface (2-wire) Slave

Mask (Bit) Description

E_AHI_SPIM_TX_MASK (0) Transfer has completed

Table 16: SPI Master

Mask (Bit) Description

E_AHI_SPIS_INT_RX_FIRST_MASK (0) Data has been received in the Receive FIFO,
which was previously empty

E_AHI_SPIS_INT_TX_LAST_MASK (1) Last remaining byte in Transmit FIFO has been
transmitted, leaving the buffer empty

E_AHI_SPIS_INT_RX_CLIMB_MASK (2) Fill-level of Receive FIFO has risen beyond the
configured threshold level

E_AHI_SPIS_INT_TX_FALL_MASK (3) Fill-level of Transmit FIFO has fallen below the
configured threshold level

E_AHI_SPIS_INT_RX_OVER_MASK (4) Data was received but Receive FIFO was full
or busy (so data was discarded)

E_AHI_SPIS_INT_TX_OVER_MASK (5) Transmit FIFO was written to but was full

E_AHI_SPIS_INT_RX_UNDER_MASK (6) Receive FIFO was read but was empty

E_AHI_SPIS_INT_TX_UNDER_MASK (7) Transmission was attempted but Transmit
FIFO was empty or not ready (so 0x00 was
transmitted over the SPI bus)

E_AHI_SPIS_INT_RX_TIMEOUT_MASK (8) A Receive timeout has occurred (no further
data has been received within this period)

Table 17: SPI Slave
396 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
For the UART interrupts, u32ItemBitmap returns the following enumerated values:

Table 18 lists the UART interrupts from highest priority to lowest priority.

Enumerated Value Description (and Priority)

E_AHI_UART_INT_RXLINE (3) Receive line status (highest priority)

E_AHI_UART_INT_RXDATA (2) Receive data available (next highest priority)

E_AHI_UART_INT_TIMEOUT (6) Time-out indication (next highest priority)

E_AHI_UART_INT_TX (1) Transmit FIFO empty (next highest priority)

E_AHI_UART_INT_MODEM (0) Modem status (lowest priority)

Table 18: UART (identical for both UARTs)
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 397

Appendices
398 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

 JN516x Integrated Peripherals API
User Guide
Revision History

Version Date Comments

1.0 22-Nov-2012 First release

1.1 22-Aug-2013 EEPROM functions added and various other modifications/correc-
tions made
JN-UG-3087 v1.1 © NXP Laboratories UK 2013 399

JN516x Integrated Peripherals API
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
400 © NXP Laboratories UK 2013 JN-UG-3087 v1.1

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks

	Part I: Concept and Operational Information
	1. Overview
	1.1 JN516x Integrated Peripherals
	1.2 JN516x Integrated Peripherals API
	1.3 Using this Manual

	2. General Functions
	2.1 API Initialisation
	2.2 Radio Transmission Power
	2.3 Antenna Diversity
	2.4 Random Number Generator
	2.5 Accessing Internal NVM

	3. System Controller
	3.1 Clock Management
	3.1.1 System Clock Start-up and Source Selection
	3.1.2 System Clock Start-up Following Sleep
	3.1.3 CPU Clock Frequency Selection
	3.1.4 32kHz Clock Selection

	3.2 Power Management
	3.2.1 Power Domains
	3.2.2 Wireless Transceiver Clock
	3.2.3 Low-Power Modes
	3.2.4 Power Status

	3.3 Supply Voltage Monitor (SVM)
	3.3.1 Configuring SVM
	3.3.2 Monitoring Voltage

	3.4 Resets
	3.5 System Controller Interrupts

	4. Analogue Peripherals
	4.1 ADC
	4.1.1 Single-Shot Mode
	4.1.2 Continuous Mode
	4.1.3 Accumulation Mode

	4.2 ADC with DMA Engine (Sample Buffer Mode)
	4.2.1 Preparing for Sample Buffer Mode
	4.2.2 Sample Buffer Mode Operation

	4.3 Comparator
	4.3.1 Comparator Interrupts and Wake-up
	4.3.2 Comparator Low-Power Mode

	4.4 Analogue Peripheral Interrupts

	5. Digital Inputs/Outputs (DIOs)
	5.1 Using the DIOs
	5.1.1 Setting the Directions of the DIOs
	5.1.2 Setting DIO Outputs
	5.1.3 Setting DIO Pull-ups
	5.1.4 Reading the DIOs

	5.2 DIO Interrupts and Wake-up
	5.2.1 DIO Interrupts
	5.2.2 DIO Wake-up

	5.3 Configuring Digital Outputs (DOs)

	6. UARTs
	6.1 UART Signals and Pins
	6.2 UART Operation
	6.2.1 2-wire Mode
	6.2.2 4-wire Mode (with Flow Control) [UART0 Only]
	6.2.3 1-Wire Mode [UART1 Only]

	6.3 Configuring the UARTs
	6.3.1 Enabling a UART
	6.3.2 Setting the Baud-rate
	6.3.3 Setting Other UART Properties
	6.3.4 Enabling Interrupts

	6.4 Transferring Serial Data in 2-wire Mode
	6.4.1 Transmitting Data (2-wire Mode)
	6.4.2 Receiving Data (2-wire Mode)

	6.5 Transferring Serial Data in 4-wire Mode (UART0 Only)
	6.5.1 Transmitting Data (4-wire Mode, Manual Flow Control)
	6.5.2 Receiving Data (4-wire Mode, Manual Flow Control)
	6.5.3 Automatic Flow Control (4-wire Mode)

	6.6 Transmitting Serial Data in 1-wire Mode (UART1 Only)
	6.7 Break Condition
	6.8 UART Interrupt Handling

	7. Timers
	7.1 Modes of Timer Operation
	7.2 Setting up a Timer
	7.2.1 Selecting DIOs
	7.2.2 Enabling a Timer
	7.2.3 Selecting Clocks

	7.3 Starting and Operating a Timer
	7.3.1 Timer and PWM Modes
	7.3.2 Delta-Sigma Mode (NRZ and RTZ)
	7.3.3 Capture Mode
	7.3.4 Counter Mode

	7.4 Timer Interrupts

	8. Wake Timers
	8.1 Using a Wake Timer
	8.1.1 Enabling and Starting a Wake Timer
	8.1.2 Stopping a Wake Timer
	8.1.3 Reading a Wake Timer
	8.1.4 Obtaining Wake Timer Status

	8.2 Clock Calibration

	9. Tick Timer
	9.1 Tick Timer Operation
	9.2 Using the Tick Timer
	9.2.1 Setting Up the Tick Timer
	9.2.2 Running the Tick Timer

	9.3 Tick Timer Interrupts

	10. Watchdog Timer
	10.1 Watchdog Operation
	10.2 Using the Watchdog Timer
	10.2.1 Starting the Timer
	10.2.2 Resetting the Timer
	10.2.3 Exception Handler for Debug

	11. Pulse Counters
	11.1 Pulse Counter Operation
	11.2 Using a Pulse Counter
	11.2.1 Configuring a Pulse Counter
	11.2.2 Starting and Stopping a Pulse Counter
	11.2.3 Monitoring a Pulse Counter

	11.3 Pulse Counter Interrupts

	12. Infra-Red Transmitter
	12.1 Infra-Red Transmitter Operation
	12.2 Using the Infra-Red Transmitter
	12.2.1 Configuring the Infra-Red Transmitter
	12.2.2 Starting an Infra-Red Transmission
	12.2.3 Monitoring an Infra-Red Transmission
	12.2.4 Disabling the Infra-Red Transmitter

	12.3 Infra-Red Transmitter Interrupt

	13. Serial Interface (SI)
	13.1 SI Master
	13.1.1 Enabling the SI Master
	13.1.2 Writing Data to SI Slave
	13.1.3 Reading Data from SI Slave
	13.1.4 Waiting for Completion

	13.2 SI Slave
	13.2.1 Enabling the SI Slave and its Interrupts
	13.2.2 Receiving Data from the SI Master
	13.2.3 Sending Data to the SI Master

	14. Serial Peripheral Interface (SPI) Master
	14.1 SPI Bus Lines
	14.2 Data Transfers
	14.3 SPI Modes
	14.4 Slave Selection
	14.5 Using the Serial Peripheral Interface
	14.5.1 Performing a Data Transfer
	14.5.2 Performing a Continuous Transfer

	14.6 SPI Interrupts

	15. Serial Peripheral Interface (SPI) Slave
	15.1 SPI Slave Operation
	15.1.1 SPI Bus Lines and DIO Usage
	15.1.2 SPI Slave FIFOs and Interrupts

	15.2 Using the SPI Slave

	16. Flash Memory
	16.1 Flash Memory Organisation and Types
	16.2 API Functions
	16.3 Operating on Flash Memory
	16.3.1 Erasing Data from Flash Memory
	16.3.2 Reading Data from Flash Memory
	16.3.3 Writing Data to Flash Memory

	16.4 Controlling Power to External Flash Memory

	17. EEPROM
	17.1 Initialisation
	17.2 Writing to the EEPROM
	17.3 Reading from the EEPROM
	17.4 Erasing the EEPROM

	Part II: Reference Information
	18. General Functions
	u32AHI_Init
	vAHI_HighPowerModuleEnable
	vAHI_AntennaDiversityOutputEnable
	vAHI_AntennaDiversityEnable
	u8AHI_AntennaDiversityStatus
	vAHI_AntennaDiversityControl
	vAHI_AntennaDiversitySwitch
	vAHI_StartRandomNumberGenerator
	vAHI_StopRandomNumberGenerator
	u16AHI_ReadRandomNumber
	bAHI_RndNumPoll
	vAHI_SetStackOverflow
	vAHI_WriteNVData
	u32AHI_ReadNVData
	vAHI_InterruptSetPriority

	19. System Controller Functions
	u16AHI_PowerStatus
	vAHI_CpuDoze
	vAHI_Sleep
	vAHI_ProtocolPower
	bAHI_Set32KhzClockMode
	vAHI_Init32KhzXtal
	vAHI_Trim32KhzRC
	vAHI_SelectClockSource
	bAHI_GetClkSource
	bAHI_SetClockRate
	u8AHI_GetSystemClkRate
	bAHI_Clock32MHzStable
	vAHI_ClockXtalPull
	vAHI_EnableFastStartUp
	bAHI_TrimHighSpeedRCOsc
	vAHI_OptimiseWaitStates
	vAHI_BrownOutConfigure
	bAHI_BrownOutStatus
	bAHI_BrownOutEventResetStatus
	u32AHI_BrownOutPoll
	vAHI_SwReset
	vAHI_SetJTAGdebugger
	vAHI_ClearSystemEventStatus
	vAHI_SysCtrlRegisterCallback

	20. Analogue Peripheral Functions
	20.1 Common Analogue Peripheral Functions
	vAHI_ApConfigure
	vAHI_ApSetBandGap
	bAHI_APRegulatorEnabled
	vAHI_APRegisterCallback

	20.2 ADC Functions
	vAHI_AdcEnable
	vAHI_AdcStartSample
	vAHI_AdcStartAccumulateSamples
	bAHI_AdcPoll
	u16AHI_AdcRead
	vAHI_AdcDisable

	20.3 ADC with DMA Engine Functions
	bAHI_AdcEnableSampleBuffer
	vAHI_AdcDisableSampleBuffer
	u16AHI_AdcSampleBufferOffset

	20.4 Comparator Functions
	vAHI_ComparatorEnable
	vAHI_ComparatorDisable
	vAHI_ComparatorLowPowerMode
	vAHI_ComparatorIntEnable
	u8AHI_ComparatorStatus
	u8AHI_ComparatorWakeStatus

	21. DIO and DO Functions
	vAHI_DioSetDirection
	vAHI_DioSetOutput
	u32AHI_DioReadInput
	vAHI_DioSetPullup
	vAHI_DioSetByte
	u8AHI_DioReadByte
	vAHI_DioInterruptEnable
	vAHI_DioInterruptEdge
	u32AHI_DioInterruptStatus
	vAHI_DioWakeEnable
	vAHI_DioWakeEdge
	u32AHI_DioWakeStatus
	bAHI_DoEnableOutputs
	vAHI_DoSetDataOut
	vAHI_DoSetPullup

	22. UART Functions
	bAHI_UartEnable
	vAHI_UartEnable
	vAHI_UartDisable
	vAHI_UartSetLocation
	vAHI_UartSetBaudRate
	vAHI_UartSetBaudDivisor
	vAHI_UartSetClocksPerBit
	vAHI_UartSetControl
	vAHI_UartSetInterrupt
	vAHI_UartTxOnly
	vAHI_UartSetRTSCTS
	vAHI_UartSetRTS
	vAHI_UartSetAutoFlowCtrl
	vAHI_UartSetBreak
	vAHI_UartReset
	u16AHI_UartReadRxFifoLevel
	u16AHI_UartReadTxFifoLevel
	u8AHI_UartReadRxFifoLevel
	u8AHI_UartReadTxFifoLevel
	u8AHI_UartReadLineStatus
	u8AHI_UartReadModemStatus
	u8AHI_UartReadInterruptStatus
	vAHI_UartWriteData
	u8AHI_UartReadData
	u16AHI_UartBlockWriteData
	u16AHI_UartBlockReadData
	vAHI_Uart0RegisterCallback
	vAHI_Uart1RegisterCallback

	23. Timer Functions
	vAHI_TimerEnable
	vAHI_TimerClockSelect
	vAHI_TimerConfigureOutputs
	vAHI_TimerConfigureInputs
	vAHI_TimerSetLocation
	vAHI_TimerStartSingleShot
	vAHI_TimerStartRepeat
	vAHI_TimerStartCapture
	vAHI_TimerStartDeltaSigma
	u16AHI_TimerReadCount
	vAHI_TimerReadCapture
	vAHI_TimerReadCaptureFreeRunning
	vAHI_TimerStop
	vAHI_TimerDisable
	vAHI_TimerDIOControl
	vAHI_TimerFineGrainDIOControl
	u8AHI_TimerFired
	vAHI_Timer0RegisterCallback
	vAHI_Timer1RegisterCallback
	vAHI_Timer2RegisterCallback
	vAHI_Timer3RegisterCallback
	vAHI_Timer4RegisterCallback

	24. Wake Timer Functions
	vAHI_WakeTimerEnable
	vAHI_WakeTimerStartLarge
	vAHI_WakeTimerStop
	u64AHI_WakeTimerReadLarge
	u8AHI_WakeTimerStatus
	u8AHI_WakeTimerFiredStatus
	u32AHI_WakeTimerCalibrate

	25. Tick Timer Functions
	vAHI_TickTimerConfigure
	vAHI_TickTimerInterval
	vAHI_TickTimerWrite
	u32AHI_TickTimerRead
	vAHI_TickTimerIntEnable
	bAHI_TickTimerIntStatus
	vAHI_TickTimerIntPendClr
	vAHI_TickTimerRegisterCallback

	26. Watchdog Timer Functions
	vAHI_WatchdogStart
	vAHI_WatchdogStop
	vAHI_WatchdogRestart
	u16AHI_WatchdogReadValue
	bAHI_WatchdogResetEvent
	vAHI_WatchdogException

	27. Pulse Counter Functions
	bAHI_PulseCounterConfigure
	vAHI_PulseCounterSetLocation
	bAHI_SetPulseCounterRef
	bAHI_StartPulseCounter
	bAHI_StopPulseCounter
	u32AHI_PulseCounterStatus
	bAHI_Read16BitCounter
	bAHI_Read32BitCounter
	bAHI_Clear16BitPulseCounter
	bAHI_Clear32BitPulseCounter

	28. Infra-Red Transmitter Functions
	bAHI_InfraredEnable
	vAHI_InfraredDisable
	bAHI_InfraredStart
	bAHI_InfraredStatus
	vAHI_InfraredRegisterCallback

	29. Serial Interface (2-wire) Functions
	29.1 SI Master Functions
	vAHI_SiMasterConfigure
	vAHI_SiMasterDisable
	bAHI_SiMasterSetCmdReg
	vAHI_SiMasterWriteSlaveAddr
	vAHI_SiMasterWriteData8
	u8AHI_SiMasterReadData8
	bAHI_SiMasterPollBusy
	bAHI_SiMasterPollTransferInProgress
	bAHI_SiMasterCheckRxNack
	bAHI_SiMasterPollArbitrationLost

	29.2 SI Slave Functions
	vAHI_SiSlaveConfigure
	vAHI_SiSlaveDisable
	vAHI_SiSlaveWriteData8
	u8AHI_SiSlaveReadData8

	29.3 General SI Functions
	vAHI_SiSetLocation
	vAHI_SiRegisterCallback

	30. SPI Master Functions
	vAHI_SpiConfigure
	vAHI_SpiReadConfiguration
	vAHI_SpiRestoreConfiguration
	vAHI_SpiSelSetLocation
	vAHI_SpiSelect
	vAHI_SpiStop
	vAHI_SpiDisable
	vAHI_SpiStartTransfer
	u32AHI_SpiReadTransfer32
	u16AHI_SpiReadTransfer16
	u8AHI_SpiReadTransfer8
	vAHI_SpiContinuous
	bAHI_SpiPollBusy
	vAHI_SpiWaitBusy
	vAHI_SetDelayReadEdge
	vAHI_SpiRegisterCallback

	31. SPI Slave Functions
	bAHI_SpiSlaveEnable
	vAHI_SpiSlaveDisable
	vAHI_SpiSlaveReset
	vAHI_SpiSlaveTxWriteByte
	u8AHI_SpiSlaveRxReadByte
	u8AHI_SpiSlaveTxFillLevel
	u8AHI_SpiSlaveRxFillLevel
	u8AHI_SpiSlaveStatus
	vAHI_SpiSlaveRegisterCallback

	32. Flash Memory Functions
	bAHI_FlashInit
	bAHI_FlashEraseSector
	bAHI_FullFlashProgram
	bAHI_FullFlashRead
	vAHI_FlashPowerDown
	vAHI_FlashPowerUp
	bAHI_FlashEECerrorInterruptSet

	33. EEPROM Functions
	u16AHI_InitialiseEEP
	iAHI_WriteDataIntoEEPROMsegment
	iAHI_ReadDataFromEEPROMsegment
	iAHI_EraseEEPROMsegment

	Part III: Appendices
	A. Interrupt Handling
	B. Interrupt Enumerations and Masks

