
ZigBee Home Automation
User Guide

JN-UG-3076

Revision 1.1

22 October 2013

ZigBee Home Automation
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Contents

About this Manual 13
Organisation 13

Conventions 14

Acronyms and Abbreviations 14

Related Documents 15

Support Resources 15

Trademarks 15

Chip Compatibility 15

Part I: Concept and Development Information

1. Introduction to Home Automation 19
1.1 Wireless Home Automation 19

1.2 Home Automation Benefits 20

1.3 Home Automation Application Areas 20
1.3.1 Lighting 20

1.3.2 Heating, Ventilation and Air-Conditioning (HVAC) 21

1.3.3 Shades and Window Coverings 21

1.3.4 Security Systems 21

1.4 Energy Saving 22

1.5 ZigBee Wireless Networks 22

1.6 Software Architecture 23

1.7 Interoperability and Certification 23

1.8 Commissioning 24

1.9 Internet Connectivity 24

2. Home Automation (HA) Profile 25
2.1 HA Devices 25

2.2 Common Clusters 26

2.3 Generic Devices 27
2.3.1 On/Off Switch 28

2.3.2 On/Off Output 29

2.3.3 Remote Control 30

2.3.4 Door Lock 31

2.3.5 Door Lock Controller 32

2.3.6 Simple Sensor 33
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 3

Contents
2.4 Lighting Devices 34
2.4.1 On/Off Light 35

2.4.2 Dimmable Light 36

2.4.3 Colour Dimmable Light 37

2.4.4 On/Off Light Switch 38

2.4.5 Dimmer Switch 39

2.4.6 Colour Dimmer Switch 40

2.4.7 Light Sensor 41

2.4.8 Occupancy Sensor 42

3. HA Application Development 43
3.1 Development Resources and Installation 43

3.2 HA Programming Resources 44
3.2.1 Core Resources 44

3.2.2 Cluster-specific Resources 44

3.3 Function Prefixes 45

3.4 Development Phases 45

3.5 Building an Application 46
3.5.1 Compile-Time Options 46

3.5.2 ZigBee Network Parameters 47

3.5.3 Building and Loading the Application Binary 47

4. HA Application Coding 49
4.1 HA Programming Concepts 49

4.1.1 Shared Device Structures 49

4.1.2 Addressing 51

4.1.3 OS Resources 51

4.2 Initialisation 52

4.3 Callback Functions 53

4.4 Discovering Endpoints and Clusters 54

4.5 Reading Attributes 55

4.6 Writing Attributes 57

4.7 Handling Stack and Timer Events 61

4.8 Servicing Timing Requirements 62

4.9 Time Management 62
4.9.1 Time Maintenance 63

4.9.2 Updating ZCL Time Following Sleep 64
4 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Part II: HA Clusters

5. ZCL Clusters 67
5.1 Basic Cluster 67

5.2 Power Configuration Cluster 68

5.3 Identify Cluster 68

5.4 Groups Cluster 69

5.5 Scenes Cluster 69

5.6 On/Off Cluster 70

5.7 On/Off Switch Configuration Cluster 70

5.8 Level Control Cluster 71

5.9 Time Cluster 71

5.10 Binary Input (Basic) Cluster 71

5.11 Door Lock Cluster 72

5.12 Colour Control Cluster 72

5.13 Illuminance Measurement Cluster 73

5.14 Occupancy Sensing Cluster 73

6. Poll Control Cluster 75
6.1 Overview 75

6.2 Cluster Structure and Attributes 76

6.3 Attribute Settings 77

6.4 Poll Control Operations 78
6.4.1 Initialisation 78

6.4.2 Configuration 78

6.4.3 Operation 80

6.5 Poll Control Events 81

6.6 Functions 82
6.6.1 Server/Client Function 82

 eCLD_PollControlCreatePollControl 83

6.6.2 Server Functions 85

eCLD_PollControlUpdate 86

eCLD_PollControlSetAttribute 87

6.6.3 Client Functions 88

eCLD_PollControlSetLongPollIntervalSend 89

eCLD_PollControlSetShortPollIntervalSend 91

eCLD_PollControlFastPollStopSend 93

6.7 Return Codes 94
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 5

Contents
6.8 Enumerations 94
6.8.1 ‘Attribute ID’ Enumerations 94

6.8.2 ‘Command’ Enumerations 94

6.9 Structures 95
6.9.1 tsCLD_PPCallBackMessage 95

6.9.2 tsCLD_PollControl_CheckinResponsePayload 96

6.9.3 tsCLD_PollControl_SetLongPollIntervalPayload 96

6.9.4 tsCLD_PollControl_SetShortPollIntervalPayload 97

6.9.5 tsCLD_PollControlCustomDataStructure 97

6.10 Compile-Time Options 97

7. Power Profile Cluster 101
7.1 Overview 101

7.2 Cluster Structure and Attributes 101

7.3 Power Profiles 103

7.4 Power Profile Operations 104
7.4.1 Initialisation 104

7.4.2 Adding and Removing a Power Profile (Server Only) 104
7.4.2.1 Adding a Power Profile Entry 104
7.4.2.2 Removing a Power Profile Entry 105
7.4.2.3 Obtaining a Power Profile Entry 105

7.4.3 Communicating Power Profiles 105
7.4.3.1 Requesting a Power Profile (by Client) 105
7.4.3.2 Notification of a Power Profile (by Server) 106

7.4.4 Communicating Schedule Information 106
7.4.4.1 Requesting a Schedule (by Server) 107
7.4.4.2 Notification of a Schedule (by Client) 107
7.4.4.3 Notification of Energy Phases in Power Profile Schedule (by Server) 108
7.4.4.4 Requesting the Scheduled Energy Phases (by Client) 108

7.4.5 Executing a Power Profile Schedule 108

7.4.6 Communicating Price Information 109
7.4.6.1 Requesting Cost of a Power Profile Schedule (by Server) 110
7.4.6.2 Requesting Cost of Power Profile Schedules Over a Day (by Server) 110

7.5 Power Profile Events 111

7.6 Functions 114
7.6.1 Server/Client Function 114

eCLD_PPCreatePowerProfile 115

7.6.2 Server Functions 117

eCLD_PPSchedule 118

eCLD_PPSetPowerProfileState 119

eCLD_PPAddPowerProfileEntry 120

eCLD_PPRemovePowerProfileEntry 121

eCLD_PPGetPowerProfileEntry 122

eCLD_PPPowerProfileNotificationSend 123

eCLD_PPEnergyPhaseScheduleStateNotificationSend 124

eCLD_PPPowerProfileScheduleConstraintsNotificationSend 125
6 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPEnergyPhasesScheduleReqSend 127

eCLD_PPPowerProfileStateNotificationSend 128

eCLD_PPGetPowerProfilePriceSend 129

eCLD_PPGetPowerProfilePriceExtendedSend 130

eCLD_PPGetOverallSchedulePriceSend 132

7.6.3 Client Functions 133

eCLD_PPPowerProfileRequestSend 134

eCLD_PPEnergyPhasesScheduleNotificationSend 135

eCLD_PPPowerProfileStateReqSend 137

eCLD_PPEnergyPhasesScheduleStateReqSend 138

eCLD_PPPowerProfileScheduleConstraintsReqSend 139

7.7 Return Codes 141

7.8 Enumerations 141
7.8.1 ‘Attribute ID’ Enumerations 141

7.8.2 ‘Power Profile State’ Enumerations 141

7.8.3 ‘Server-Generated Command’ Enumerations 142

7.8.4 ‘Server-Received Command’ Enumerations 143

7.9 Structures 144
7.9.1 tsCLD_PPCallBackMessage 144

7.9.2 tsCLD_PPEntry 146

7.9.3 tsCLD_PP_PowerProfileReqPayload 147

7.9.4 tsCLD_PP_PowerProfilePayload 147

7.9.5 tsCLD_PP_PowerProfileStatePayload 148

7.9.6 tsCLD_PP_EnergyPhasesSchedulePayload 148

7.9.7 tsCLD_PP_PowerProfileScheduleConstraintsPayload 149

7.9.8 tsCLD_PP_GetPowerProfilePriceExtendedPayload 149

7.9.9 tsCLD_PP_GetPowerProfilePriceRspPayload 150

7.9.10 tsCLD_PP_GetOverallSchedulePriceRspPayload 150

7.9.11 tsCLD_PP_EnergyPhaseInfo 151

7.9.12 tsCLD_PP_EnergyPhaseDelay 152

7.9.13 tsCLD_PP_PowerProfiIeRecord 152

7.9.14 tsCLD_PPCustomDataStructure 153

7.10 Compile-Time Options 153

8. Appliance Control Cluster 155
8.1 Overview 155

8.2 Cluster Structure and Attributes 155

8.3 Sending Commands 157
8.3.1 Execution Commands from Client to Server 157

8.3.2 Status Commands from Client to Server 158

8.3.3 Status Notifications from Server to Client 158

8.4 Appliance Control Events 159
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 7

Contents
8.5 Functions 160
eCLD_ApplianceControlCreateApplianceControl 161

eCLD_ACExecutionOfCommandSend 163

eCLD_ACSignalStateSend 165

eCLD_ACSignalStateResponseORSignalStateNotificationSend 166

eCLD_ACSignalStateNotificationSend 168

eCLD_ACChangeAttributeTime 170

8.6 Return Codes 171

8.7 Enumerations 171
8.7.1 ‘Attribute ID’ Enumerations 171

8.7.2 ‘Client Command ID’ Enumerations 171

8.7.3 ‘Server Command ID’ Enumerations 172

8.8 Structures 173
8.8.1 tsCLD_ApplianceControlCallBackMessage 173

8.8.2 tsCLD_AC_ExecutionOfCommandPayload 174

8.8.3 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload 174

8.8.4 tsCLD_ApplianceControlCustomDataStructure 176

8.9 Compile-Time Options 176

9. Appliance Identification Cluster 177
9.1 Overview 177

9.2 Cluster Structure and Attributes 177

9.3 Functions 181
eCLD_ApplianceIdentificationCreateApplianceIdentification 182

9.4 Return Codes 184

9.5 Enumerations 184
9.5.1 ‘Attribute ID’ Enumerations 184

9.5.2 ‘Product Type ID’ Enumerations 184

9.6 Compile-Time Options 185

10.Appliance Events and Alerts Cluster 187
10.1 Overview 187

10.2 Cluster Structure and Attributes 187

10.3 Sending Messages 187
10.3.1 ‘Get Alerts’ Messages from Client to Server 188

10.3.2 ‘Alerts Notification’ Messages from Server to Client 188

10.3.3 ‘Event Notification’ Messages from Server to Client 189

10.4 Appliance Events and Alerts Events 189
8 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
10.5 Functions 190
eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts 191

eCLD_AEAAGetAlertsSend 193

eCLD_AEAAGetAlertsResponseORAlertsNotificationSend 194

eCLD_AEAAAlertsNotificationSend 196

eCLD_AEAAEventNotificationSend 197

10.6 Return Codes 198

10.7 Enumerations 198
10.7.1 ‘Command ID’ Enumerations 198

10.8 Structures 199
10.8.1 tsCLD_ApplianceEventsAndAlertsCallBackMessage 199

10.8.2 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload 200

10.8.3 tsCLD_AEAA_EventNotificationPayload 201

10.8.4 tsCLD_ApplianceEventsAndAlertsCustomDataStructure 201

10.9 Compile-Time Options 202

11.Appliance Statistics Cluster 203
11.1 Overview 203

11.2 Cluster Structure and Attributes 204

11.3 Sending Messages 204
11.3.1 ‘Log Queue Request’ Messages from Client to Server 205

11.3.2 ‘Statistics Available’ Messages from Server to Client 205

11.3.3 ‘Log Request’ Messages from Client to Server 206

11.3.4 ‘Log Notification’ Messages from Server to Client 206

11.4 Log Operations on Server 207
11.4.1 Adding and Removing Logs 207

11.4.2 Obtaining Logs 207

11.5 Appliance Statistics Events 208

11.6 Functions 209
eCLD_ApplianceStatisticsCreateApplianceStatistics 210

eCLD_ASCAddLog 212

eCLD_ASCRemoveLog 213

eCLD_ASCGetLogsAvailable 214

eCLD_ASCGetLogEntry 215

eCLD_ASCLogQueueRequestSend 216

eCLD_ASCLogRequestSend 217

eCLD_ASCLogQueueResponseORStatisticsAvailableSend 218

eCLD_ASCStatisticsAvailableSend 220

eCLD_ASCLogNotificationORLogResponseSend 221

eCLD_ASCLogNotificationSend 223

11.7 Return Codes 224
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 9

Contents
11.8 Enumerations 224
11.8.1 ‘Attribute ID’ Enumerations 224

11.8.2 ‘Client Command ID’ Enumerations 224

11.8.3 ‘Server Command ID’ Enumerations 225

11.9 Structures 225
11.9.1 tsCLD_ApplianceStatisticsCallBackMessage 225

11.9.2 tsCLD_ASC_LogRequestPayload 226

11.9.3 tsCLD_ASC_LogNotificationORLogResponsePayload 226

11.9.4 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload 227

11.9.5 tsCLD_LogTable 227

11.9.6 tsCLD_ApplianceStatisticsCustomDataStructure 228

11.10 Compile-Time Options 228

Part III: General Reference Information

12.HA Core Functions 233
eHA_Initialise 234

eHA_Update100mS 235

eHA_RegisterOnOffSwitchEndPoint 236

eHA_RegisterOnOffOutputEndPoint 238

eHA_RegisterRemoteControlEndPoint 240

eHA_RegisterDoorLockEndPoint 242

eHA_RegisterDoorLockControllerEndPoint 244

eHA_RegisterSimpleSensorEndPoint 246

eHA_RegisterOnOffLightEndPoint 248

eHA_RegisterDimmableLightEndPoint 250

eHA_RegisterColourDimmableLightEndPoint 252

eHA_RegisterOnOffLightSwitchEndPoint 254

eHA_RegisterDimmerSwitchEndPoint 256

eHA_RegisterColourDimmerSwitchEndPoint 258

eHA_RegisterLightSensorEndPoint 260

eHA_RegisterOccupancySensorEndPoint 262

13.HA Device Structures 265
13.1 Generic Devices 265

13.1.1 tsHA_OnOffSwitchDevice 265

13.1.2 tsHA_OnOffOutputDevice 267

13.1.3 tsHA_RemoteControlDevice 269

13.1.4 tsHA_DoorLockDevice 272

13.1.5 tsHA_DoorLockControllerDevice 273

13.1.6 tsHA_SimpleSensorDevice 275
10 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
13.2 Lighting Devices 277
13.2.1 tsHA_OnOffLightDevice 277

13.2.2 tsHA_DimmableLightDevice 279

13.2.3 tsHA_ColourDimmableLightDevice 281

13.2.4 tsHA_OnOffLightSwitchDevice 283

13.2.5 tsHA_DimmerSwitchDevice 285

13.2.6 tsHA_ColourDimmerSwitchDevice 288

13.2.7 tsHA_LightSensorDevice 290

13.2.8 tsHA_OccupancySensorDevice 291

Part IV: Appendices

A. Custom Endpoints 295
A.1 HA Devices and Endpoints 295
A.2 Cluster Creation Functions 296
A.3 Custom Endpoint Set-up 296

A.3.1 Custom Endpoint Structure 297
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 11

Contents
12 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
About this Manual

This manual provides an introduction to the ZigBee Home Automation (HA)
application profile and describes the use of the NXP HA Application Programming
Interface (API) for the JN5168 wireless microcontroller. The manual contains both
operational and reference information relating to the HA API, including descriptions of
the C functions and associated resources (e.g. structures).

The API is designed for use with the NXP ZigBee PRO stack to develop wireless
network applications based on the ZigBee Home Automation application profile. For
complementary information, refer to the following sources:

 Information on ZigBee PRO wireless networks is provided in the ZigBee PRO
Stack User Guide (JN-UG-3048), available from NXP.

 The ZigBee HA profile is defined in the ZigBee Home Automation Profile
Specification (053520), available from the ZigBee Alliance at www.zigbee.org.

Organisation

This manual is divided into four parts:

 Part I: Concept and Development Information comprises four chapters:

 Chapter 1 introduces the principles of Home Automation (HA)

 Chapter 2 describes the devices available in the ZigBee HA application
profile

 Chapter 3 provides an overview of HA application development

 Chapter 4 describes the essential aspects of coding an HA application

 Part II: HA Clusters comprises seven chapters:

 Chapter 5 outlines the clusters from the ZigBee Cluster Library (ZCL) that
are used in the HA profile

 Chapter 6 describes the Poll Control cluster of the HA profile

 Chapter 7 describes the Power Profile cluster of the HA profile

 Chapter 8 describes the Appliance Control cluster of the HA profile

 Chapter 9 describes the Appliance Identification cluster of the HA profile

 Chapter 10 describes the Appliance Events and Alerts cluster of the HA
profile

Note: Many clusters used by the devices in the HA
profile are from the ZigBee Cluster Library (ZCL). These
clusters are fully detailed in the ZCL User Guide
(JN-UG-3077), available from the NXP Wireless
Connectivity TechZone (see “Support Resources” on
page 15).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 13

About this Manual
 Chapter 11 describes the Appliance Statistics cluster of the HA profile

 Part III: General Reference Information comprises two chapters:

 Chapter 12 details the core functions of the HA API, including initialisation
and device registration functions

 Chapter 13 details the device structures included in the HA API

 Part IV: Appendices contains an appendix which describes how to set up
custom endpoints.

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

APDU Application Protocol Data Unit

API Application Programming Interface

HA Home Automation

SDK Software Developer’s Kit

ZCL ZigBee Cluster Library

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
14 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Related Documents

JN-UG-3048 ZigBee PRO Stack User Guide

JN-UG-3077 ZigBee Cluster Library User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3064 SDK Installation and User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

JN-AN-1189 ZigBee Home Automation Demonstration Application Note

053520 ZigBee Home Automation Profile Specification [from ZigBee Alliance]

075123 ZigBee Cluster Library Specification [from ZigBee Alliance]

BS EN 50523 Household appliances interworking [from British Standards Institute]

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can be used on the following NXP wireless
microcontrollers:

JN516x (currently only JN5168-001)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 15

About this Manual
16 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Part I:
Concept and Development

Information
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 17

18 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
1. Introduction to Home Automation

Home automation is not new! Throughout history, we have continuously strived to
automate tasks in the home in order to make our lives easier. Technology has now
advanced to the point at which we wish to take an integrated approach to home
automation, allowing appliances to communicate with each other and to be controlled
in flexible ways. A wireless network approach to this communication and control
provides an easy, cost-effective and scalable solution to home automation.

1.1 Wireless Home Automation

A network approach to home automation allows a diverse range of potential
applications, including:

 Lighting

 Heating and cooling

 Shades, blinds and curtains

 Home security

Possible application areas of home automation are described in Section 1.3.

Multiple home automation applications can be controlled through the same network
infrastructure. However, the installation of a wired home automation network is costly
and disruptive unless carried out during the construction or refurbishment of the
building. The advantages of a radio-based wireless home automation network are:

 No expensive and disruptive network wiring to be installed in the building

 Can be easily and cheaply installed at any time with minimal disruption

 Can be expanded, as required, at any time to cover a wider physical area

 Can be scaled, as required, at any time to incorporate more application areas

The ZigBee Home Automation (HA) application profile, described in this manual,
facilitates this wireless networking solution.

Note: Not all of the application areas covered by the
ZigBee Home Automation profile are currently
supported by the HA profile from NXP - see Section 1.3.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 19

Chapter 1
Introduction to Home Automation

1.2 Home Automation Benefits

Home automation brings a variety of benefits, depending on the application area(s).
These potential benefits include:

 Easier lifestyle

 Convenience of flexible control and remote control

 Increased safety around the home

 Improved security of the home

 Energy savings with associated cost savings and environmental benefits

The energy saving features of home automation are outlined in Section 1.4.

1.3 Home Automation Application Areas

Home automation solutions can be applied to many aspects of the home, as described
in the sub-sections below.

1.3.1 Lighting

Lighting systems can be implemented with the following functionality:

 Control lights from various points, including wall-switches, occupancy sensors,
remote control units, smartphones, tablets and computers

 Control lights in terms of brightness and colour (for colour lamps)

 Control a pre-defined group of lights by a single action

 Definition of brightness and/or colour settings for one or more lights, forming a
‘scene’ for mood lighting

Lighting solutions are supported by NXP’s ZigBee HA profile.

Note: Not all of the application areas described below
are currently supported by the ZigBee Home
Automation (HA) profile from NXP.

Note: For a pure lighting system (with no other HA
application areas), the ZigBee Light Link (ZLL) profile
provides an alternative to the Home Automation profile.
For details of NXP’s ZLL profile, refer to the ZigBee
Light Link User Guide (JN-UG-3091).
20 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
1.3.2 Heating, Ventilation and Air-Conditioning (HVAC)

HVAC systems can be implemented with the following functionality:

 Control heating and/or air-conditioning from various points, including wall-
mounted control units, thermostats, occupancy sensors, remote control units,
smartphones, tablets and computers

 Control the heating and/or air-conditioning in individual rooms according to their
use and/or occupancy

 Control a pre-defined group of heaters or fans by a single action

 Definition of heating/cooling settings (e.g. temperatures) for one or more
rooms, forming a ‘scene’

HVAC solutions are not currently supported by NXP’s ZigBee HA profile.

1.3.3 Shades and Window Coverings

The control of shades and window coverings (blinds and curtains) can be
implemented with the following functionality:

 Control shades and window coverings from various points, including wall-
mounted control units, remote control units, smartphones, tablets and
computers

 Open/close shades and window coverings, including partial opening/closing

 Control a pre-defined group of shades or window coverings by a single action

 Definition of open/close settings for one or more shades or window coverings,
forming a ‘scene’

Shade and window covering solutions are not currently supported by NXP’s ZigBee
HA profile.

1.3.4 Security Systems

Security systems (intruder and fire) can be implemented with the following
functionality:

 Control the security system from various points, including wall-mounted control
units, remote control units, smartphones, tablets and computer

 Control a pre-defined group of security sensors or door locks by a single action

 Definition of security settings for one or more sensors or door-locks, forming a
‘scene’

Security systems are not currently supported by NXP’s ZigBee HA profile, except door
locks which are supported.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 21

Chapter 1
Introduction to Home Automation

1.4 Energy Saving

A ZigBee Home Automation system can result in energy saving and associated cost
savings for a household. The following may be employed to achieve this:

 Scenes and timers: Energy savings can be achieved through the careful
configuration of ‘scenes’ and timers to ensure that no more energy is
consumed than is actually needed.

 Occupancy sensors: Infra-red or movement sensors can be used to switch on
appliances, such as lights, only when a person is detected (and switch off when
a person is no longer detected). As an example, this method may be very
useful for controlling lights in a corridor or garage, or outside lights.

 Energy monitoring: The power consumption of an HA system may be
monitored.

1.5 ZigBee Wireless Networks

ZigBee Home Automation (HA) is a public application profile that has been devised by
the ZigBee Alliance to support home automation solutions based on the ZigBee PRO
wireless network protocol. ZigBee PRO is fully described in the ZigBee PRO Stack
User Guide (JN-UG-3048).

A Mesh network topology is employed. Therefore, for maximum routing flexibility, all
the network nodes of an HA system should be ZigBee Routers (although ZigBee End
Devices are permitted, they cannot perform Mesh routing).

The manufacturer application that runs on an HA node provides the interface between
the HA profile software and the hardware of the node (e.g. the physical switch
mechanism of a lamp).

The HA profile contains a number of ‘devices’, which are ZigBee software entities
used to implement particular functionality on a node - for example, the ‘On/Off Light’
device is used to switch a lamp on and off. The set of devices used in a node
determines the total functionality of the node.

Each HA device uses a number of clusters, where most clusters used in the HA profile
come from the ZigBee Cluster Library (ZCL). Complete lists of the devices and
associated clusters used by the HA profile are provided in Chapter 2.

Note: The software architecture for HA, in terms of a
protocol stack, is described in more detail in Section 1.6.
22 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
1.6 Software Architecture

The ZigBee Home Automation profile operates in conjunction with the ZigBee PRO
wireless network protocol. The software stack which runs on each HA node is
illustrated in Figure 1 below.

The main features of the above stack are as follows:

 Manufacturer application, which interfaces to the underlying ZigBee PRO stack
layers and controls the appliance hardware of the node, and uses:

 HA profile, including ZCL resources (ZCL clusters and extensions)

 Optional manufacturer-specific extensions to the HA profile

 Optional ZigBee Green Power profile

 ZigBee PRO stack layers, as described in the ZigBee PRO Stack User Guide
(JN-UG-3048)

1.7 Interoperability and Certification

ZigBee Home Automation provides a framework of interoperability between products
from different manufacturers. This is formalised through an HA certification and
compliance programme, in which completed products are tested for compliance to the
HA profile and, if successful, are HA certified.

Thus, a product developed and certified to the HA profile will be able operate with
other certified products in a HA system, irrespective of their manufacturers. This is an
important feature for the consumer market.

Figure 1: HA Software Stack

Application

ZCL and extensions

HA Profile

Manufacturer-specific
extensions

IEEE 802.15.4 MAC and PHY layers

Green Power
Profile

ZigBee PRO stack layers
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 23

Chapter 1
Introduction to Home Automation

In addition, the HA profile is designed to be interoperable at the network layer with
other public ZigBee application profiles.

1.8 Commissioning

The process of introducing an HA device into an HA network is called commissioning.
This involves finding an HA network, joining the network and ultimately binding an
endpoint on the new device to a compatible endpoint on an existing device, in order
to allow the new device to perform its function within the network (e.g. pairing a new
light-switch with an existing lamp so that the switch can control the lamp).

The HA software solution from NXP supports EZ-mode commissioning (defined in the
Home Automation Specification 1.2). It is a ZigBee requirement that all HA devices
support this mode of commissioning (except a ‘Commissioning Director’).

In EZ-mode commissioning, an HA device is commissioned by means of user
interactions, such as button-presses. This commissioning mode does allow some
automatic behaviour, such as automatically joining a network at power-up, but some
user intervention will always be required to complete the commissioning process.

An EZ-mode Commissioning module is provided in the NXP HA software and is
described in the ZigBee Cluster Library User Guide (JN-UG-3077).

1.9 Internet Connectivity

ZigBee Home Automation offers the possibility of controlling the appliances in an HA
system via the Internet. Thus, this control can be performed from any Internet-
connected device (PC, tablet, smartphone) located anywhere in the World (e.g. while
on holiday in another country).

Access from the Internet requires the HA system to include an IP router or gateway
(connected to the Internet) as one of the network nodes. A gateway solution is
described in the Application Note ZigBee Gateway (JN-AN-1194), available from NXP.

In addition to the real-time control of an HA system over the Internet, the system could
also be configured from a device on the Internet (e.g. groups, scenes and timers).

Note: ZigBee specify the commissioning terminology
that should be used by all HA product documentation in
order to ensure consistency between products and
manufacturers. This recommended terminology is also
detailed in the ZCL User Guide (JN-UG-3077).
24 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2. Home Automation (HA) Profile

Home Automation (HA) is ZigBee application profile 0x0104. This chapter details the
ZigBee devices available in the HA profile and the clusters that they use.

2.1 HA Devices

This manual covers the following devices from the ZigBee Home Automation
application profile, which are divided into application-oriented categories:

 Generic devices (described in Section 2.3)

 On/Off Switch

 On/Off Output

 Remote Control

 Door Lock

 Door Lock Controller

 Simple Sensor

 Lighting devices (described in Section 2.4)

 On/Off Light

 Dimmable Light

 Colour Dimmable Light

 On/Off Light Switch

 Dimmer Switch

 Colour Dimmer Switch

 Light Sensor

 Occupancy Sensor

The HA profile contains many other devices that are not currently implemented in the
NXP HA software - for the full list of HA devices, refer to the ZigBee Home Automation
Profile Specification (053520), available from the ZigBee Alliance (www.zigbee.org).

Note: This manual assumes that you are already
familiar with ZigBee PRO concepts such as endpoints,
profiles, clusters and attributes. For more information,
refer to the ZigBee PRO Stack User Guide
(JN-UG-3048), available from the NXP Wireless
Connectivity TechZone.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 25

Chapter 2
Home Automation (HA) Profile

2.2 Common Clusters

The HA devices are defined by the clusters that they use. Some clusters are common
to most HA devices - these are detailed in the table below.

Note: For each device, there are mandatory clusters
and optional clusters. Also, the clusters are different for
the server (input) and client (output) sides of the device.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Optional

Clusters with reporting capability Clusters with reporting capability

Power Configuration Time

Device Temperature Configuration OTA Bootload

Alarms Partition

Electrical Measurement

Poll Control

Partition

Manufacturer-specific Manufacturer-specific

Table 1: Common Clusters for HA Devices
26 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.3 Generic Devices

This section details the HA Generic Devices, including the clusters that they support.
The Generic Devices are listed in the table below along with their Device IDs and
references to the sub-sections in which they are described.

Generic Device Device ID Reference

On/Off Switch 0x0000 Section 2.3.1

On/Off Output 0x0002 Section 2.3.2

Remote Control 0x0006 Section 2.3.3

Door Lock 0x000A Section 2.3.4

Door Lock Controller 0x000B Section 2.3.5

Simple Sensor 0x000C Section 2.3.6

Table 2: Generic Devices

Note: The clusters used by these devices are contained
in the ZigBee Cluster Library and are described in the
ZCL User Guide (JN-UG-3077), available from the NXP
Wireless Connectivity TechZone. However, not all the
listed clusters are currently supported by the NXP
software.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 27

Chapter 2
Home Automation (HA) Profile

2.3.1 On/Off Switch

The On/Off Switch device is used to switch another device on and off by sending on,
off and toggle commands to the target device.

 The Device ID is 0x0000

 The header file for the device is on_off_switch.h

 The device structure, tsHA_OnOffSwitchDevice, is listed in Section 13.1.1

 The endpoint registration function for the device,
eHA_RegisterOnOffSwitchEndPoint(), is detailed in Chapter 12

The clusters used by the On/Off Switch device are listed in the table below.

Note: This device should be used only when a more
specific device profile is not available - for example, the
On/Off Light Switch device should be used to control the
On/Off Light device.

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off (subject to binding)

Identify Identify

Optional

See Table 1 on page 26 See Table 1 on page 26

On/Off Switch Configuration Scenes

Groups

Table 3: Clusters for On/Off Switch
28 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.3.2 On/Off Output

The On/Off Output device is capable of being switched on and off.

 The Device ID is 0x0002

 The header file for the device is on_off_output.h

 The device structure, tsHA_OnOffOutputDevice, is listed in Section 13.1.2

 The endpoint registration function for the device,
eHA_RegisterOnOffOutputEndPoint(), is detailed in Chapter 12

The clusters used by the On/Off Output device are listed in the table below.

Note: This device should be used only when a more
specific device profile is not available - for example, the
On/Off Light device.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Scenes

Groups

Optional

See Table 1 on page 26 See Table 1 on page 26

Table 4: Clusters for On/Off Output
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 29

Chapter 2
Home Automation (HA) Profile

2.3.3 Remote Control

The Remote Control device is used to control and monitor one or more other devices.
The client side is typically incorporated in a handheld unit, with the server side in the
node(s) to be controlled/monitored.

 The Device ID is 0x0006

 The header file for the device is remote_control.h

 The device structure, tsHA_RemoteControlDevice, is listed in Section
13.1.3

 The endpoint registration function for the device,
eHA_RegisterRemoteControlEndPoint(), is detailed in Chapter 12

The clusters used by the Remote Control device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic At least one optional cluster

Identify

Optional

See Table 1 on page 26 See Table 1 on page 26

Basic

Identify

On/Off

Level Control

Groups

Scenes

Colour Control

Pump Configuration and Control

Shade Configuration

On/Off Switch Configuration

Temperature Measurement

Illuminance Level Sensing

Illuminance Measurement

Window Covering

Door Lock

Thermostat

Table 5: Clusters for Remote Control
30 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.3.4 Door Lock

The Door Lock device is able to receive commands from a Door Lock Controller device
(see Section 2.3.5).

 The Device ID is 0x000A

 The header file for the device is door_lock.h

 The device structure, tsHA_DoorLockDevice, is listed in Section 13.1.4

 The endpoint registration function for the device,
eHA_RegisterDoorLockEndPoint(), is detailed in Chapter 12

The clusters used by the Door Lock device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Door Lock

Scenes

Groups

Optional

See Table 1 on page 26 See Table 1 on page 26

Alarms Time

Power Configuration OTA Bootload

Poll Control

Table 6: Clusters for Door Lock

Note: In Home Automation, the Door Lock cluster is
enhanced to allow Application-level security to be used
(in addition to the default Network-level security). For
details, refer to the ZCL User Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 31

Chapter 2
Home Automation (HA) Profile

2.3.5 Door Lock Controller

The Door Lock Controller device is able to send commands to a Door Lock device (see
Section 2.3.4).

 The Device ID is 0x000B

 The header file for the device is door_lock_controller.h

 The device structure, tsHA_DoorLockControllerDevice, is listed in
Section 13.1.5

 The endpoint registration function for the device,
eHA_RegisterDoorLockControllerEndPoint(), is detailed in Chapter 12

The clusters used by the Door Lock Controller device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic Door Lock

Identify Scenes

Group

Identify

Optional

See Table 1 on page 26 See Table 1 on page 26

Table 7: Clusters for Door Lock Controller

Note: In Home Automation, the Door Lock cluster is
enhanced to allow Application-level security to be used
(in addition to the default Network-level security). For
details, refer to the ZCL User Guide (JN-UG-3077).
32 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.3.6 Simple Sensor

The Simple Sensor device is able to accept a binary input from an on/off device such
as magnetic window contacts.

 The Device ID is 0x000C

 The header file for the device is simple_sensor.h

 The device structure, tsHA_SimpleSensorDevice, is listed in Section 13.1.6

 The endpoint registration function for the device,
eHA_RegisterSimpleSensorEndPoint(), is detailed in Chapter 12

The clusters used by the Simple Sensor device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Binary Input (Basic)

Optional

See Table 1 on page 26 See Table 1 on page 26

Table 8: Clusters for Simple Sensor
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 33

Chapter 2
Home Automation (HA) Profile

2.4 Lighting Devices

This section details the Lighting Devices, including the clusters that they support. The
Lighting Devices are listed in the table below along with their Device IDs and
references to the sub-sections in which they are described.

The possible pairings of these devices are summarised in the table below:

Lighting Device Device ID Reference

On/Off Light 0x0100 Section 2.4.1

Dimmable Light 0x0101 Section 2.4.2

Colour Dimmable Light 0x0102 Section 2.4.3

On/Off Light Switch 0x0103 Section 2.4.4

Dimmer Switch 0x0104 Section 2.4.5

Colour Dimmer Switch 0x0105 Section 2.4.6

Light Sensor 0x0106 Section 2.4.7

Occupancy Sensor 0x0107 Section 2.4.8

Table 9: Lighting Devices

Controller Device Controlled Device Description

On/Off Light Switch On/Off Light Switch or sensor puts light in one of two states,
on or off

Light Sensor

Occupancy Sensor

Dimmer Switch Dimmable Light Switch or sensor controls luminance of light
between maximum and minimum levels, or puts
light in on or off stateLight Sensor

Occupancy Sensor

Colour Dimmer Switch Colour Dimmable Light Switch or sensor controls hue, saturation and
luminance of multi-colour light, or puts light in
on or off stateLight Sensor

Occupancy Sensor

Table 10: Pairings of Lighting Devices

Note: The clusters used by these devices are contained
in the ZigBee Cluster Library and are described in the
ZCL User Guide (JN-UG-3077), available from the NXP
Wireless Connectivity TechZone. However, not all the
listed clusters are currently supported by the NXP
software.
34 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.4.1 On/Off Light

The On/Off Light device is simply a light that can be switched on and off (two states
only and no intermediate levels).

 The Device ID is 0x0100

 The header file for the device is on_off_light.h

 The device structure, tsHA_OnOffLightDevice, is listed in Section 13.2.1

 The endpoint registration function for the device,
eHA_RegisterOnOffLightEndPoint(), is detailed in Chapter 12

The clusters used by the On/Off Light device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Scenes

Groups

Optional

See Table 1 on page 26 See Table 1 on page 26

Occupancy Sensing

Table 11: Clusters for On/Off Light
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 35

Chapter 2
Home Automation (HA) Profile

2.4.2 Dimmable Light

The Dimmable Light device is a light that can have its luminance varied, and can be
switched on and off.

 The Device ID is 0x0101

 The header file for the device is dimmable_light.h

 The device structure, tsHA_DimmableLightDevice, is listed in Section 2.4.2

 The endpoint registration function for the device,
eHA_RegisterDimmableLightEndPoint(), is detailed in Chapter 12

The clusters used by the Dimmable Light device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Level Control

Scenes

Groups

Optional

See Table 1 on page 26 See Table 1 on page 26

Occupancy Sensing

Table 12: Clusters for Dimmable Light
36 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.4.3 Colour Dimmable Light

The Colour Dimmable Light device is a multi-colour light that can have its hue,
saturation and luminance varied, and can be switched on and off.

 The Device ID is 0x0102

 The header file for the device is colour_dimmable_light.h

 The device structure, tsHA_ColourDimmableLightDevice, is listed in
Section 2.4.3

 The endpoint registration function for the device,
eHA_RegisterColourDimmableLightEndPoint(), is detailed in Chapter 12

The clusters used by the Colour Dimmable Light device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Level Control

Colour Control

Scenes

Groups

Optional

See Table 1 on page 26 See Table 1 on page 26

Occupancy Sensing

Table 13: Clusters for Colour Dimmable Light
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 37

Chapter 2
Home Automation (HA) Profile

2.4.4 On/Off Light Switch

The On/Off Light Switch device is used to switch a light device on and off by sending
on, off and toggle commands to the target device.

 The Device ID is 0x0103

 The header file for the device is on_off_light_switch.h

 The device structure, tsHA_OnOffLightSwitchDevice, is listed in Section
13.2.4

 The endpoint registration function for the device,
eHA_RegisterOnOffLightSwitchEndPoint(), is detailed in Chapter 12

The clusters used by the On/Off Light Switch device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Optional

See Table 1 on page 26 See Table 1 on page 26

On/Off Switch Configuration Scenes

Groups

Table 14: Clusters for On/Off Light Switch

Note: The On/Off Light Switch supports the same
clusters as the On/Off Switch (see Section 2.3.1) and
has the same functionality.
38 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.4.5 Dimmer Switch

The Dimmer Switch device is used to control a characteristic of a light (e.g. luminance)
and to switch the light device on and off.

 The Device ID is 0x0104

 The header file for the device is dimmer_switch.h

 The device structure, tsHA_DimmerSwitchDevice, is listed in Section 13.2.5

 The endpoint registration function for the device,
eHA_RegisterDimmerSwitchEndPoint(), is detailed in Chapter 12

The clusters used by the Dimmer Switch device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Optional

See Table 1 on page 26 See Table 1 on page 26

On/Off Switch Configuration Scenes

Groups

Table 15: Clusters for Dimmer Switch

Note: The Dimmer Switch supports the same clusters
as the Level Control Switch (see Section 2.3.2) and has
the same functionality.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 39

Chapter 2
Home Automation (HA) Profile

2.4.6 Colour Dimmer Switch

The Colour Dimmer Switch device is used to control the hue, saturation and luminance
of a multi-colour light, and to switch the light device on and off.

 The Device ID is 0x0105

 The header file for the device is colour_dimmer_switch.h

 The device structure, tsHA_ColourDimmerSwitchDevice, is listed in
Section 13.2.6

 The endpoint registration function for the device,
eHA_RegisterColourDimmerSwitchEndPoint(), is detailed in Chapter 12

The clusters used by the Colour Dimmer Switch device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Level Control

Colour Control

Identify

Optional

See Table 1 on page 26 See Table 1 on page 26

On/Off Switch Configuration Scenes

Groups

Table 16: Clusters for Colour Dimmer Switch
40 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
2.4.7 Light Sensor

The Light Sensor device reports the illumination level in an area.

 The Device ID is 0x0106

 The header file for the device is light_sensor.h

 The device structure, tsHA_LightSensorDevice, is listed in Section 13.2.7

 The endpoint registration function for the device,
eHA_RegisterLightSensorEndPoint(), is detailed in Chapter 12

The clusters used by the Light Sensor device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Illuminance Measurement

Optional

See Table 1 on page 26 See Table 1 on page 26

Groups

Table 17: Clusters for Light Sensor
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 41

Chapter 2
Home Automation (HA) Profile

2.4.8 Occupancy Sensor

The Occupancy Sensor device reports the presence (or not) of occupants in an area.

 The Device ID is 0x0107

 The header file for the device is occupancy_sensor.h

 The device structure, tsHA_OccupancySensorDevice, is listed in Section
2.4.8

 The endpoint registration function for the device,
eHA_RegisterOccupancySensorEndPoint(), is detailed in Chapter 12

The clusters used by the Occupancy Sensor device are listed in the table below.

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Occupancy Sensing

Optional

See Table 1 on page 26 See Table 1 on page 26

Groups

Table 18: Clusters for Occupancy Sensor
42 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
3. HA Application Development

This chapter provides basic guidance on developing a ZigBee Home Automation (HA)
application. The topics covered in this chapter include:

 Development resources and their installation (Section 3.1)

 HA programming resources (Section 3.2)

 API functions (Section 3.3)

 Development phases (Section 3.4)

 Building an application (Section 3.5)

Application coding is described separately in Chapter 4.

3.1 Development Resources and Installation

NXP provide a wide range of resources to aid in the development of ZigBee HA
applications for the JN5168 wireless microcontroller. An HA application is developed
as a ZigBee PRO application that uses the NXP ZigBee PRO APIs in conjunction with
JenOS (Jennic Operating System), together with HA-specific and ZCL resources. All
resources are available from the NXP Wireless Connectivity TechZone (see “Support
Resources” on page 15) and are outlined below.

The resources for developing a ZigBee HA application are supplied free-of-charge in
a Software Developer’s Kit (SDK), which is provided as two installers:

 HA SDK (JN-SW-4067): This installer contains the ZigBee PRO stack and HA
profile software, including a number of C APIs:

 HA and ZCL APIs

 ZigBee PRO APIs

 JenOS APIs

 JN516x Integrated Peripherals API

In addition, the ZPS and JenOS Configuration Editors are provided in this
installer.

 SDK Toolchain (JN-SW-4041): This installer contains the tools that you will
use in creating an application, including:

 Eclipse IDE (Integrated Development Environment)

 JN51xx compiler

 JN51xx Flash Programmer

 Cygwin Command Line Interface (CLI)

For full details of the SDK and installation instructions, refer to the SDK Installation and
User Guide (JN-UG-3064). The SDK is normally installed into the directory C:/Jennic.

An HA demonstration application is provided in the Application Note ZigBee Home
Automation Demonstration (JN-AN-1189), available from NXP.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 43

Chapter 3
HA Application Development

3.2 HA Programming Resources

The NXP HA API contains a range of resources (such as functions and structures),
including:

 Core resources (e.g. for initialising the API and registering device endpoints)

 Cluster-specific resources

These resources are introduced in the sub-sections below.

3.2.1 Core Resources

The core resources of the HA profile handle the basic operations required in an HA
network, irrespective of the clusters used. Some of these resources are provided in
the HA API and some are provided in the ZCL API.

 Functions for the following operations are provided in the HA API and are
detailed in Chapter 12:

 Initialising the HA API (one function)

 Servicing timing requirements (one function)

 Registering a device endpoint on an HA node (one function per device)

 Functions for the following operations are provided in the ZCL API and are
detailed in the ZCL User Guide (JN-UG-3077):

 Requesting a read access to cluster attributes on a remote device

 Requesting a write access to cluster attributes on a remote device

 Handling events on an HA device

Use of the above functions is described in Chapter 4.

3.2.2 Cluster-specific Resources

An HA device uses certain mandatory and optional ZigBee clusters, as listed for each
device in Chapter 2.

Many of these clusters are taken from the ZCL and introduced in Chapter 5. They are
fully described in the ZigBee Cluster Library User Guide (JN-UG-3077).
44 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
3.3 Function Prefixes

The API functions used in HA are categorised and prefixed in the following ways:

 HA functions: Used to interact with the HA profile and prefixed with xHA_

 ZCL functions: Used to interact with the ZCL and prefixed with xZCL_

 Cluster functions: Used to interact with clusters and prefixed as follows:

 For clusters defined in the HA specification, they are prefixed with xHA_

 For clusters defined in the ZCL specification, they are prefixed with xCLD_

In the above prefixes, x represents one or more characters that indicate the return
type, e.g. “v” for void.

Only functions that are HA-specific are detailed in this manual. Functions which relate
to clusters of the ZCL are detailed in the ZCL User Guide (JN-UG-3077).

3.4 Development Phases

The main phases of development for an HA application are the same as for any
ZigBee PRO application, and are outlined below.

1. Network Configuration: Configure the ZigBee network parameters for the
nodes using the ZPS Configuration Editor - refer to the ZigBee PRO Stack
User Guide (JN-UG-3048).

2. OS Configuration: Configure the JenOS resources to be used by your
application using the JenOS Configuration Editor - refer to the JenOS User
Guide (JN-UG-3075).

3. Application Code Development: Develop the application code for your
nodes using the ZigBee PRO APIs, JenOS APIs, HA API and ZCL - refer to
the ZigBee PRO Stack User Guide (JN-UG-3048), JenOS User Guide
(JN-UG-3075) and ZCL User Guide (JN-UG-3077), as well as this manual.

4. Application Build: Build the application binaries for your nodes using the
JN51xx compiler and linker built into the Eclipse platform - refer to Section 3.5
and to the SDK Installation and User Guide (JN-UG-3064).

5. Node Programming: Load the application binaries into Flash memory on
your nodes using the JN51xx Flash programmer, which can be launched
either from within Eclipse or directly, and is described in the JN51xx Flash
Programmer User Guide (JN-UG-3007).

Note: Before starting your HA application development,
you should familiarise yourself with the general aspects
of ZigBee PRO application development, described in
the ZigBee PRO Stack User Guide (JN-UG-3048).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 45

Chapter 3
HA Application Development

3.5 Building an Application

This section outlines how to build an HA application developed for the JN5168 device.
First of all, the configuration of compile-time options and ZigBee network parameters
is described, and then directions are given for building and loading the application.

3.5.1 Compile-Time Options

Before the application can be built, the HA compile-time options must be configured in
the header file zcl_options.h for the application. This header file is supplied in the
Application Note ZigBee Home Automation Demonstration (JN-AN-1189), which can
be used as a template.

Number of Endpoints

The highest numbered endpoint used by the HA application must be specified - for
example:

#define HA_NUMBER_OF_ENDPOINTS 3

Normally, the endpoints starting at endpoint 1 will be used for HA, so in the above case
endpoints 1 to 3 will be used for HA. It is possible, however, to use the lower numbered
endpoints for non-HA purposes, e.g. to run other protocols on endpoints 1 and 2, and
HA on endpoint 3. In this case, with HA_NUMBER_OF_ENDPOINTS set to 3, some
storage will be statically allocated by HA for endpoints 1 and 2 but never used. Note
that this define applies only to local endpoints - the application can refer to remote
endpoints with numbers beyond the locally defined value of
HA_NUMBER_OF_ENDPOINTS.

Enabled Clusters

All required clusters must be enabled in the options header file. For example, an
application for an On/Off Light device that uses all the possible clusters will require the
following definitions:

#define CLD_BASIC

#define CLD_IDENTIFY

#define CLD_GROUPS

#define CLD_SCENES

#define CLD_ONOFF

Server and Client Options

Many clusters used in HA have options that indicate whether the cluster will act as a
server or a client on the local device. If the cluster has been enabled using one of the
above definitions, the server/client status of the cluster must be defined. For example,
to employ the Groups cluster as a server, include the following definition in the header
file:

#define GROUPS_SERVER
46 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Note that each of the above definitions will apply to all clusters used in the application.

Optional Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, the Basic cluster ‘application version’ attribute is
enabled as follows:

#define CLD_BAS_ATTR_APPLICATION_VERSION

3.5.2 ZigBee Network Parameters

HA applications may require specific settings of certain ZigBee network parameters.
These parameters are set using the ZPS Configuration Editor. The full set of ZigBee
network parameters are detailed in the ZigBee PRO Stack User Guide (JN-UG-3048).

3.5.3 Building and Loading the Application Binary

An HA application for the JN5168 device is built like any other ZigBee PRO
application. The build is normally carried out using the Eclipse IDE. This is the method
that we recommend, although it is also possible to use makefiles directly from the
command line (Cygwin).

For instructions on building an application in the Eclipse IDE, refer to the SDK
Installation and User Guide (JN-UG-3064). This guide also indicates how to load the
built application binary file into a JN5168-based node using the JN51xx Flash
Programmer launched from within Eclipse. Alternatively, you can use the JN51xx
Flash Programmer directly. In either case, you will need to refer to the JN51xx Flash
Programmer User Guide (JN-UG-3007) as part of this procedure.

Note: Cluster-specific compile-time options are detailed
in the chapters for the individual clusters in Part II: HA
Clusters. For clusters from the ZCL, refer to the ZCL
User Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 47

Chapter 3
HA Application Development

48 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
4. HA Application Coding

This chapter covers general aspects of HA application coding, including essential HA
programming concepts, code initialisation, callback functions, reading and writing
attributes, and event handling. Application coding that is particular to individual
clusters is described later, in the relevant cluster-specific chapter.

4.1 HA Programming Concepts

This section describes the essential programming concepts that are needed in HA
application development. The basic operations in a HA network are concerned with
reading and setting the attribute values of the clusters of a device.

4.1.1 Shared Device Structures

In each HA device, attribute values are exchanged between the application and the
HA library by means of a shared structure. This structure is protected by a mutex
(described in the ZCL User Guide (JN-UG-3077)). The structure for a particular HA
device contains structures for the clusters supported by that device (see Chapter 2).
The available device structures are provided in Chapter 13.

A shared device structure may be used in either of the following ways:

 The local application writes attribute values to the structure, allowing the
ZigBee Cluster Library (ZCL) to respond to commands relating to these
attributes.

 The ZCL parses incoming commands that write attribute values to the
structure. The written values can then be read by the local application.

Remote read and write operations involving a shared device structure are illustrated
in Figure 1 below. For more detailed descriptions of these operations, refer to Section
4.5 and Section 4.6.

Note: ZCL API functions referenced in this chapter are
fully described in the ZCL User Guide (JN-UG-3077).

Note: In order to use a cluster which is supported by a
device, the relevant option for the cluster must be
specified at build-time - see Section 3.5.3.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 49

Chapter 4
HA Application Coding

Figure 1: Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes,
the attributes of a cluster server (in the shared structure)
on a device are maintained by the local application(s).
The equivalent attributes of a cluster client on another
device are copies of these cluster server attributes
(remotely read from the server).

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Device
Structure
(Copy)

Application

Read Write

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Device
Structure
(Copy)

Application

Write Read

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response, writes received attribute values to
local copy of device structure and generates events (which
can prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

Application writes new attribute values to local copy of device
structure for remote server.
ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.

2.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client .
If required, application can then read new attribute values
from device structure.

3.

4.

Event (s)

Event (s)
50 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
4.1.2 Addressing

Communications between devices in an HA network are performed using standard
ZigBee PRO mechanisms. A brief summary is provided below.

In order to perform an operation (e.g. a read) on a remote node in a ZigBee PRO
network, a command must be sent from the relevant output (or client) cluster on the
local node to the relevant input (or server) cluster on the remote node.

At a higher level, an application (and therefore the HA device and supported clusters)
is associated with a unique endpoint, which acts as the I/O port for the application on
the node. Therefore, a command is sent from an endpoint on the local node to the
relevant endpoint(s) on the remote node.

The destination node(s) and endpoint(s) must be identified by the sending application.
The endpoints on each node are numbered from 1 to 240. The target node(s) can be
addressed in a number of different ways, listed below.

 64-bit IEEE/MAC address

 16-bit ZigBee network (short) address

 16-bit group address, relating to a pre-specified group of nodes and endpoints

 A binding, where the source endpoint has been pre-bound to the remote
node(s) and endpoint(s)

 A broadcast, in which the message is sent to all nodes of a certain type, one of:

 all Routers

 all End Devices

 only End Devices for which the radio receiver stays on when they are idle

A destination address structure, tsZCL_Address, is defined in the ZCL and is
detailed in the ZCL User Guide (JN-UG-3077). Enumerations are provided for the
addressing mode and broadcast mode in this structure, and are also detailed in the
above manual.

4.1.3 OS Resources

The HA library and ZCL require OS resources, such as tasks and mutexes. These
resources are provided by JenOS (Jennic Operating System), supplied in the HA
SDK.

The JenOS resources for an application are allocated using the JenOS Configuration
Editor, which is provided as an NXP-specific plug-in for the Eclipse IDE. Use of the
JenOS Configuration Editor for an HA application should be based on the HA
demonstration application (rather than on the standard ZigBee PRO stack template)
to ensure that the extra JenOS resources required by the HA profile and the ZCL are
available.

A JenOS mutex protects the shared structure that holds the cluster attribute values for
a device (see Section 4.1.1 above). The ZCL invokes an application callback function
to lock and unlock this mutex. The mutex should be used in conjunction with the
counting mutex code provided in the appendix of the ZCL User Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 51

Chapter 4
HA Application Coding

The software for this mutex operation is contained in the HA demonstration
application.

The task that the HA library and ZCL use to process incoming messages is defined in
the HA demonstration application. Callbacks from the HA library and ZCL to the
application will be in the context of this task. The HA demonstration application has a
separate task for the user application code. This task also links to the shared-structure
mutex in the JenOS configuration so that it can use critical sections to protect access
to the shared structures.

Only data events addressed to the correct ZigBee profile, endpoint and cluster are
processed by the ZCL, possibly with the aid of a callback function. Stack and data
events that are not addressed to an HA endpoint are handled by the application
through a callback function. All events are first passed into the ZCL using the function
vZCL_EventHandler(). The ZCL either processes the event or passes it to the
application, invoking the relevant callback function (refer to Section 4.3 for information
on callback functions and to Section 4.7 for more details on event handling).

If the ZCL consumes a data event, it will free the corresponding Protocol Data Unit
(PDU), otherwise it is the responsibility of the application to free the PDU.

4.2 Initialisation

An HA application is initialised like a normal ZigBee PRO application, as described in
the section “Forming a Network” of the ZigBee PRO Stack User Guide (JN-UG-3048),
except there is no need to explicitly start the ZigBee PRO stack using the function
ZPS_eAplZdoStartStack(). In addition, some HA initialisation must be performed in
the application code.

Initialisation of an HA application must be performed in the following places and order:

1. In the header file zcl_options.h, enable the required compile-time options.
These options include the clusters to be used by the device, the client/server
status of each cluster and the optional attributes for each cluster. For more
information on compile-time options, refer to Section 3.5.1.

2. In the application, create an instance of the device structure by declaring a file
scope variable - for example:

tsHA_DimmableLightDevice sDevice;

3. In the initialisation part of the application, set up the HA device(s) handled by
your code, as follows:

a) Set the initial values of the cluster attributes to be used by the device - for
example:

sDevice.sBasicCluster.u8StackVersion = 1;

sDevice.sBasicCluster....

These settings should appear in the code after JenOS has been started and
before the HA initialisation function is called (next step).

b) After calling ZPS_eAplAfInit(), call the HA initialisation function,
eHA_Initialise(). This function requires you to specify a user-defined
callback function for handling stack events (see Section 4.3), as well as a
52 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
pool of APDUs (Application Protocol Data Units) for sending and receiving
data.

c) Register each device by calling the relevant device registration function -
for example, eHA_RegisterDimmableLightEndPoint(). In this function
call, the device must be allocated a unique endpoint (in the range 1-240).
In addition, its device structure must be specified as well as a user-defined
callback function that will be invoked by the HA library when an event
occurs relating to the endpoint (see Section 4.3). As soon as this function
has been called, the shared device structure can be read by another
device.

The device registration functions create instances of all the clusters used by the
device, so there is no need to explicitly call the individual cluster creation functions,
e.g. eCLD_IdentifyCreateIdentify() for the Identify cluster.

4.3 Callback Functions

Two types of user-defined callback function must be provided (and registered as
described in Section 4.2):

 Endpoint Callback Function: A callback function must be provided for each
endpoint used, where this callback function will be invoked when an event
occurs (such as an incoming message) relating to the endpoint. The callback
function is registered with the HA library when the endpoint is registered using
the registration function for the HA device type that the endpoint supports - for
example, using eHA_RegisterOnOffLightEndPoint() for an On/Off Light
device (see Chapter 12).

 General Callback Function: Events that do not have an associated endpoint
are delivered via a callback function that is registered with the HA library
through the function eHA_Initialise(). For example, stack leave and join events
can be received by the application through this callback function.

The endpoint callback function and general callback function both have the type
definition given below:

typedef void (* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

The callback events are detailed in the ZCL User Guide (JN-UG-3077) and event
handling is further described in Section 4.7.

Note: The set of endpoint registration functions for the
different HA device types are detailed in Chapter 12.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 53

Chapter 4
HA Application Coding

4.4 Discovering Endpoints and Clusters

In order to communicate, a cluster client and cluster server must discover and store
each other’s contact details - that is, the address of the node and the number of the
endpoint on which the relevant cluster resides.

The HA application on a node can discover other nodes in the network by calling the
ZigBee PRO API function ZPS_eAplZdpMatchDescRequest(), which sends out a
match descriptor request (as a broadcast to all network nodes or as unicasts to
selected nodes). This function allows nodes to be selectively discovered by looking for
specific criteria in the Simple Descriptors of the endpoints on the recipient nodes.
These criteria include a list of required input (server) clusters and a list of required
output (client) clusters. In this way, an application which supports a particular cluster
server or client can discover its cluster counterpart(s) in the rest of the network.

If a recipient node satisfies the criteria specified in a match descriptor request, it will
respond with a match descriptor response. This response contains the network
address of the responding node and a list of the node’s endpoints that satisfy the
required criteria - for example, the endpoints that support the specified cluster(s).

Once a relevant node and endpoint have been identified:

 The function ZPS_eAplZdpIeeeAddrRequest() can be used to obtain the
IEEE/MAC address of the node and then both addresses can be added to the
local Address Map using the function ZPS_eAplZdoAddAddrMapEntry().

 If data packets between the two endpoints are to be encrypted by means of
standard ZigBee PRO security then one of the two nodes must initiate a link
key request using the function ZPS_eAplZdoRequestKeyReq().

 The node can bind a local endpoint to the remote endpoint using the function
ZPS_eAplZdpBindUnbindRequest().

Note: All of the above functions are described in the
ZigBee PRO Stack User Guide (JN-UG-3048).
54 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
4.5 Reading Attributes

Attributes can be read using a general ZCL function, or using an HA or ZCL function
which is specific to the target cluster. The cluster-specific functions for reading
attributes are covered in the chapters of this manual that describe the supported
clusters or in the ZCL User Guide (JN-UG-3077). Note that read access to cluster
attributes must be explicitly enabled at compile-time as described in Section 3.5.1.

The remainder of this section describes the use of the ZCL function
eZCL_SendReadAttributesRequest() to send a ‘read attributes’ request, although
the sequence is similar when using the cluster-specific ‘read attributes’ functions. The
resulting activities on the source and destination nodes are outlined below and
illustrated in Figure 2. Note that instances of the shared device structure (which
contains the relevant attributes) exist on both the source and destination nodes. The
events generated from a ‘read attributes’ request are further described in Section 4.7.

1. On Source Node (Client)

The function eZCL_SendReadAttributesRequest() is called to submit a request to
read one or more attributes on a cluster on a remote node. The information required
by this function includes the following:

 Source endpoint (from which the read request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be read

 Array of identifiers of attributes to be read [enumerations provided]

2. On Destination Node (Server)

On receiving the ‘read attributes’ request, the ZCL software on the destination node
performs the following steps:

1. Generates an E_ZCL_CBET_READ_REQUEST event for the destination
endpoint callback function which, if required, can update the shared device
structure that contains the attributes to be read, before the read takes place.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the shared device
structure - for information on mutexes, refer to the ZCL User Guide
(JN-UG-3077)

3. Reads the relevant attribute values from the shared device structure and
creates a ‘read attributes’ response message containing the read values.

4. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 55

Chapter 4
HA Application Coding

3. On Source Node (Client)

On receiving the ‘read attributes’ response, the ZCL software on the source node
performs the following steps:

1. Generates an E_ZCL_CBET_LOCK_MUTEX event for the source endpoint
callback function, which should lock the mutex that protects the relevant
shared device structure on the source node.

2. Writes the new attribute values to the shared device structure on the source
node.

3. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

4. For each attribute listed in the ‘read attributes’ response, it generates an
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message.

5. On completion of the parsing of the ‘read attributes’ response, it generates a
single E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

Figure 2: ‘Read Attributes’ Request and Response

Endpoint ZCL ZCL Endpoint

'Read Attributes' Message

READ_REQUEST
'Read Attributes' Request

LOCK_MUTEX

Read Attribute Values

UNLOCK_MUTEX

'Read Attributes' Response
LOCK_MUTEX

Write Attribute Values

UNLOCK_MUTEX

READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

READ_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Shared
Structure

Local
Shared
Structure
56 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide

4.6 Writing Attributes

The ability to write attribute values to a remote cluster is required by some HA devices.
Normally, a ‘write attributes’ request is sent from a client cluster to a server cluster,
where the relevant attributes in the shared device structure are updated. Note that
write access to cluster attributes must be explicitly enabled at compile-time as
described in Section 3.5.1.

Three ‘write attributes’ functions are provided in the ZCL:

 eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’
request to a remote device, which attempts to update the attributes in its shared
structure. The remote device generates a ‘write attributes’ response to the
source device, indicating success or listing error codes for any attributes that it
could not update.

 eZCL_SendWriteAttributesNoResponseRequest(): This function sends a
‘write attributes’ request to a remote device, which attempts to update the
attributes in its shared structure. However, the remote device does not
generate a ‘write attributes’ response, regardless of whether there are errors.

 eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write
attributes’ request to a remote device, which checks that all the attributes can
be written to without error:

 If all attributes can be written without error, all the attributes are updated.

 If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device,
indicating success or listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination
nodes are outlined below and illustrated in Figure 3. Note that instances of the shared
device structure (which contains the relevant attributes) must be maintained on both
the source and destination nodes. The events generated from a ‘write attributes’
request are further described in Section 4.7.

Note: The ‘read attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 57

Chapter 4
HA Application Coding

1. On Source Node (Client)

In order to send a ‘write attributes’ request, the application on the source node
performs the following steps:

1. Locks the mutex that protects the local instance of the shared device structure
that contains the attributes to be updated - for information on mutexes, refer to
the ZCL User Guide (JN-UG-3077).

2. Writes one or more updated attribute values to the local instance of the shared
device structure.

3. Unlocks the mutex that protects the local instance of the shared device
structure.

4. Calls one of the above ZCL ‘write attributes’ functions to submit a request to
update the relevant attributes on a cluster on a remote node. The information
required by this function includes the following:

 Source endpoint (from which the write request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be written

 Array of identifiers of attributes to be written [enumerations provided]

From the above information, the function is able to pick up the relevant attribute
values from the local instance of the shared structure and incorporate them in
the message for the remote node.

2. On Destination Node (Server)

On receiving the ‘write attributes’ request, the ZCL software on the destination node
performs the following steps:

1. For each attribute in the ‘write attributes’ request, generates an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the destination
endpoint callback function. If required, the callback function can do either or
both of the following:

 check that the new attribute value is in the correct range - if the value is
out-of-range, the function should set the eAttributeStatus field of the
event to E_ZCL_ERR_ATTRIBUTE RANGE

 block the write by setting the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS

In the case of an out-of-range value or a blocked write, there is no further
processing for that particular attribute following the ‘write attributes’ request.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the relevant shared device
structure - for more on mutexes, refer to the ZCL User Guide (JN-UG-3077).
58 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
3. Writes the relevant attribute values to the shared device structure - an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE event is generated for
each individual attempt to write an attribute value, which the endpoint callback
function can use to keep track of the successful and unsuccessful writes.

Note that if an ‘undivided write attributes’ request was received, an individual
failed write will render the whole update process unsuccessful.

4. Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all
relevant attributes have been processed and, if required, creates a ‘write
attributes’ response message for the source node.

5. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

6. If required, sends a ‘write attributes’ response to the source node of the
request.

3. On Source Node (Client)

On receiving an optional ‘write attributes’ response, the ZCL software on the source
node performs the following steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message. Only attributes for which the write has failed are included in the
response and will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a
single E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 59

Chapter 4
HA Application Coding

Figure 3: ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.

Endpoint ZCL ZCL Endpoint

'Write Attributes' Message

CHECK_ATTRIBUTE_RANGE

'Write Attributes' Request

LOCK_MUTEX

Write Attribute Value

UNLOCK_MUTEX

'Write Attributes' Response

WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

WRITE_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Lock mutex for
local shared structure

Write attribute values

Unlock mutex for
local shared structure

WRITE_INDIVIDUAL_ATTRIBUTE

WRITE_ATTRIBUTES

Shared
Structure

Local
Shared
Structure
60 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
4.7 Handling Stack and Timer Events

This section outlines the event handling framework which allows an HA application to
deal with stack-related and timer-related events. A stack event is triggered by a
message arriving in a message queue and a timer event is triggered when a JenOS
timer expires.

The event handling framework for HA is provided by the ZCL. The event must be
wrapped in a tsZCL_CallBackEvent structure by the application, which then
passes this event structure into the ZCL using the function vZCL_EventHandler().
The ZCL processes the event and, if necessary, invokes the relevant endpoint
callback function. This event structure and event handler function are detailed in the
ZCL User Guide (JN-UG-3077), which also provides more details of event processing.

The events that are not cluster-specific are divided into four categories, as shown in
Table 19 below - these events are described in the ZCL User Guide (JN-UG-3077).
Cluster-specific events are covered in the chapter for the relevant cluster.

Category Event

Input Events E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

Read Events E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Write Events E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

General Events E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT_RESPONSE

E_ZCL_CBET_UNHANDLED_EVENT

E_ZCL_CBET_ERROR

Table 19: Events (Not Cluster-Specific)

Note: ZCL error events and default responses may be
generated when problems occur in receiving
commands. The possible ZCL status codes contained in
the events and responses are detailed in the ZCL User
Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 61

Chapter 4
HA Application Coding

4.8 Servicing Timing Requirements

Some clusters used by an HA application may have timing requirements which
demand periodic updates. The function eHA_Update100mS() is provided to service
these requirements and should be called repeatedly every 100 ms. Invocation of this
function can be prompted using a 100-ms software timer.

The function eHA_Update100mS() calls the external function vIdEffectTick(), which
must be defined in the application. This user-defined function can be used to
implement an identify effect on the node, if required. Otherwise, it should be defined
but left empty.

4.9 Time Management

A Home Automation device may need to keep track of time for its own purposes. It is
not usually necessary to synchronise time between the nodes of an HA network and
therefore an HA device does not normally require the Time cluster. An HA device uses
‘ZCL time’, which is a time in seconds maintained locally by the device.

In the NXP implementation of the ZigBee Cluster Library, ZCL time on a device is
normally derived from a software timer provided by JenOS. In addition, HA requires a
100-ms timer to periodically notify the device when 100 milliseconds have passed.
Typically, both of these timings are derived from the same JenOS timer. The
maintenance of ZCL time and the 100-ms timing is described in the sub-sections
below.

Note: The functions vZCL_SetUTCTime() and
vZCL_EventHandler(), referenced below, are
described in the ZCL User Guide (JN-UG-3077) and the
function OS_eContinueSWTimer() is described in the
JenOS User Guide (JN-UG-3075).
62 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
4.9.1 Time Maintenance

ZCL time should be incremented once per second. In addition, an HA device must be
prompted every 100 milliseconds to perform certain periodic operations (e.g. level
transitions performed by the Level Control cluster). Normally, the same 100-ms
JenOS timer is used for both timings, as follows:

1. On expiration of the 100-ms JenOS timer, an event is generated (from the
hardware/software timer that drives the JenOS timer) which causes JenOS to
activate an application task.

2. Within this task, the application must call eHA_Update100mS() on each
activation of the task - this function is described in Chapter 12.

3. Every ten times that the task is activated, the application must also call
vZCL_EventHandler() with an event type of E_ZCL_CBET_TIMER.

This results in the timer event being passed to the ZCL once per second. On
receiving each timer event, the ZCL automatically increments the ZCL time and
may run cluster-specific schedulers.

4. The user task must finally resume the 100-ms timer using the JenOS function
OS_eContinueSWTimer().

Note 1: The function eHA_Update100mS() calls the
external function vIdEffectTick(), which must be
defined in the application. This user-defined function
can be used to implement an identify effect on the node,
if required. Otherwise, it should be defined but left
empty.

Note 2: For more information on using the function
vZCL_EventHandler() to pass a timer event to the ZCL,
refer to the ‘Processing Events’ section of the ZCL User
Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 63

Chapter 4
HA Application Coding

4.9.2 Updating ZCL Time Following Sleep

An HA network may include nodes that conserve energy by sleeping between
activities. For example:

 A switch device will normally be a sleeping End Device which wakes on an
interrupt generated by the switch or dimmer hardware. If a switch supports the
Identify cluster, while in identification mode it must wake once per second to
generate a timer event - refer to the section on the Identify cluster in the ZCL
User Guide (JN-UG-3077).

 A light device is normally configured as a Router, in which case it is always
active and therefore does not sleep. If a light device does sleep, it must wake at
least once every 100 ms to call eHA_Update100mS() and also to generate a
timer event once every second (see Section 4.9.1).

In the case of a device that sleeps, on waking from sleep the application should update
the ZCL time using the function vZCL_SetUTCTime() according to the duration for
which the device was asleep. This requires the sleep duration to be timed.

While sleeping, the JN5168 microcontroller normally uses its RC oscillator for timing
purposes, which may not maintain the required accuracy for certain applications. In
such cases, a more accurate external crystal should be used to time the sleep periods.

The vZCL_SetUTCTime() function does not cause timer events to be executed. If the
device is awake for less than one second, the application should generate a
E_ZCL_CBET_TIMER event to prompt the ZCL to run any timer-related functions.
Note that when passed into vZCL_EventHandler(), this event will increment the ZCL
time by one second.
64 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Part II:
HA Clusters
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 65

66 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
5. ZCL Clusters

The HA application profile uses certain clusters that are provided in the ZigBee Cluster
Library (ZCL):

 Basic - see Section 5.1

 Power Configuration - see Section 5.2

 Identify - see Section 5.3

 Groups - see Section 5.4

 Scenes - see Section 5.5

 On/Off - see Section 5.6

 On/Off Switch Configuration - see Section 5.7

 Level Control - see Section 5.8

 Time - see Section 5.9

 Binary Input (Basic) - see Section 5.10

 Door Lock - see Section 5.11

 Colour Control - see Section 5.12

 Illuminance Measurement - see Section 5.13

 Occupancy Sensing - see Section 5.14

The above clusters are introduced below but are fully detailed in the ZCL User Guide
(JN-UG-3077).

5.1 Basic Cluster

The Basic cluster holds basic information about a device/endpoint.

The Basic cluster has a Cluster ID of 0x0000.

It is required in HA devices as indicated in the table below.

Note: In addition to the above ZCL clusters, an HA
application may use the EZ-mode Commissioning
module. This is also detailed in the ZCL User Guide
(JN-UG-3077).

Server-side Client-side

Mandatory in... All HA devices

Optional in... Remote Control

Table 20: Basic Cluster in HA Devices
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 67

Chapter 5
ZCL Clusters

5.2 Power Configuration Cluster

The Power Configuration cluster provides functionality relating to the power source(s)
of a device.

The Power Configuration cluster has a Cluster ID of 0x0001.

It is required in HA devices as indicated in the table below.

5.3 Identify Cluster

The Identify cluster allows a device to identify itself (for example, by flashing a LED on
the node).

The Identify cluster has a Cluster ID of 0x0003.

It is required in HA devices as indicated in the table below.

Server-side Client-side

Mandatory in...

Optional in... All HA devices

Table 21: Power Configuration Cluster in HA Devices

Server-side Client-side

Mandatory in... All HA devices Door Lock Controller
Simple Sensor
On/Off Switch
On/Off Light Switch
Dimmer Switch
Colour Dimmer Switch
Light Sensor
Occupancy Sensor

Optional in... Level Control Switch
Scene Selector
Remote Control

Table 22: Identify Cluster in HA Devices
68 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
5.4 Groups Cluster

The Groups cluster allows the management of the Group table concerned with group
addressing.

The Groups cluster has a Cluster ID of 0x0004.

It is required in HA devices as indicated in the table below.

5.5 Scenes Cluster

The Scenes cluster allows values that make up a ‘scene’ to be set and retrieved.

The Scenes cluster has a Cluster ID of 0x0005.

It is required in HA devices as indicated in the table below.

Server-side Client-side

Mandatory in... On/Off Output
Door Lock
Simple Sensor
On/Off Light
Dimmable Light
Colour Dimmable Light

Scene Selector
Door Lock Controller

Optional in... On/Off Switch
Level Control Switch
Remote Control
On/Off Light Switch
Dimmer Switch
Colour Dimmer Switch
Light Sensor
Occupancy Sensor

Table 23: Groups Cluster in HA Devices

Server-side Client-side

Mandatory in... On/Off Output
Door Lock
Simple Sensor
On/Off Light
Dimmable Light
Colour Dimmable Light

Scene Selector
Door Lock Controller

Optional in... On/Off Switch
Level Control Switch
Remote Control
On/Off Light Switch
Dimmer Switch
Colour Dimmer Switch

Table 24: Scenes Cluster in HA Devices
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 69

Chapter 5
ZCL Clusters

5.6 On/Off Cluster

The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled
between the two states.

The On/Off cluster has a Cluster ID of 0x0006.

It is required in HA devices as indicated in the table below.

5.7 On/Off Switch Configuration Cluster

The On/Off Switch Configuration cluster allows the switch type on a device to be
defined, as well as the commands to be generated when the switch is moved between
its two states.

The On/Off cluster has a Cluster ID of 0x0007.

It is required in HA devices as indicated in the table below.

Server-side Client-side

Mandatory in... On/Off Output
On/Off Light
Dimmable Light
Colour Dimmable Light

On/Off Switch
Level Control Switch
On/Off Light Switch
Dimmer Switch
Colour Dimmer Switch

Optional in... Remote Control

Table 25: On/Off Cluster in HA Devices

Server-side Client-side

Mandatory in...

Optional in... On/Off Switch
Level Control Switch
On/Off Light Switch
Dimmer Switch
Colour Dimmer Switch

Remote Control

Table 26: On/Off Switch Configuration Cluster in HA Devices
70 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
5.8 Level Control Cluster

The Level Control cluster is used to control the level of a physical quantity on a device
(e.g. heat output).

The Level Control cluster has a Cluster ID of 0x0008.

It is required in HA devices as indicated in the table below.

5.9 Time Cluster

The Time cluster is used to maintain a time reference for the transactions in a ZigBee
PRO network and to time-synchronise the ZigBee PRO devices.

The Time cluster has a Cluster ID of 0x000A.

It is required in HA devices as indicated in the table below.

5.10 Binary Input (Basic) Cluster

The Binary Input (Basic) cluster is used to read the value of a binary measurement
representing the state of a two-state physical quantity.

The Binary Input (Basic) cluster has a Cluster ID of 0x000F.

It is required in HA devices as indicated in the table below.

Server-side Client-side

Mandatory in... Dimmable Light
Colour Dimmable Light

Level Control Switch
Dimmer Switch
Colour Dimmer Switch

Optional in... Remote Control

Table 27: Level Control Cluster in HA Devices

Server-side Client-side

Mandatory in...

Optional in... All HA devices

Table 28: Time Cluster in HA Devices

Server-side Client-side

Mandatory in... Simple Sensor

Optional in...

Table 29: Binary Input (Basic) Cluster in HA Devices
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 71

Chapter 5
ZCL Clusters

5.11 Door Lock Cluster

The Door Lock cluster provides an interface to a set values representing the state of
a door lock and (optionally) the door.

The Door Lock cluster has a Cluster ID of 0x0101.

It is required in HA devices as indicated in the table below.

In Home Automation, the Door Lock cluster is enhanced with an extra optional
attribute which allows Application-level security to be used (in addition to the default
Network-level security). This enhancement is described in the ZCL User Guide
(JN-UG-3077).

5.12 Colour Control Cluster

The Colour Control cluster is used to control the colour of a light.

The Colour Control cluster has a Cluster ID of 0x0300.

It is required in HA devices as indicated in the table below.

When the Colour Control cluster is used with the Scenes cluster in the HA profile, only
the mandatory Colour Control cluster attributes u16CurrentX and u16CurrentY
can be stored in and recalled from scenes. To enable this scenes functionality, the
following definition must be added to the zcl_options.h file:

#define HA_RECALL_SCENES

Server-side Client-side

Mandatory in... Door Lock Door Lock Controller

Optional in... Remote Control

Table 30: Door Lock Cluster in HA Devices

Server-side Client-side

Mandatory in... Colour Dimmable Light Colour Dimmer Switch

Optional in... Remote Control

Table 31: Colour Control Cluster in HA Devices
72 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
5.13 Illuminance Measurement Cluster

The Illuminance Measurement cluster is used to interface with a set of values related
to an illuminance measurement.

The Illuminance Measurement cluster has a Cluster ID of 0x0400.

It is required in HA devices as indicated in the table below.

5.14 Occupancy Sensing Cluster

The Occupancy Sensing cluster is used to interface with a set of values related to
occupancy sensing.

The Occupancy Sensing cluster has a Cluster ID of 0x0406.

It is required in HA devices as indicated in the table below.

Server-side Client-side

Mandatory in... Light Sensor

Optional in... Remote Control

Table 32: Illuminance Measurement Cluster in HA Devices

Server-side Client-side

Mandatory in... Occupancy Sensor

Optional in... On/Off Light
Dimmable Light
Colour Dimmable Light

Table 33: Occupancy Sensing Cluster in HA Devices
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 73

Chapter 5
ZCL Clusters

74 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
6. Poll Control Cluster

This chapter describes the Poll Control cluster which is defined in the ZigBee Home
Automation profile, and provides an interface for remotely controlling the rate at which
a ZigBee End Device polls its parent for data.

The Poll Control cluster has a Cluster ID of 0x0020.

6.1 Overview

An End Device cannot receive data packets directly, as it may be asleep when a
packet arrives. The data packets for an End Device are therefore buffered by the
device’s parent and the End Device polls its parent for data while awake. An individual
data packet will only be held on the parent node for a maximum of 7.68 seconds and
if many packets for the End Device are expected over a short period of time, the End
Device should retrieve these packets as quickly as possible. An End Device can
implement two polling modes, which are dependent on the poll interval (time-period
between consecutive polls):

 Normal poll mode: A long poll interval is used - this mode is appropriate when
the End Device is not expecting data packets

 Fast poll mode: A short poll interval is used - this mode is appropriate when
the End Device is expecting data packets

The End Device may enable fast poll mode itself when it is expecting data packets
(e.g. after it has requested data from remote nodes). The Poll Control cluster allows
fast poll mode to be selected from a remote control device to force the End Device to
be more receptive to data packets (e.g. when a download to the End Device involving
a large number of unsolicited data packets is to be initiated).

The two sides of the cluster are located as follows:

 The cluster server is implemented on the End Device to be controlled

 The cluster client is implemented on the remote controller device

The cluster server (End Device) periodically checks whether the cluster client (remote
controller) requires the poll mode to be changed. This ‘check-in’ method is used since
an unsolicited instruction from the controller may arrive when the End Device is
asleep. The automatic ‘check-ins’ are conducted with all the remote endpoints (on
controller nodes) to which the local endpoint (on which the cluster resides) is bound.

The cluster is enabled by defining CLD_POLL_CONTROL in the zcl_options.h file -
see Section 3.5.1. Further compile-time options for the Poll Control cluster are detailed
in Section 6.10.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 75

Chapter 6
Poll Control Cluster

6.2 Cluster Structure and Attributes

The Poll Control cluster server attributes are contained in the following
tsCLD_PollControl structure:

typedef struct

{

 zuint32 u32CheckinInterval;

 zuint32 u32LongPollInterval;

 zuint16 u16ShortPollInterval;

 zuint16 u16FastPollTimeout;

#ifdef CLD_POLL_CONTROL_ATTR_CHECKIN_INTERVAL_MIN

 zuint32 u32CheckinIntervalMin;

#endif

#ifdef CLD_POLL_CONTROL_ATTR_LONG_POLL_INTERVAL_MIN

 zuint32 u32LongPollIntervalMin;

#endif

#ifdef CLD_POLL_CONTROL_ATTR_FAST_POLL_TIMEOUT_MAX

 zuint16 u16FastPollTimeoutMax;

#endif

} tsCLD_PollControl;

where:

 u32CheckinInterval is the ‘check-in interval’, used by the server in
checking whether a client requires the poll mode to be changed - this is the
period, in quarter-seconds, between consecutive checks. The valid range of
values is 1 to 7208960. A user-defined minimum value for this attribute can be
set via the optional attribute u32CheckinIntervalMin (see below). Zero is a
special value indicating that the Poll Control cluster server is disabled. The
default value is 14400 (1 hour).

 u32LongPollInterval is the ‘long poll interval’ of the End Device, employed
when operating in normal poll mode - this is the period, in quarter-seconds,
between consecutive polls of the parent for data. The valid range of values is 4
to 7208960. A user-defined minimum value for this attribute can be set via the
optional attribute u32LongPollIntervalMin (see below). 0xFFFF is a
special value indicating that the long poll interval is unknown/undefined. The
default value is 20 (5 seconds).

 u16ShortPollInterval is the ‘short poll interval’ of the End Device,
employed when operating in fast poll mode - this is the period, in quarter-
seconds, between consecutive polls of the parent for data. The valid range of
values is 1 to 65535 and the default value is 2 (0.5 seconds).
76 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 u16FastPollTimeout is the ‘fast poll timeout’ representing the time-interval,
in quarter-seconds, for which the server should normally stay in fast poll mode
(unless over-ridden by a client command). The valid range of values is 1 to
65535. It is recommended that this timeout is greater than 7.68 seconds. A
user-defined maximum value for this attribute can be set via the optional
attribute u16FastPollTimeoutMax (see below). The default value is 40
(10 seconds).

 u32CheckinIntervalMin is an optional lower limit on the ‘check-in interval’
defined by u32CheckinInterval. This limit can be used to ensure that the
interval is not inadvertently set to a low value which will quickly drain the energy
resources of the End Device node.

 u32LongPollIntervalMin is an optional lower limit on the ‘long poll interval’
defined by u32LongPollInterval. This limit can be used to ensure that the
interval is not inadvertently set (e.g. by another device) to a low value which will
quickly drain the energy resources of the End Device node.

 u16FastPollTimeoutMax is an optional upper limit on the ‘fast poll timeout’
defined by u16FastPollTimeout. This limit can be used to ensure that the
interval is not inadvertently set (e.g. by another device) to a high value which
will quickly drain the energy resources of the End Device node.

6.3 Attribute Settings

In assigning user-defined values to the mandatory attributes, the following inequality
should be obeyed:

u32CheckinInterval u32LongPollInterval u16ShortPollInterval

In addition, the mandatory attribute u16FastPollTimeout should not be set to an
excessive value for self-powered nodes, as fast poll mode can rapidly drain the stored
energy of a node (e.g. the battery).

The three optional attributes can be used to ensure that the values of the
corresponding mandatory attributes are kept within reasonable limits, to prevent the
rapid depletion of the energy resources of the node. If required, the optional attributes
must be enabled and initialised in the compile-time options (see Section 6.10).

Minimum and maximum values for all the mandatory attributes can alternatively be set
using the compile-time options (again, refer to Section 6.10).

Note 1: Valid ranges (maximum and minimum values)
for the four mandatory attributes can alternatively be set
using macros in the zcl_options.h file, as described in
Section 6.10. Some of these macros can only be used
when the equivalent optional attribute is disabled.

Note 2: For general guidance on attribute settings, refer
to Section 6.3. Configuration through the attributes is
also described in Section 6.4.2.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 77

Chapter 6
Poll Control Cluster

6.4 Poll Control Operations

This section describes the main operations to be performed on the Poll Control cluster
server (End Device) and client (controller).

6.4.1 Initialisation

The Poll Control cluster must be initialised on both the cluster server and client. This
can be done using the function eCLD_PollControlCreatePollControl(), which
creates an instance of the Poll Control cluster on a local endpoint.

If you are using a standard ZigBee device which includes the Poll Control cluster, the
above function will be automatically called by the initialisation function for the device.
You only need to call eCLD_PollControlCreatePollControl() explicitly when setting
up a custom endpoint containing one or more selected clusters (rather than the whole
set of clusters supported by a standard ZigBee device).

6.4.2 Configuration

When initialised, the Poll Control cluster will adopt the attribute values that are pre-set
in the tsCLD_PollControl structure (see Section 6.2). For the optional attributes,
values can be set in the file zcl_options.h (see Section 6.10).

The mandatory attributes (and related optional attributes) are as follows:

 Long Poll Interval (u32LongPollInterval): This is the polling period used
in normal poll mode, expressed in quarter-seconds, with a default value of 20
(5 seconds). The attribute has a valid range of 4 to 7208960 but a user-defined
minimum value for this attribute can be set via the optional ‘long poll interval
maximum’ attribute (u32LongPollIntervalMin). This limit can be used to
ensure that the interval is not inadvertently set (e.g. by another device) to a low
value which will quickly drain the energy resources of the End Device node.
Alternatively, minimum and maximum values can be specified through the
compile-time options (see Section 6.10).

 Short Poll Interval (u16ShortPollInterval): This is the polling period
used in fast poll mode, expressed in quarter-seconds, with a default value of 2
(0.5 seconds). The attribute has a valid range of 1 to 65535. User-defined
minimum and maximum values for this attribute can be specified through the
compile-time options (see Section 6.10).

 Fast Poll Timeout (u16FastPollTimeout): This is the time-interval for
which the server should normally stay in fast poll mode (unless over-ridden by
a client command), expressed in quarter-seconds, with a default value of 40
(10 seconds). It is recommended that this timeout is greater than 7.68 seconds.
The valid range of values is 1 to 65535 but a user-defined maximum value for
this attribute can be set via the optional ‘fast poll timeout maximum’ attribute
(u16FastPollTimeoutMax). This limit can be used to ensure that the interval
is not inadvertently set (e.g. by another device) to a high value which will
quickly drain the energy resources of the End Device node. Alternatively,
minimum and maximum values can be specified through the compile-time
options (see Section 6.10).
78 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 Check-in Interval (u32CheckinInterval): This is the period between the
server’s checks of whether a client requires the poll mode to be changed,
expressed in quarter-seconds, with a default value of 14400 (1 hour). It should
be greater than the ‘long poll interval’ (see above). Zero is a special value
indicating that the Poll Control cluster server is disabled. Otherwise, the valid
range of values is 1 to 7208960 but a user-defined minimum value for this
attribute can be set via the optional ‘check-in interval minimum’ attribute
(u32CheckinIntervalMin). This limit can be used to ensure that the interval
is not inadvertently set to a low value which will quickly drain the energy
resources of the End Device node. Alternatively, minimum and maximum
values can be specified through the compile-time options (see Section 6.10).

The Poll Control cluster server can also be configured by the server application at run-
time by writing to the relevant attribute(s) using the eCLD_PollControlSetAttribute()
function (which must be called separately for each attribute to be modified). If used,
this function must be called after the cluster has been initialised (see Section 6.4.1).

Changes to certain attributes can also be initiated remotely from the cluster client
(controller) using the following functions:

 eCLD_PollControlSetLongPollIntervalSend(): The client application can use
this function to submit a request to set the ‘long poll interval’ attribute on the
server to a specified value. This function causes a ‘Set Long Poll Interval’
command to be sent to the relevant End Device. If the new value is acceptable,
the cluster server will automatically update the attribute.

 eCLD_PollControlSetShortPollIntervalSend(): The client application can use
this function to submit a request to set the ‘short poll interval’ attribute on the
server to a specified value. This function causes a ‘Set Short Poll Interval’
command to be sent to the relevant End Device. If the new value is acceptable,
the cluster server will automatically update the attribute.

In both of the above cases, a response will only be sent back to the client if the new
value is not acceptable, in which case a ZCL ‘default response’ will be sent indicating
an invalid value.

Use of the above two functions requires the corresponding commands to be enabled
in the compile-time options, as described in Section 6.10.

Before the first scheduled ‘check-in’ (after one hour, by default), the End Device
application should set up bindings between the local endpoint on which the cluster
resides and the relevant endpoint on each remote controller node with which the End
Device will operate. These bindings will be used in sending the ‘Check-in’ commands.

Note: Changes to attribute values initiated by either the
server application or client application will take effect
immediately. So, for example, if the End Device is
operating in fast poll mode when the ‘short poll interval’
is modified, the polling period will be immediately re-
timed to the new value. If the modified attribute is not
related to the currently operating poll mode, the change
will be implemented the next time the relevant poll mode
is started.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 79

Chapter 6
Poll Control Cluster

6.4.3 Operation

After initialisation, the Poll Control cluster server on the End Device will begin to
operate in normal poll mode and will need to perform the following activities (while the
End Device is awake):

 Periodically poll the parent for data packets at a rate determined by the ‘long
poll interval’

 Periodically check whether any bound cluster clients require the server to enter
fast poll mode, with ‘check-ins’ at a rate determined by the ‘check-in interval’

The server application must provide the cluster with timing prompts for the above
periodic activities. These prompts are produced by periodically calling the function
eCLD_PollControlUpdate(). Since the periods of the above activities are defined in
terms of quarter-seconds, this function must be called every quarter-second and the
application must provide a 250-ms software timer to schedule these calls. Any poll or
check-in that is due when this function is called will be automatically performed by the
cluster server.

The End Device will operate in normal poll mode until either it puts itself into fast poll
mode (e.g. when it is expecting responses to a request) or the controller (client)
requests the End Device to enter fast poll mode (e.g. when a data download to the End
Device is going to be performed). As indicated above, such a request from the client
is raised as the result of the server performing periodic ‘check-ins’ with the client.

On receiving a ‘check-in’ command, an E_CLD_POLL_CONTROL_CMD_CHECK_IN
event is generated on the client. The client application must then fill in the
tsCLD_PollControl_CheckinResponsePayload structure (see Section 6.9.2)
of the event, indicating whether fast poll mode is required. A response will then be
automatically sent back to the server.

After sending the initial Check-in command, the server will wait for up to 7.68 seconds
for a response (if no response is received in this time, the server is free to continue in
normal poll mode). If a response is received, the event
E_CLD_POLL_CONTROL_CMD_CHECK_IN will be generated on the server, which
will automatically put the End Device into fast poll mode. The response payload (see
Section 6.9.2) contains an optional timeout value which, if used, specifies the length
of time that the device should remain in fast poll mode (this timeout value will be used
instead of the one specified through the ‘fast poll timeout’ attribute). If the response
payload specifies an out-of-range timeout value, the server will send a ZCL default
response with status INVALID_VALUE to the client. In the case of multiple clients
(controllers) that have specified different timeout values, the server will use the largest
timeout value received.

When the End Device is in fast poll mode, the client application can request the cluster
server to exit fast poll mode immediately (before the timeout expires) by calling the
function eCLD_PollControlFastPollStopSend().
80 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
6.5 Poll Control Events

The Poll Control cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). The cluster contains its own event handler. However, if a device uses
this cluster then application-specific Poll Control event handling must be included in
the user-defined callback function for the associated endpoint, where this callback
function is registered through the relevant endpoint registration function. This callback
function will then be invoked when a Poll Control event occurs and needs the attention
of the application.

For a Poll Control event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_PollControlCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_PollControl_CheckinResponsePayload *psCheckinResponsePayload;

 #ifdef CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL

 tsCLD_PollControl_SetLongPollIntervalPayload
 *psSetLongPollIntervalPayload;

 #endif

 #ifdef CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

 tsCLD_PollControl_SetShortPollIntervalPayload
 *psSetShortPollIntervalPayload;

 #endif

 } uMessage;

} tsCLD_PollControlCallBackMessage;

The above structure is fully described in Section 6.9.1.

When a Poll Control event occurs, one of the command types listed in Table 34 is
specified through the u8CommandId field of the structure
tsCLD_PollControlCallBackMessage. This command type determines which
command payload is used from the union uMessage.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 81

Chapter 6
Poll Control Cluster

6.6 Functions

The Poll Control cluster functions provided in the HA API are described in the following
three sub-sections, according to the side(s) of the cluster on which they can be used:

 Server/client function are described in Section 6.6.1

 Server functions are described in Section 6.6.2

 Client functions are described in Section 6.6.3

6.6.1 Server/Client Function

The following Poll Control cluster function is provided in the HA API and can be used
on either a cluster server or cluster client:

Function Page

eCLD_PollControlCreatePollControl 83

u8CommandId Enumeration Description/Payload Type

On Client

E_CLD_POLL_CONTROL_CMD_CHECK_IN A Check-in command has been received by the client.

On Server

E_CLD_POLL_CONTROL_CMD_CHECK_IN A Check-in Response has been received by the server,
following a previously sent Check-In command.
tsCLD_PollControl_CheckinResponsePayload

E_CLD_POLL_CONTROL_CMD_FAST_POLL_STOP A ‘Fast Poll Stop’ command has been received by the
server.

E_CLD_POLL_CONTROL_CMD_SET_LONG_POLL_
INTERVAL

A ‘Set Long Poll Interval’ command has been received
by the server.
tsCLD_PollControl_SetLongPollIntervalPayload

E_CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_
INTERVAL

A ‘Set Short Poll Interval’ command has been received
by the server.
tsCLD_PollControl_SetShortPollIntervalPayload

Table 34: Poll Control Command Types (Events)
82 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 eCLD_PollControlCreatePollControl

Description

This function creates an instance of the Poll Control cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Poll Control cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Poll Control cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Poll Control
cluster, which can be obtained by using the macro
CLD_POLL_CONTROL_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8PollControlClusterAttributeControlBits[
CLD_POLL_CONTROL_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eCLD_PollControlCreatePollControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,

tsCLD_PollControlCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 83

Chapter 6
Poll Control Cluster

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Poll Control cluster. This parameter can refer to a pre-
filled structure called sCLD_PollControl which is
provided in the PollControl.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_PollControl which defines
the attributes of the Poll Control cluster. The function
will initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 6.9.5)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
84 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
6.6.2 Server Functions

The following Poll Control cluster functions are provided in the HA API and can be
used on a cluster server only:

Function Page

eCLD_PollControlUpdate 86

eCLD_PollControlSetAttribute 87
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 85

Chapter 6
Poll Control Cluster

eCLD_PollControlUpdate

Description

This function can be used on a cluster server to update the timing status for the
following periodic activities:

 polling of the parent for a data packet

 ‘check-ins’ with the client to check for a required change in the poll mode

The function should be called once per quarter-second and the application should
provide a 250-ms timer to prompt these function calls.

Any poll or check-in that is due when this function is called will be automatically
performed by the cluster server.

Parameters

None

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

 teZCL_Status eCLD_PollControlUpdate(void);
86 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PollControlSetAttribute

Description

This function can be used on a cluster server to write to an attribute of the Poll Control
cluster. The function will write to the relevant field of the tsCLD_PollControl
structure (detailed in Section 6.2). The attribute to be accessed is specified using its
attribute identifier - enumerations are provided (see Section 6.8.1).

Therefore, this function can be used to change the configuration of the Poll Control
cluster. The change will take effect immediately. So, for example, if the End Device
is in normal poll mode when the ‘long poll interval’ is modified, the polling period will
be immediately re-timed to the new value. If the modified attribute is not related to
the currently operating poll mode, the change will be implemented the next time the
relevant poll mode is started.

The specified value of the attribute is validated by the function. If this value is out-of-
range for the attribute, the status E_ZCL_ERR_INVALID_VALUE is returned.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster resides

u8AttributeId Identifier of attribute to be written to (see Section 6.8.1)

u32AttributeValue Value to be written to attribute

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_INVALID_VALUE

E_ZCL_DENY_ATTRIBUTE_ACCESS

teZCL_Status eCLD_PollControlSetAttribute(
uint8 u8SourceEndPointId,
uint8 u8AttributeId,
uint32 u32AttributeValue);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 87

Chapter 6
Poll Control Cluster

6.6.3 Client Functions

The following Poll Control cluster functions are provided in the HA API and can be
used on a cluster client only:

Function Page

eCLD_PollControlSetLongPollIntervalSend 89

eCLD_PollControlSetShortPollIntervalSend 91

eCLD_PollControlFastPollStopSend 93
88 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PollControlSetLongPollIntervalSend

Description

This function can be used on a cluster client to send a ‘Set Long Poll Interval’
command to the cluster server. This command requests the ‘long poll interval’ for
normal poll mode on the End Device to be set to the specified value.

On receiving the command, the ‘long poll interval’ attribute is only modified by the
server if the specified value is within the valid range for the attribute (including greater
than or equal to the optional user-defined minimum, if set) - see Section 6.2. If this is
not the case, the server replies to the client with a ZCL ‘default response’ indicating
an invalid value.

The change will take effect immediately. So, if the End Device is in normal poll mode
when the ‘long poll interval’ is modified, the polling period will be immediately re-
timed to the new value.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
command (see Section 6.9.3), including the
desired long poll interval

teZCL_Status eCLD_PollControlSetLongPollIntervalSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PollControl_SetLongPollIntervalPayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 89

Chapter 6
Poll Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
90 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PollControlSetShortPollIntervalSend

Description

This function can be used on a cluster client to send a ‘Set Short Poll Interval’
command to the cluster server. This command requests the ‘short poll interval’ for
fast poll mode on the End Device to be set to the specified value.

On receiving the command, the ‘short poll interval’ attribute is only modified by the
server if the specified value is within the valid range for the attribute (including greater
than or equal to the optional user-defined minimum, if set) - see Section 6.2. If this is
not the case, the server replies to the client with a ZCL ‘default response’ indicating
an invalid value.

The change will take effect immediately. So, if the End Device is in fast poll mode
when the ‘short poll interval’ is modified, the polling period will be immediately re-
timed to the new value.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
command (see Section 6.9.4), including the
desired short poll interval

teZCL_Status eCLD_PollControlSetShortPollIntervalSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PollControl_SetShortPollIntervalPayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 91

Chapter 6
Poll Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
92 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PollControlFastPollStopSend

Description

This function can be used on a cluster client to send a ‘Fast Poll Stop’ command to
the cluster server. This command is intended to abort a fast poll mode episode which
has been started on the server as the result of a ‘Check-in Response’. Therefore, the
command allows fast poll mode to be exited before the mode’s timeout is reached.

The cluster server will only stop fast poll mode on the destination End Device if a
matching ‘Fast Poll Stop’ command has been received for every request to start the
current episode of fast poll mode. Therefore, if the current fast poll mode episode
resulted from multiple start requests from multiple clients, the episode cannot be
prematurely stopped (before the timeout is reached) unless a ‘Fast Poll Stop’
command is received from each of those clients.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PollControlFastPollStopSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 93

Chapter 6
Poll Control Cluster

6.7 Return Codes

The Poll Control cluster functions use the ZCL return codes defined in the ZCL User
Guide (JN-UG-3077).

6.8 Enumerations

6.8.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Poll Control cluster.

typedef enum PACK

{

 E_CLD_POLL_CONTROL_ATTR_ID_CHECKIN_INTERVAL = 0x0000,

 E_CLD_POLL_CONTROL_ATTR_ID_LONG_POLL_INTERVAL,

 E_CLD_POLL_CONTROL_ATTR_ID_SHORT_POLL_INTERVAL,

 E_CLD_POLL_CONTROL_ATTR_ID_FAST_POLL_TIMEOUT,

 E_CLD_POLL_CONTROL_ATTR_ID_CHECKIN_INTERVAL_MIN,

 E_CLD_POLL_CONTROL_ATTR_ID_LONG_POLL_INTERVAL_MIN,

 E_CLD_POLL_CONTROL_ATTR_ID_FAST_POLL_TIMEOUT_MAX

} teCLD_PollControl_Cluster_AttrID;

6.8.2 ‘Command’ Enumerations

The following enumerations represent the commands that can be generated by the
Poll Control cluster.

typedef enum PACK

{

 E_CLD_POLL_CONTROL_CMD_CHECK_IN = 0x00,

 E_CLD_POLL_CONTROL_CMD_FAST_POLL_STOP,

 E_CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL,

 E_CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL,

} teCLD_PollControl_CommandID;

The above enumerations are used to indicate types of Poll Control cluster events and
are described in Section 6.5.
94 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
6.9 Structures

6.9.1 tsCLD_PPCallBackMessage

For a Poll Control event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_PollControlCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_PollControl_CheckinResponsePayload *psCheckinResponsePayload;

 #ifdef CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL

 tsCLD_PollControl_SetLongPollIntervalPayload
 *psSetLongPollIntervalPayload;

 #endif

 #ifdef CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

 tsCLD_PollControl_SetShortPollIntervalPayload
 *psSetShortPollIntervalPayload;

 #endif

 } uMessage;

} tsCLD_PollControlCallBackMessage;

where:

 u8CommandId indicates the type of Poll Control command that has been
received, one of:

 E_CLD_POLL_CONTROL_CMD_CHECK_IN

 E_CLD_POLL_CONTROL_CMD_FAST_POLL_STOP

 E_CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL

 E_CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

If they are required, the last two commands must be enabled in the compile-time
options, as described in Section 6.10.

 uMessage is a union containing the command payload, as one of (depending
on the value of u8CommandId):

 psCheckinResponsePayload is a pointer to the payload of a ‘Check-in
Response’ (see Section 6.9.2)

 psSetLongPollIntervalPayload is a pointer to the payload of a ‘Set
Long Poll Interval’ command (see Section 6.9.3)

 psSetShortPollIntervalPayload is a pointer to the payload of a ‘Set
Short Poll Interval’ command (see Section 6.9.4)

The command payload for each command type is indicated in Table 34 in Section 6.5.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 95

Chapter 6
Poll Control Cluster

6.9.2 tsCLD_PollControl_CheckinResponsePayload

This structure contains the payload of a ‘Check-in Response’, which is sent from the
client to the server in reply to a ‘Check-in’ command from the server.

typedef struct

{

 zbool bStartFastPolling;

 zuint16 u16FastPollTimeout;

}tsCLD_PollControl_CheckinResponsePayload;

where:

 bStartFastPolling is a boolean indicating whether or not the End Device is
required to enter fast poll mode:

 TRUE: Enter fast poll mode

 FALSE: Continue in normal poll mode

 u16FastPollTimeout is an optional fast poll mode timeout, in quarter-
seconds, in the range 1 to 65535 - that is, the period of time for which the End
Device should remain in fast poll mode (if this mode is requested through
bStartFastPolling). Zero is a special value which indicates that the value
of the ‘fast poll timeout’ attribute should be used instead (see Section 6.2). If a
non-zero value is specified then this value will over-ride the ‘fast poll timeout’
attribute (but will not over-write it).

6.9.3 tsCLD_PollControl_SetLongPollIntervalPayload

This structure contains the payload of a ‘Set Long Poll Interval’ command, which is
sent from the client to the server to request a new ‘long poll interval’ for use in normal
poll mode.

typedef struct

{

 zuint32 u32NewLongPollInterval;

}tsCLD_PollControl_SetLongPollIntervalPayload;

where u32NewLongPollInterval is the required value of the ‘long poll interval’, in
quarter-seconds, in the range 4 to 7208960. This value will be used to over-write the
corresponding cluster attribute if the specified value is within the valid range for the
attribute (including greater than or equal to the optional user-defined minimum, if set).

To use the ‘Set Long Poll Interval’ command, it must be enabled in the compile-time
options, as described in Section 6.10.
96 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
6.9.4 tsCLD_PollControl_SetShortPollIntervalPayload

This structure contains the payload of a ‘Set Short Poll Interval’ command, which is
sent from the client to the server to request a new ‘short poll interval’ for use in fast poll
mode.

typedef struct

{

 zuint16 u16NewShortPollInterval;

}tsCLD_PollControl_SetShortPollIntervalPayload;

where u16NewShortPollInterval is the required value of the ‘short poll interval’,
in quarter-seconds, in the range 1 to 65535. This value will be used to over-write the
corresponding cluster attribute if the specified value is within the valid range for the
attribute (including greater than or equal to the optional user-defined minimum, if set).

To use the ‘Set Short Poll Interval’ command, it must be enabled in the compile-time
options, as described in Section 6.10.

6.9.5 tsCLD_PollControlCustomDataStructure

The Poll Control cluster requires extra storage space to be allocated to be used by
internal functions. The structure definition for this storage is shown below:

typedef struct
{
#ifdef POLL_CONTROL_SERVER
 tsCLD_PollControlParameters sControlParameters;
#endif
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_PollControlCallBackMessage sCallBackMessage;
} tsCLD_PollControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

6.10 Compile-Time Options

This section describes the compile-time options that may be configured in the
zcl_options.h file of an application that uses the Poll Control cluster.

To enable the Poll Control cluster in the code to be built, it is necessary to add the
following line to the file:

#define CLD_POLL_CONTROL

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define POLL_CONTROL_SERVER

#define POLL_CONTROL_CLIENT
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 97

Chapter 6
Poll Control Cluster

The following options can also be configured at compile-time in the zcl_options.h file.

Enable and Set Optional Server Attributes

To enable and assign a value (t quarter-seconds) to the optional Check-in Interval
Minimum (u32CheckinIntervalMin) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_CHECKIN_INTERVAL_MIN t

To enable and assign a value (t quarter-seconds) to the optional Long Poll Interval
Minimum (u32LongPollIntervalMin) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_LONG_POLL_INTERVAL_MIN t

To enable and assign a value (t quarter-seconds) to the optional Fast Poll Timeout
Maximum (u16FastPollTimeoutMax) attribute, add the line:

#define CLD_POLL_CONTROL_ATTR_FAST_POLL_TIMEOUT_MAX t

Set Valid Range for ‘Check-in Interval’

To set the maximum possible ‘check-in interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_CHECKIN_INTERVAL_MAX t

The default value is 7208960.

To set the minimum possible ‘check-in interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_CHECKIN_INTERVAL_MIN t

The default value is 0.

This minimum value is only applied if the Check-in Interval Minimum attribute
(u32CheckinIntervalMin) is not enabled.

Set Valid Range for ‘Fast Poll Timeout’

To set the maximum possible ‘fast poll timeout’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_FAST_POLL_TIMEOUT_MAX t

The default value is 65535.

To set the minimum possible ‘fast poll timeout’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_FAST_POLL_TIMEOUT_MIN t

The default value is 1.

This maximum value is only applied if the Fast Poll Timeout Maximum attribute
(u16FastPollTimeoutMax) is not enabled.

Note: For further information on the above optional
server attributes, refer to Section 6.2.
98 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Set Valid Range for ‘Long Poll Interval’

To set the maximum possible ‘long poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_LONG_POLL_INTERVAL_MAX t

The default value is 7208960.

To set the minimum possible ‘long poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_LONG_POLL_INTERVAL_MIN t

The default value is 4.

This minimum value is only applied if the Long Poll Interval Minimum attribute
(u32LongPollIntervalMin) is not enabled.

Set Valid Range for ‘Short Poll Interval’

To set the maximum possible ‘short poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_SHORT_POLL_INTERVAL_MAX t

The default value is 65535.

To set the minimum possible ‘short poll interval’ (to t quarter-seconds), add the line:

#define CLD_POLL_CONTROL_SHORT_POLL_INTERVAL_MIN t

The default value is 1.

Enable Optional Commands

To enable the optional ‘Set Long Poll Interval’ command, add the line:

#define CLD_POLL_CONTROL_CMD_SET_LONG_POLL_INTERVAL

To enable the optional ‘Set Short Poll Interval’ command, add the line:

#define CLD_POLL_CONTROL_CMD_SET_SHORT_POLL_INTERVAL

Maximum Number of Clients

To set the maximum number of clients for a server to n, add the line:

#define CLD_POLL_CONTROL_NUMBER_OF_MULTIPLE_CLIENTS n

This is the maximum number of clients from which the server can handle Check-in
Responses. It should be equal to the capacity (number of entries) of the binding table
created on the server device to accommodate bindings to client devices (where this
size is set in a ZigBee network parameter using the ZPS Configuration Editor).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 99

Chapter 6
Poll Control Cluster

100 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7. Power Profile Cluster

This chapter describes the Power Profile cluster which is defined in the ZigBee Home
Automation profile, and provides an interface between a home appliance (e.g. a
washing machine) and the controller of an energy management system.

The Power Profile cluster has a Cluster ID of 0x001A.

7.1 Overview

The Power Profile cluster allows an appliance, the cluster server, to provide its
expected power usage data to a controller, the cluster client. This ‘power profile’
represents the predicted ‘energy footprint’ of the appliance, and may be used by the
controller to schedule and control the operation of the appliance. It may be requested
by the client or provided unsolicited by the server.

The cluster is enabled by defining CLD_PP in the zcl_options.h file - see Section
3.5.1. Further compile-time options for the Power Profile cluster are detailed in Section
7.10.

7.2 Cluster Structure and Attributes

The Power Profile cluster server is contained in the following tsCLD_PP structure:

typedef struct

{

 zuint8 u8TotalProfileNum;

 zbool bMultipleScheduling;

 zbmap8 u8EnergyFormatting;

 zbool bEnergyRemote;

 zbmap8 u8ScheduleMode;

} tsCLD_PP;

where:

 u8TotalProfileNum is the number of power profiles supported by the device
(must be between 1 and 254, inclusive)

Note: The Power Profile cluster requires the Appliance
Control cluster for the implementation of status
notifications and power management commands. The
Appliance Control cluster is described in Chapter 8.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 101

Chapter 7
Power Profile Cluster

 bMultipleScheduling is a boolean indicating whether the server side of the
cluster supports the scheduling of multiple energy phases or just a single
energy phase at a time (according to commands received from the client):

 TRUE if multiple energy phase scheduling is possible

 FALSE if only single energy phase scheduling is possible

 u8EnergyFormatting indicates the format of the Energy fields in the Power
Profile Notification and Power Profile Response:

 Bits 0-2: Number of digits to the right of the decimal point

 Bits 3-6: Number of digits to the left of the decimal point

 Bit 7: If set to ‘1’, any leading zeros will be removed

 bEnergyRemote is a boolean indicating whether the cluster server (appliance)
is configured for remote control (of energy management):

 TRUE if at least one power profile is enabled for remote control

 FALSE if no power profile is enabled for remote control

This attribute is linked to the bPowerProfileRemoteControl field in the
power profile record (see Section 7.9.13) - if the latter field is set to TRUE, the
attribute is also automatically set to TRUE.

 u8ScheduleMode indicates the criterion (cheapest or greenest) that should be
used by the cluster client (e.g. energy management system) to schedule the
power profiles:

 0x00 - criterion is left to the cluster server to choose

 0x01 - cheapest mode (minimise cost of energy usage)

 0x02 - greenest mode (maximise use of renewable energy sources)

 0x03 - compromise between cheapest and greenest

All other values are reserved.
102 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.3 Power Profiles

An appliance can have one or more power profiles. An example of an appliance with
multiple power profiles is a washing machine which has a number of programmes for
different types of materials and loads.

An individual power profile comprises a series of energy phases with different power
demands. For example, these phases may correspond to the different cycles of a
washing machine programme, such as wash, rinse, spin. Details of a power profile,
including these energy phases, are held in an entry of the power profile table on the
cluster server (appliance).

If the appliance is to be remotely controlled, the controller (cluster client) must ‘learn’
the details of the appliance’s power profile so that it can control the scheduling of the
energy phases. The schedule of a power profile is decided by the client, and includes
energy phases and their relative start-times (the energy phases are not necessarily
contiguous in time). A schedule is illustrated in Figure 4. The client must communicate
the schedule for a power profile to the server where the schedule will be executed.

Note: The number of power profiles on a device must
be defined in the file zcl_options.h (see Section 7.10).
However, in the current HA release, a device is
restricted to having only one power profile.

Figure 4: Schedule of Energy Phases of a Power Profile

Energy Phase 1

Energy Phase 2

Energy
Phase 3

Time

Power
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 103

Chapter 7
Power Profile Cluster

7.4 Power Profile Operations

This section describes the main operations to be performed on the Power Profile
cluster server (appliance) and client (controller).

7.4.1 Initialisation

The Power Profile cluster must be initialised on both the cluster server and client. This
can be done using the function eCLD_PPCreatePowerProfile(), which creates an
instance of the Power Profile cluster on a local endpoint.

If you are using a ZigBee device which includes the Power Profile cluster, the above
function will be automatically called by the initialisation function for the device. You
only need to call eCLD_PPCreatePowerProfile() explicitly when setting up a custom
endpoint containing one or more selected clusters (rather than the whole set of
clusters supported by a standard ZigBee device).

7.4.2 Adding and Removing a Power Profile (Server Only)

A Power Profile cluster server (appliance) will support one or more power profiles.
Information on these power profiles is held on the server in a power profile table,
where each table entry contains information on one supported power profile.

The application on the appliance can perform various operations on the power profile
table, as described in the sub-sections below.

7.4.2.1 Adding a Power Profile Entry

The server application can introduce a new power profile by adding a corresponding
entry to the power profile table using the function eCLD_PPAddPowerProfileEntry().
The new power profile table entry is specified in a tsCLD_PPEntry structure (see
Section 7.9.2) supplied to this function. This structure includes the Power Profile ID -
these identifiers should be numbered consecutively from 1 to 255.

The function eCLD_PPAddPowerProfileEntry() can also be used to replace (over-
write) an existing power profile table entry, in which case the new entry should have
the same Power Profile ID as the existing entry to be replaced.

Note: In the current HA release, a device is restricted to
having only one power profile.
104 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.4.2.2 Removing a Power Profile Entry

The server application can remove a power profile from the device by calling the
function eCLD_PPRemovePowerProfileEntry() to delete the corresponding entry of
the local power profile table. The entry to be deleted is specified by means of the
relevant Power Profile ID.

7.4.2.3 Obtaining a Power Profile Entry

The server application can obtain the details of a power profile supported by the server
by reading the corresponding entry of the power profile table using the function
eCLD_PPGetPowerProfileEntry(). The required entry is specified by means of the
relevant Power Profile ID.

7.4.3 Communicating Power Profiles

In order to control the power consumption of the appliance (by scheduling the energy
phases of the power profile), the controller (cluster client) must ‘learn’ the power
profiles supported by the appliance (server). This may be done through requests or
notifications, as described in the sub-sections below.

7.4.3.1 Requesting a Power Profile (by Client)

In order to ‘learn’ a power profile supported by the server, the client application can
request this profile from the server by calling the eCLD_PPPowerProfileReqSend()
function, which sends a Power Profile Request to the server. This function can be used
to request a specific power profile (specified using its Power Profile ID) or all the power
profiles supported by the server.

On receiving the server’s response, an E_CLD_PP_CMD_POWER_PROFILE_RSP
event is generated on the client for each energy phase within the power profile. The
reported information is contained in a tsCLD_PP_PowerProfilePayload structure
(see Section 7.9.4). The application may store or discard this information, as required.
By receiving the energy phase information in individual events, the application only
needs to use as much memory as is required to store the relevant energy phase data.

Note: In order remotely control the appliance from a
controller for energy management, the attribute
bEnergyRemote of the Power Profile cluster on the
server device must be set to TRUE (see Section 7.2).

Note: The client application may first use the function
eCLD_PPPowerProfileStateReqSend() to request the
identifiers of the power profiles that are currently
supported on the server.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 105

Chapter 7
Power Profile Cluster

7.4.3.2 Notification of a Power Profile (by Server)

The cluster server may send unsolicited notifications of the power profiles that it
supports to the client. To do this, the server application must call the function
eCLD_PPPowerProfileNotificationSend() which sends a Power Profile Notification
containing the essential details of one supported power profile (such as the energy
phases within the profile). This information is supplied to the function in a
tsCLD_PP_PowerProfilePayload structure (see Section 7.9.4). If the server
supports multiple power profiles, a separate notification must be sent for each profile.

On receiving the notification on the client, the event
E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION is generated on the client for
each energy phase within the power profile. The reported information is contained in
a tsCLD_PP_PowerProfilePayload structure (see Section 7.9.4). The application
may store or discard this information, as required. By receiving the energy phase
information in individual events, the application only needs to use as much memory as
is required to store the relevant energy phase data.

7.4.4 Communicating Schedule Information

A power profile schedule comprises a sequence of energy phases and their relative
start-times (the energy phases may have gaps between them):

 An energy phase is identified by its Energy Phase Identifier, in the range 1 to
255 (inclusive)

 The start-time of an energy phase is expressed as a delay, in minutes, from the
end of the previous energy phase. For the first energy phase of a power profile
schedule, this delay is measured from the time that the schedule was started

Although a power profile on the cluster server may support multiple energy phases,
the schedule for the power profile may possibly incorporate only a sub-set of these
phases. The set of energy phases in a schedule is chosen by the client (controller),
which must communicate this schedule to the server (appliance). This may be done
through a request or notification, as described in Section 7.4.4.1 and Section 7.4.4.2
below.

Note: The normal duration of an energy phase, in
minutes, is fixed and is specified in the energy phase
information in the power profile.
106 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.4.4.1 Requesting a Schedule (by Server)

The server application can request a schedule for a supported power profile from the
client by calling the function eCLD_PPEnergyPhasesScheduleReqSend(), which
sends an Energy Phases Schedule Request to the client.

The client can only return the requested schedule information if it stores this type of
information for the power profile. If this is the case, an
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ event will be generated
on the client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage, and the client will send an Energy Phases Schedule
Response back to the server. Otherwise, the client will send a ZCL default response
with status NOT_FOUND.

On receiving an Energy Phases Schedule Response from the client, the event
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_RSP is generated on the
server, containing the requested schedule information in a
tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 7.9.6). One
or more of the following outcomes will result:

 If the attribute bEnergyRemote is set to FALSE on the server (no remote
control of the device), the server will simply reject the received schedule.

 If the received schedule information contains an u16MaxActivationDelay
value of zero for an energy phase (see Section 7.9.11), this energy phase will
be rejected by the server although other valid energy phases will be accepted.
For each rejected energy phase, the server will send a ZCL default response
with status NOT_AUTHORIZED to the client.

 If the received schedule information results in an update of the power profile
schedule on the server, the server will automatically send an Energy Phases
Schedule State Notification back to the client. On receiving this notification, an
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION
event will be generated on the client.

7.4.4.2 Notification of a Schedule (by Client)

The cluster client may send an unsolicited notification of a power profile schedule to
the server. To do this, the client application must call the function
eCLD_PPEnergyPhasesScheduleNotificationSend() which sends an Energy
Phases Schedule Notification containing the schedule. This information is supplied to
the function in a tsCLD_PP_EnergyPhasesSchedulePayload structure (see
Section 7.9.6).

Note: Before requesting a power profile schedule, the
server application may send the schedule’s timing
constraints to the client using the function
eCLD_PPPowerProfileScheduleConstraintsNotification
Send(). The client application can alternatively request
these schedule constraints from the server by calling
eCLD_PPPowerProfileScheduleConstraintsReqSend().
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 107

Chapter 7
Power Profile Cluster

On receiving the notification on the server, the event
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NOTIFICATION is generated,
containing the sent power profile schedule. One or more of the following outcomes will
result:

 If the attribute bEnergyRemote is set to FALSE on the server (no remote
control of the device), the server will simply reject the received schedule.

 If the received schedule information contains an u16MaxActivationDelay
value of zero for an energy phase (see Section 7.9.11), this energy phase will
be rejected by the server although other valid energy phases will be accepted.
For each rejected energy phase, the server will send a ZCL default response
with status NOT_AUTHORIZED to the client.

 If the received schedule information results in an update of the power profile
schedule on the server, the server will automatically send an Energy Phases
Schedule State Notification back to the client. On receiving this notification, an
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION
event will be generated on the client.

7.4.4.3 Notification of Energy Phases in Power Profile Schedule (by Server)

The server application can use the function
eCLD_PPEnergyPhasesScheduleStateNotificationSend() to send an unsolicited
Energy Phases Schedule State Notification to a cluster client, in order to inform the
client of the energy phases that are in the schedule of a particular power profile.

7.4.4.4 Requesting the Scheduled Energy Phases (by Client)

The client application can use the function
eCLD_PPEnergyPhasesScheduleStateReqSend() to send an Energy Phases
Schedule State Request to the cluster server, in order to obtain the schedule of energy
phases for a particular power profile on the server.

On receiving the response on the client, the event
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP is generated,
containing the requested schedule information. The obtained schedule can be used to
re-align the schedule information on the client with the information on the server - for
example, after a reset of the client device.

7.4.5 Executing a Power Profile Schedule

After receiving a power profile schedule from the client (as described in Section 7.4.4),
the server can start execution of the schedule. The instruction to start the schedule
comes from the client in the form of an Energy Phases Schedule Notification. To issue
this instruction, the client application must call the function
eCLD_PPEnergyPhasesScheduleNotificationSend(). On receiving the notification,
the server will automatically start the schedule.
108 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
The possible states of a power profile are fully detailed in Section 7.8.2 but, generally,
it will move through the following principal states before, during and after execution:

 E_CLD_PP_STATE_PROGRAMMED: The power profile is defined in the local
power profile table but a schedule has not been received from the client. Even
without a schedule from the client, a schedule of energy phases that was
defined when the power profile was introduced using the function
eCLD_PPAddPowerProfileEntry() can be started from this state (see below).

 E_CLD_PP_STATE_WAITING_TO_START: The power profile will be in this
state before the first energy phase starts and between energy phases (provided
there is a gap between the end of one phase and the beginning of the next).

 E_CLD_PP_STATE_RUNNING: An energy phase is running.

 E_CLD_PP_STATE_ENDED: The final energy phase has completed.

Once a schedule has started, the server application must progress execution through
the different states of the schedule by periodically calling the function
eCLD_PPSchedule() once per second. This function will move the power profile to
the next state, if it is due to start, and update the relevant state and timing parameters.

Whenever there is a change of state of a power profile, the cluster server will
automatically send a Power Profile State Notification to the client (the server
application can also send such a notification ‘manually’ by calling the function
eCLD_PPPowerProfileStateNotificationSend()). The notification contains a power
profile record which specifies the active power profile, the energy phase that is
currently running (or due to run next) and the current state of the power profile. These
notifications allow the controller to monitor the appliance. On receiving a notification
on the client, an E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION
event is generated, containing the sent power profile state information in a
tsCLD_PP_PowerProfileStatePayload structure (see Section 7.9.5).

7.4.6 Communicating Price Information

The cost of implementing a power profile schedule on an appliance (cluster server) is
determined/calculated by the controller (cluster client). The server can request price
information from the client in a number of ways, as described below.

Note: The server application can also use the function
eCLD_PPSetPowerProfileState() to ‘manually’ move
execution of the schedule to a particular (valid) state,
irrespective of whether the target state is scheduled.
This function can be used by the server application to
locally start a schedule from the ‘programmed’ state.

Note: Use of the Power Profile Price functions,
referenced below, must be enabled in the compile-time
options, as described in Section 7.10.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 109

Chapter 7
Power Profile Cluster

7.4.6.1 Requesting Cost of a Power Profile Schedule (by Server)

The server application can use the function eCLD_PPGetPowerProfilePriceSend()
to send a Get Power Profile Price Request to the client, in order to request the cost of
executing the schedule of a particular power profile.

The client can only return the requested information if price-related information about
the power profile is held on the client device. If this is the case, an
E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE event will be generated on the
client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage and the client will send a Get Power Profile Price
Response back to the server. Otherwise, the client will send a ZCL default response
with status NOT_FOUND.

On receiving a Get Power Profile Price Response on the server, the event
E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP is generated, containing
the requested price information (if available).

Alternatively, the server application can use the function
eCLD_PPGetPowerProfilePriceExtendedSend() to send a Get Power Profile Price
Extended Request to a cluster client, in order to request specific cost information
about a power profile supported by the server. The cost of executing a power profile
can be requested with either scheduled energy phases or contiguous energy phases
(no gaps between them). This request will be handled by the client as described above
for an ordinary Get Power Profile Price Request. However, the response will result in
an E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP event on
the server, containing the requested price information (if available).

7.4.6.2 Requesting Cost of Power Profile Schedules Over a Day (by Server)

The server application can use the eCLD_PPGetOverallSchedulePriceSend()
function to send a Get Overall Schedule Price Request to the client, in order to obtain
the overall cost of all the power profiles that will be executed over the next 24 hours.

The client can only return the requested information if price-related information about
the relevant power profiles is held on the client device. If this is the case, an
E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE event will be generated on
the client, with the bIsInfoAvailable field set to TRUE in the event structure
tsCLD_PPCallBackMessage. Otherwise, the client will generate a ZCL default
response with status NOT_FOUND.

On receiving a Get Overall Schedule Price Response on the server, the event
E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP is generated,
containing the requested price information (if available).
110 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.5 Power Profile Events

The Power Profile cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). The cluster contains its own event handler. However, if a device uses
this cluster then application-specific Power Profile event handling must be included in
the user-defined callback function for the associated endpoint, where this callback
function is registered through the relevant endpoint registration function. This callback
function will then be invoked when a Power Profile event occurs and needs the
attention of the application.

For a Power Profile event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_PPCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
#ifdef PP_CLIENT
 bool bIsInfoAvailable;
#endif
 union
 {
 tsCLD_PP_PowerProfileReqPayload *psPowerProfileReqPayload;
 tsCLD_PP_GetPowerProfilePriceExtendedPayload
 *psGetPowerProfilePriceExtendedPayload;
 } uReqMessage;
 union
 {
 tsCLD_PP_GetPowerProfilePriceRspPayload *psGetPowerProfilePriceRspPayload;
 tsCLD_PP_GetOverallSchedulePriceRspPayload
 *psGetOverallSchedulePriceRspPayload;
 tsCLD_PP_EnergyPhasesSchedulePayload *psEnergyPhasesSchedulePayload;
 tsCLD_PP_PowerProfileScheduleConstraintsPayload
 *psPowerProfileScheduleConstraintsPayload;
 tsCLD_PP_PowerProfilePayload *psPowerProfilePayload;
 tsCLD_PP_PowerProfileStatePayload *psPowerProfileStatePayload;
 }uRespMessage;
} tsCLD_PPCallBackMessage;

The above structure is fully described in Section 7.9.1.

When a Power Profile event occurs, one of the command types listed in Table 35 and
Table 36 is specified through the u8CommandId field of the
tsCLD_PPCallBackMessage structure. This command type determines which
command payload is used from the unions uReqMessage (for request commands)
and uRespMessage (for response and notification commands).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 111

Chapter 7
Power Profile Cluster

u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_POWER_PROFILE_REQ A Power Profile Request has been received by the
server (appliance).
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_POWER_PROFILE_STATE_REQ A Power Profile State Request has been received by the
server (appliance).

E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_
RSP

A Get Power Profile Price Response has been received
by the server (appliance), following a previously sent
Get Power Profile Price Request.
tsCLD_PP_GetPowerProfilePriceRspPayload

E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_
EXTENDED_RSP

A Get Power Profile Price Extended Response has
been received by the server (appliance), following a
previously sent Get Power Profile Price Extended
Request.
tsCLD_PP_GetPowerProfilePriceRspPayload

E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_
PRICE_RSP

A Get Overall Schedule Price Response has been
received by the server (appliance), following a previ-
ously sent Get Overall Schedule Price Request.
tsCLD_PP_GetOverallSchedulePriceRspPayload

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
NOTIFICATION

An Energy Phases Schedule Notification has been
received by the server (appliance).
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
RSP

An Energy Phases Schedule Response has been
received by the server (appliance), following a previ-
ously sent Energy Phases Schedule Request.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
STATE_RSP

An Energy Phases Schedule State Response has been
received by the server (appliance), following a previ-
ously sent Energy Phases Schedule State Request.
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_GET_POWER_PROFILE_
SCHEDULE_CONSTRAINTS_REQ

A Get Power Profile Schedule Constraints Request has
been received by the server (appliance).
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
STATE_REQ

An Energy Phases Schedule State Request has been
received by the server (appliance).
tsCLD_PP_PowerProfileReqPayload

Table 35: Power Profile Command Types (Events on Server)
112 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
u8CommandId Enumeration Description/Payload Type

E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION A Power Profile Notification has been received by the
client (controller).
tsCLD_PP_PowerProfilePayload

E_CLD_PP_CMD_POWER_PROFILE_STATE_
NOTIFICATION

A Power Profile State Notification has been received by
the client (controller).
tsCLD_PP_PowerProfileStatePayload

E_CLD_PP_CMD_POWER_PROFILE_RSP A Power Profile Response has been received by the cli-
ent (controller), following a previously sent Power Pro-
file Request.
tsCLD_PP_PowerProfilePayload

E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP A Power Profile State Response has been received by
the client (controller), following a previously sent Power
Profile State Request.
tsCLD_PP_PowerProfileStatePayload

E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE A Get Power Profile Price Request has been received
by the client (controller).
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_
PRICE

A Get Overall Schedule Price Request has been
received by the client (controller).

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
REQ

An Energy Phases Schedule Request has been
received by the client (controller).
tsCLD_PP_PowerProfileReqPayload

E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_
STATE_NOTIFICATION

An Energy Phases Schedule State Notification has
been received by the client (controller).
tsCLD_PP_EnergyPhasesSchedulePayload

E_CLD_PP_CMD_SCHEDULE_CONSTRAINTS_
NOTIFICATION

A Power Profile Schedule Constraints Notification has
been received by the client (controller).
tsCLD_PP_PowerProfileScheduleConstraintsPayload

E_CLD_PP_CMD_GET_POWER_PROFILE_
SCHEDULE_CONSTRAINTS_RSP

A Power Profile Schedule Constraints Response has
been received by the client (controller).
tsCLD_PP_PowerProfileScheduleConstraintsPayload

E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_
EXTENDED

A Get Power Profile Price Extended Request has been
received by the client (controller).
tsCLD_PP_GetPowerProfilePriceExtendedPayload

Table 36: Power Profile Command Types (Events on Client)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 113

Chapter 7
Power Profile Cluster

7.6 Functions

The Power Profile cluster functions provided in the HA API are described in the
following three sub-sections, according to the side(s) of the cluster on which they can
be used:

 Server/client function are described in Section 7.6.1

 Server functions are described in Section 7.6.2

 Client functions are described in Section 7.6.3

7.6.1 Server/Client Function

The following Power Profile cluster function is provided in the HA API and can be used
on either a cluster server or cluster client:

Function Page

eCLD_PPCreatePowerProfile 115
114 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPCreatePowerProfile

Description

This function creates an instance of the Power Profile cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Power Profile cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Power Profile cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the number of attributes supported by the Power Profile cluster,
which is 5.

The array declaration should be as follows:

uint8 au8AppPPClusterAttributeControlBits[5];

The function will initialise the array elements to zero.

teZCL_Status eCLD_PPCreatePowerProfile(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,

tsCLD_PPCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 115

Chapter 7
Power Profile Cluster

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Power Profile cluster. This parameter can refer to a pre-
filled structure called sCLD_PP which is provided in the
PowerProfile.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_PP which defines the attributes
of the Power Profile cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 7.9.14)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
116 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.6.2 Server Functions

The following Power Profile cluster functions are provided in the HA API and can be
used on a cluster server only:

Function Page

eCLD_PPSchedule 118

eCLD_PPSetPowerProfileState 119

eCLD_PPAddPowerProfileEntry 120

eCLD_PPRemovePowerProfileEntry 121

eCLD_PPGetPowerProfileEntry 122

eCLD_PPPowerProfileNotificationSend 123

eCLD_PPEnergyPhaseScheduleStateNotificationSend 124

eCLD_PPPowerProfileScheduleConstraintsNotificationSend 125

eCLD_PPEnergyPhasesScheduleReqSend 127

eCLD_PPPowerProfileStateNotificationSend 128

eCLD_PPGetPowerProfilePriceSend 129

eCLD_PPGetPowerProfilePriceExtendedSend 130

eCLD_PPGetOverallSchedulePriceSend 132
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 117

Chapter 7
Power Profile Cluster

eCLD_PPSchedule

Description

This function can be used on a cluster server to update the state of the currently
active power profile and the timings required for scheduling. When called, the
function automatically makes any required changes according to the scheduled
energy phases for the power profile. If no change is scheduled, the function only
updates timing information. If a change is required, it also updates the power profile
state and the ID of the energy phase currently being executed.

The function should be called once per second to progress the active power profile
schedule and the application should provide a 1-second timer to prompt these
function calls.

Parameters

None

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_PPSchedule(void);
118 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPSetPowerProfileState

Description

This function can be used on a cluster server to move the specified power profile to
the specified target state. Enumerations for the possible states are provided, and are
listed and described in Section 7.8.2.

The function performs the following checks:

 Checks whether the specified Power Profile ID exists (if not, the function returns with
the status E_ZCL_CMDS_NOT_FOUND)

 Checks whether the specified target state is a valid state (if not, the function returns
with the status E_ZCL_CMDS_INVALID_VALUE)

 Checks whether the power profile is currently able move to the target state (if not, the
function returns with the status E_ZCL_CMDS_INVALID_FIELD)

If all the checks are successful, the move is implemented (and the function returns
with the status E_ZCL_CMD_SUCCESS).

Parameters

u8SourceEndPointId Number of local endpoint on which cluster resides

u8PowerProfileId Identifier of the power profile

sPowerProfileState Target state to which power profile is to be moved -
enumerations are provided (see Section 7.8.2)

Returns

E_ZCL_CMD_SUCCESS

E_ZCL_CMDS_NOT_FOUND

E_ZCL_CMDS_INVALID_VALUE

E_ZCL_CMDS_INVALID_FIELD

teZCL_CommandStatus eCLD_PPSetPowerProfileState(
uint8 u8SourceEndPointId,
uint8 u8PowerProfileId,
teCLD_PP_PowerProfileState sPowerProfileState);

Note: The power profile state can be changed by this function
only if the move from the existing state to the target state is a
valid change according to the HA specification.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 119

Chapter 7
Power Profile Cluster

eCLD_PPAddPowerProfileEntry

Description

This function can be used on a cluster server to introduce a new power profile by
adding an entry to the local power profile table.

The function checks whether there is sufficient space in the table for the new power
profile entry (if not, the function returns with the status
E_ZCL_ERR_INSUFFICIENT_SPACE).

An existing power profile entry can be over-written with a new profile by specifying
the same Power Profile ID (in the new entry structure).

The function will also update two of the cluster attributes (if needed), as follows.

 If a power profile is introduced which has multiple energy phases (as indicated by the
u8NumOfScheduledEnergyPhases field of the tsCLD_PPEntry structure), the
attribute bMultipleScheduling will be set to TRUE (if not already TRUE)

 If a power profile is introduced which allows remote control for energy management (as
indicated by the bPowerProfileRemoteControl field of the tsCLD_PPEntry
structure), the attribute bEnergyRemote will be set to TRUE (if not already TRUE)

Parameters

u8SourceEndPointId Number of local endpoint on which cluster resides

psPowerProfileEntry Structure containing the power profile to add (see
Section 7.9.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INSUFFICIENT_SPACE

teZCL_Status eCLD_PPAddPowerProfileEntry(
uint8 u8SourceEndPointId,
tsCLD_PPEntry *psPowerProfileEntry);
120 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPRemovePowerProfileEntry

Description

This function can be used on a cluster server to remove a power profile by deleting
the relevant entry in the local power profile table.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster resides

u8PowerProfileId Identifier of power profile to be removed

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_PPRemovePowerProfileEntry(
uint8 u8SourceEndPointId,
uint8 u8PowerProfileId);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 121

Chapter 7
Power Profile Cluster

eCLD_PPGetPowerProfileEntry

Description

This function can be used on a cluster server to obtain an entry from the local power
profile table. The required entry is specified using the relevant Power Profile ID. The
function obtains a pointer to the relevant entry, if it exists - a pointer must be provided
to a location to receive the pointer to the entry.

If no entry with the specified Power Profile ID is found, the function returns
E_ZCL_ERR_INVALID_VALUE.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster resides

u8PowerProfileId Identifier of power profile to be obtained

ppsPowerProfileEntry Pointer to a location to receive a pointer to the required
power profile table entry (see Section 7.9.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_PPGetPowerProfileEntry(
uint8 u8SourceEndPointId,
uint8 u8PowerProfileId,
tsCLD_PPEntry **ppsPowerProfileEntry);
122 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPPowerProfileNotificationSend

Description

This function can be used on the cluster server to send a Power Profile Notification
to a cluster client, in order to inform the client about one power profile supported by
the server. The notification contains essential information about the power profile,
including the energy phases supported by the profile (and certain details about
them). If the server supports multiple power profiles, the function must be called for
each profile separately.

On receiving the notification on the client, the event
E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION will be generated,
containing the sent power profile information in a
tsCLD_PP_PowerProfilePayload structure (see Section 7.9.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.4), including essential
information about the power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPPowerProfileNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfilePayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 123

Chapter 7
Power Profile Cluster

eCLD_PPEnergyPhaseScheduleStateNotificationSend

Description

This function can be used on the cluster server to send an Energy Phases Schedule
State Notification to a cluster client, in order to inform the client of the energy phases
that are in the schedule of a particular power profile. The function is used to send an
unsolicited command.

On receiving the notification on the client, the event
E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION will
be generated, containing the sent power profile information in a
tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 7.9.6).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.6), including the
identifier of the relevant power profile and the
associated schedule of energy phases

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status
eCLD_PPEnergyPhasesScheduleStateNotificationSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_EnergyPhasesSchedulePayload

 *psPayload);
124 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPPowerProfileScheduleConstraintsNotificationSend

Description

This function can be used on the cluster server to send a Power Profile Schedule
Constraints Notification to a cluster client, in order to inform the client of the schedule
restrictions on a particular power profile. The constraints are specified in a
tsCLD_PP_PowerProfileScheduleConstraintsPayload structure (see
Section 7.9.7). They can subsequently be used by the client in calculating the
schedule for the energy phases of the power profile. The function is used to send an
unsolicited command.

On receiving the notification on the client, the event
E_CLD_PP_CMD_SCHEDULE_CONSTRAINTS_NOTIFICATION will be
generated, containing the sent power profile constraint information in a
tsCLD_PP_PowerProfileScheduleConstraintsPayload structure.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.7), including the
identifier of the relevant power profile and the
associated schedule constraints

teZCL_Status
eCLD_PPPowerProfileScheduleConstraintsNotificationSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileScheduleConstraintsPayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 125

Chapter 7
Power Profile Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
126 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPEnergyPhasesScheduleReqSend

Description

This function can be used on the cluster server to send an Energy Phases Schedule
Request to a cluster client, in order to obtain the schedule of energy phases for a
particular power profile.

The function is non-blocking and will return immediately. On successfully receiving
an Energy Phases Schedule Response from the client, an
E_CLD_PP_CMD_ENERGY_PHASE_SCHEDULE_RSP event will be generated on
the server, containing the requested schedule information in a
tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 7.9.6). For
full details of handling an Energy Phases Schedule Request, refer to Section 7.4.4.1.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.3), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPEnergyPhasesScheduleReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 127

Chapter 7
Power Profile Cluster

eCLD_PPPowerProfileStateNotificationSend

Description

This function can be used on the cluster server to send a Power Profile State
Notification to a cluster client, in order to inform the client of the state of the power
profile that is currently active on the server. The function is used to send an
unsolicited command.

On receiving the notification on the client, the event
E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION will be generated,
containing the sent power profile state information in a
tsCLD_PP_PowerProfileStatePayload structure (see Section 7.9.5).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
command (see Section 7.9.5), including the
identifier and state of the relevant power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPPowerProfileStateNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileStatePayload *psPayload);
128 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPGetPowerProfilePriceSend

Description

This function can be used on the cluster server to send a Get Power Profile Price
Request to a cluster client, in order to request the cost of executing the schedule of
a particular power profile. Use of this function must be enabled in the cluster compile-
time options, as described in Section 7.10.

The function is non-blocking and will return immediately. On successfully receiving a
Get Power Profile Price Response from the client, an
E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP event will be generated
on the server, containing the requested price information in a
tsCLD_PP_GetPowerProfilePriceRspPayload structure (see Section 7.9.9).
For full details of handling a Get Power Profile Price Request, refer to Section 7.4.6.1.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.5), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPGetPowerProfilePriceSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 129

Chapter 7
Power Profile Cluster

eCLD_PPGetPowerProfilePriceExtendedSend

Description

This function can be used on the cluster server to send a Get Power Profile Price
Extended Request to a cluster client, in order to request specific cost information
about a power profile supported by the server. The cost of executing a power profile
can be requested with either scheduled energy phases or contiguous energy phases
(no gaps between them). Use of this function must be enabled in the cluster compile-
time options, as described in Section 7.10.

The function is non-blocking and will return immediately. On successfully receiving a
Get Power Profile Price Extended Response from the client, an
E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP event will
be generated on the server, containing the requested price information in a
tsCLD_PP_GetPowerProfilePriceRspPayload structure (see Section 7.9.9).
For full details of handling a Get Power Profile Price Extended Request, refer to
Section 7.4.6.1.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.8), including the type of
price information required

teZCL_Status eCLD_PPGetPowerProfilePriceExtendedSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_GetPowerProfilePriceExtendedPayload

 *psPayload);
130 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 131

Chapter 7
Power Profile Cluster

eCLD_PPGetOverallSchedulePriceSend

Description

This function can be used on the cluster server to send a Get Overall Schedule Price
Request to a cluster client, in order to obtain the overall cost of all the power profiles
that will be executed over the next 24 hours. Use of this function must be enabled in
the cluster compile-time options, as described in Section 7.10.

The function is non-blocking and will return immediately. On successfully receiving a
Get Overall Schedule Price Response from the client, an
E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP event will be
generated on the server, containing the required price information in a
tsCLD_PP_GetOverallSchedulePriceRspPayload structure (see Section
7.9.10). For full details of handling a Get Overall Schedule Price Request, refer to
Section 7.4.6.2.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster server
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
client resides

psDestinationAddress Pointer to a structure containing the destination
address of the client node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPGetOverallSchedulePriceSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
132 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.6.3 Client Functions

The following Power Profile cluster functions are provided in the HA API and can be
used on a cluster client only:

Function Page

eCLD_PPPowerProfileRequestSend 134

eCLD_PPEnergyPhasesScheduleNotificationSend 135

eCLD_PPPowerProfileStateReqSend 137

eCLD_PPEnergyPhasesScheduleStateReqSend 138

eCLD_PPPowerProfileScheduleConstraintsReqSend 139
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 133

Chapter 7
Power Profile Cluster

eCLD_PPPowerProfileRequestSend

Description

This function can be used on a cluster client to send a Power Profile Request to the
cluster server, in order to obtain one or more power profiles from the server. The
function can be used to request a specific power profile (specified using its identifier)
or all the power profiles supported by the server (specified using an identifier of zero).

The function is non-blocking and will return immediately. On receiving the server’s
response, an E_CLD_PP_CMD_POWER_PROFILE_RSP event will be generated
on the client, containing a power profile in a tsCLD_PP_PowerProfilePayload
structure (see Section 7.9.4). If all power profiles on the server have been requested,
a response will be received for each profile separately and, therefore, the above
event will be generated for each profile reported.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.3), including the
identifier of the required power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPPowerProfileRequestSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);
134 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPEnergyPhasesScheduleNotificationSend

Description

This function can be used on a cluster client to send an Energy Phases Schedule
Notification to the cluster server, in order to start the schedule of energy phases of a
power profile on the server. The function is used to send an unsolicited command
and should only be called if the server allows itself to be remotely controlled. The
command payload specifies the identifiers of the required energy phases and
includes the relative start-times of the phases (see Section 7.9.12).

On receiving the notification on the server, the event
E_CLD_PP_CMD_ENERGY_PHASE_SCHEDULE_NOTIFICATION will be
generated, containing the sent energy phase schedule information in a
tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 7.9.6). The
subsequent handling of this notification is detailed in Section 7.4.4.2.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
command (see Section 7.9.6), including the
scheduled energy phases and start-times

teZCL_Status
eCLD_PPEnergyPhasesScheduleNotificationSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_EnergyPhasesSchedulePayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 135

Chapter 7
Power Profile Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
136 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPPowerProfileStateReqSend

Description

This function can be used on a cluster client to send a Power Profile State Request
to the cluster server, in order to obtain the identifier(s) of the power profile(s) currently
supported on the server.

The function is non-blocking and will return immediately. On receiving the server’s
response, an E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP event will be
generated on the client, containing the required identifier(s). The response will
contain the power profile records of all the supported power profiles on the server in
a tsCLD_PP_PowerProfileStatePayload structure (see Section 7.9.5).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status eCLD_PPPowerProfileStateReqSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 137

Chapter 7
Power Profile Cluster

eCLD_PPEnergyPhasesScheduleStateReqSend

Description

This function can be used on a cluster client to send an Energy Phases Schedule
State Request to the cluster server, in order to obtain the schedule of energy phases
for a particular power profile on the server. The obtained schedule can be used to re-
align the schedule information on the client with the information on the server - for
example, after a reset of the client device.

The function is non-blocking and will return immediately. On receiving the server’s
response, an E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP
event will be generated on the client, containing the requested schedule information
in a tsCLD_PP_EnergyPhasesSchedulePayload structure (see Section 7.9.6).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.3), including the
identifier of the relevant power profile

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status
eCLD_PPEnergyPhasesScheduleStateReqSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);
138 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_PPPowerProfileScheduleConstraintsReqSend

Description

This function can be used on a cluster client to send a Power Profile Schedule
Constraints Request to the cluster server, in order to obtain the schedule restrictions
on a particular power profile on the server. The obtained constraints can
subsequently be used in calculating a schedule of energy phases for the power
profile (e.g. before calling eCLD_PPEnergyPhasesScheduleNotificationSend()).

The function is non-blocking and will return immediately. The server will send a
response to this request and on receiving this response, an
E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_RSP
event will be generated on the client, containing the requested schedule constraints
in a tsCLD_PP_PowerProfileScheduleConstraintsPayload structure (see
Section 7.9.7).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of local endpoint on which cluster client
resides

u8DestinationEndPointId Number of remote endpoint on which cluster
server resides

psDestinationAddress Pointer to a structure containing the destination
address of the server node

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the message

psPayload Pointer to structure containing the payload for the
request (see Section 7.9.3), including the
identifier of the relevant power profile

teZCL_Status
eCLD_PPPowerProfileScheduleConstraintsReqSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_PP_PowerProfileReqPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 139

Chapter 7
Power Profile Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL
140 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.7 Return Codes

The Power Profile cluster functions use the ZCL return codes defined in the ZCL User
Guide (JN-UG-3077).

7.8 Enumerations

7.8.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Power Profile cluster.

typedef enum PACK

{

 E_CLD_PP_ATTR_ID_TOTAL_PROFILE_NUM = 0x0000,

 E_CLD_PP_ATTR_ID_MULTIPLE_SCHEDULE,

 E_CLD_PP_ATTR_ID_ENERGY_FORMATTING,

 E_CLD_PP_ATTR_ID_ENERGY_REMOTE,

 E_CLD_PP_ATTR_ID_SCHEDULE_MODE

} teCLD_PP_Cluster_AttrID;

7.8.2 ‘Power Profile State’ Enumerations

The following enumerations represent the possible states of a power profile.

typedef enum PACK

{

 E_CLD_PP_STATE_IDLE = 0x00,

 E_CLD_PP_STATE_PROGRAMMED,

 E_CLD_PP_STATE_RUNNING = 0x02,

 E_CLD_PP_STATE_PAUSED,

 E_CLD_PP_STATE_WAITING_TO_START,

 E_CLD_PP_STATE_WAITING_PAUSED,

 E_CLD_PP_STATE_ENDED,

} teCLD_PP_PowerProfileState;

The above enumerations are described in the table below.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 141

Chapter 7
Power Profile Cluster

7.8.3 ‘Server-Generated Command’ Enumerations

The following enumerations represent the commands that can be generated by the
cluster server.

typedef enum PACK

{

 E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION = 0x00,

 E_CLD_PP_CMD_POWER_PROFILE_RSP,

 E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP,

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE,

 E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION,

 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION,

 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_NOTIFICATION,

 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_RSP,

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED

 } teCLD_PP_ServerGeneratedCommandID;

The above enumerations are used to indicate types of Power Profile cluster events
and are described in Section 7.5.

Enumeration Description

E_CLD_PP_STATE_IDLE Not all parameters of the power profile have yet been defined

E_CLD_PP_STATE_PROGRAMMED In the programmed state, as all the parameters of the power pro-
file have been defined but there is no schedule or a schedule
exists but has not been started

E_CLD_PP_STATE_RUNNING The power profile is active and an energy phase is running

E_CLD_PP_STATE_PAUSED The power profile is active but the current energy phase is paused

E_CLD_PP_STATE_WAITING_TO_START The power profile is between two energy phases - one has ended
and the next one has not yet started. If the next energy phase is
the first energy phase of the schedule, this state indicates that
schedule has been started but the first energy has not yet started

E_CLD_PP_STATE_WAITING_PAUSED The power profile has been paused while in the ‘waiting to start’
state (described above)

E_CLD_PP_STATE_ENDED The power profile schedule has finished

Table 37: ‘Power Profile State’ Enumerations
142 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.8.4 ‘Server-Received Command’ Enumerations

The following enumerations represent the commands that can be received by the
cluster server (and are therefore generated on the cluster client).

typedef enum PACK

{

 E_CLD_PP_CMD_POWER_PROFILE_REQ = 0x00,

 E_CLD_PP_CMD_POWER_PROFILE_STATE_REQ,

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP,

 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NOTIFICATION,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_RSP,

 E_CLD_PP_CMD_POWER_PROFILE_SCHEDULE_CONSTRAINTS_REQ,

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_REQ,

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP

 } teCLD_PP_ServerReceivedCommandID;

The above enumerations are used to indicate types of Power Profile cluster events
and are described in Section 7.5.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 143

Chapter 7
Power Profile Cluster

7.9 Structures

7.9.1 tsCLD_PPCallBackMessage

For a Power Profile event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_PPCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
#ifdef PP_CLIENT
 bool bIsInfoAvailable;
#endif
 union
 {
 tsCLD_PP_PowerProfileReqPayload *psPowerProfileReqPayload;
 tsCLD_PP_GetPowerProfilePriceExtendedPayload
 *psGetPowerProfilePriceExtendedPayload;
 } uReqMessage;
 union
 {
 tsCLD_PP_GetPowerProfilePriceRspPayload *psGetPowerProfilePriceRspPayload;
 tsCLD_PP_GetOverallSchedulePriceRspPayload
 *psGetOverallSchedulePriceRspPayload;
 tsCLD_PP_EnergyPhasesSchedulePayload *psEnergyPhasesSchedulePayload;
 tsCLD_PP_PowerProfileScheduleConstraintsPayload
 *psPowerProfileScheduleConstraintsPayload;
 tsCLD_PP_PowerProfilePayload *psPowerProfilePayload;
 tsCLD_PP_PowerProfileStatePayload *psPowerProfileStatePayload;
 }uRespMessage;

} tsCLD_PPCallBackMessage;

where:

 u8CommandId indicates the type of Power Profile command that has been
received, one of:

 E_CLD_PP_CMD_POWER_PROFILE_REQ

 E_CLD_PP_CMD_ POWER_PROFILE_STATE_REQ

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_RSP

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED_RSP

 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE_RSP

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_NOTIFICATION

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_RSP

 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_REQ

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_REQ

 E_CLD_PP_CMD_POWER_PROFILE_NOTIFICATION

 E_CLD_PP_CMD_POWER_PROFILE_RSP
144 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 E_CLD_PP_CMD_POWER_PROFILE_STATE_RSP

 E_CLD_PP_CMD_POWER_PROFILE_STATE_NOTIFICATION

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE

 E_CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_REQ

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_RSP

 E_CLD_PP_CMD_ENERGY_PHASES_SCHEDULE_STATE_NOTIFICATION

 E_CLD_PP_CMD_SCHEDULE_CONSTRAINTS_NOTIFICATION

 E_CLD_PP_CMD_GET_POWER_PROFILE_SCHEDULE_CONSTRAINTS_RSP

 E_CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED

 bIsInfoAvailable is a client-only boolean field which indicates whether the
appropriate type of information (to which the event relates) is held on the client:
TRUE if the information type is held on the client, FALSE otherwise

 uReqMessage is a union containing the command payload for a request, as
one of (depending on the value of u8CommandId):

 psPowerProfileReqPayload is a pointer to the payload of a Power
Profile Request, a Get Power Profile Schedule Constraints Request, an
Energy Phases Schedule Request, an Energy Phases Schedule State
Request or a Get Power Profile Price Request (see Section 7.9.5)

 psGetPowerProfilePriceExtendedPayload is a pointer to the
payload of a Get Power Profile Price Extended Request (see Section
7.9.8)

 uRespMessage is a union containing the command payload for a response or
notification, as one of (depending on the value of u8CommandId):

 psGetPowerProfilePriceRspPayload is a pointer to the payload of a
Get Power Profile Price Response or a Get Power Profile Price Extended
Response (see Section 7.9.9)

 psGetOverallSchedulePriceRspPayload is a pointer to the payload
of a Get Overall Schedule Price Response (see Section 7.9.10)

 psEnergyPhasesSchedulePayload is a pointer to the payload of an
Energy Phases Schedule Response, an Energy Phases Schedule State
Response, an Energy Phases Schedule Notification or an Energy Phases
Schedule State Notification (see Section 7.9.6)

 psPowerProfileScheduleConstraintsPayload is a pointer to the
payload of a Power Profile Schedule Constraints Response or a Power
Profile Schedule Constraints Notification (see Section 7.9.10)

 psPowerProfilePayload is a pointer to the payload of a Power Profile
Response or a Power Profile Notification (see Section 7.9.4)

 psPowerProfileStatePayload is a pointer to the payload of a Power
Profile State Response or a Power Profile State Notification (see Section
7.9.5)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 145

Chapter 7
Power Profile Cluster

7.9.2 tsCLD_PPEntry

This structure contains the data for a power profile table entry.

typedef struct

{

 zuint8 u8PowerProfileId;

 zuint8 u8NumOfTransferredEnergyPhases;

 zuint8 u8NumOfScheduledEnergyPhases;

 zuint8 u8ActiveEnergyPhaseId;

 tsCLD_PP_EnergyPhaseDelay
 asEnergyPhaseDelay[CLD_PP_NUM_OF_ENERGY_PHASES];

 tsCLD_PP_EnergyPhaseInfo
 asEnergyPhaseInfo[CLD_PP_NUM_OF_ENERGY_PHASES];

 zbool bPowerProfileRemoteControl;

 zenum8 u8PowerProfileState;

 zuint16 u16StartAfter;

 zuint16 u16StopBefore;

} tsCLD_PPEntry;

where:

 u8PowerProfileId is the identifier of the power profile in the range 1 to 255
(0 is reserved)

 u8NumOfTransferredEnergyPhases is the number of energy phases
supported within the power profile

 u8NumOfScheduledEnergyPhases is the number of energy phases actually
scheduled within the power profile (must be less than or equal to the value of
u8NumOfTransferredEnergyPhases)

 u8ActiveEnergyPhaseId is the identifier of the energy phase that is
currently active or will be active next (if currently between energy phases)

 asEnergyPhaseDelay[] is an array containing timing information on the
scheduled energy phases, where each array element corresponds to one
energy phase of the schedule (see Section 7.9.12)

 asEnergyPhaseInfo[] is an array containing various information on the
supported energy phases, where each array element corresponds to one
energy phase of the profile (see Section 7.9.11)

Note: The command payload for each command type is
indicated in Table 35 and Table 36 in Section 7.5.
146 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 bPowerProfileRemoteControl is a boolean indicating whether the power
profile can be remotely controlled: TRUE if it can be remotely controlled,
FALSE otherwise (this property directly affects the attribute bEnergyRemote)

 u8PowerProfileState is a value indicating the current state of the power
profile (enumerations are provided - see Section 7.8.2)

 u16StartAfter is the minimum time-delay, in minutes, to be implemented
between an instruction to start the power profile schedule and actually starting
the schedule

 u16StopBefore is the maximum time-delay, in minutes, to be implemented
between an instruction to stop the power profile schedule and actually stopping
the schedule

7.9.3 tsCLD_PP_PowerProfileReqPayload

This structure contains the payload of various power profile requests.

typedef struct

{

 zuint8 u8PowerProfileId;

}tsCLD_PP_PowerProfileReqPayload;

where u8PowerProfileId is the identifier of the power profile of interest.

7.9.4 tsCLD_PP_PowerProfilePayload

This structure contains the payload of a Power Profile Response or of a Power Profile
Notification, which reports the details of a power profile.

typedef struct

{

 zuint8 u8TotalProfileNum;

 zuint8 u8PowerProfileId;

 zuint8 u8NumOfTransferredPhases;

 tsCLD_PP_EnergyPhaseInfo *psEnergyPhaseInfo;

}tsCLD_PP_PowerProfilePayload;

where:

 u8TotalProfileNum is the total number of power profiles supported on the
originating device

 u8PowerProfileId is the identifier of the power profile being reported

 u8NumOfTransferredPhases is the number of energy phases supported
within the power profile

 psEnergyPhaseInfo is a pointer to a structure or an array of structures (see
Section 7.9.11) containing information on the supported energy phases, where
each array element corresponds to one energy phase of the profile
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 147

Chapter 7
Power Profile Cluster

7.9.5 tsCLD_PP_PowerProfileStatePayload

This structure contains the payload of a Power Profile State Response or of a Power
Profile State Notification.

typedef struct

{

 zuint8 u8PowerProfileCount;

 tsCLD_PP_PowerProfileRecord *psPowerProfileRecord;

}tsCLD_PP_PowerProfileStatePayload;

where:

 u8PowerProfileCount is the number of power profiles in the payload

 psPowerProfileRecord is a pointer to one or more power profile records
(see Section 7.9.13):

 For a Power Profile State Notification, it is a pointer to the power profile
record of the currently active power profile on the server

 For a Power Profile State Response, it is a pointer to an array of power
profile records for all the supported power profiles on the server

7.9.6 tsCLD_PP_EnergyPhasesSchedulePayload

This structure contains the payload of an Energy Phases Schedule Response, of an
Energy Phases Schedule State Response or of an Energy Phases Schedule State
Notification.

typedef struct

{

 zuint8 u8PowerProfileId;

 zuint8 u8NumOfScheduledPhases;

 tsCLD_PP_EnergyPhaseDelay *psEnergyPhaseDelay;

}tsCLD_PP_EnergyPhasesSchedulePayload;

where:

 u8PowerProfileId is the identifier of the power profile being reported

 u8NumOfScheduledPhases is the number of energy phases within the power
profile schedule

 psEnergyPhaseDelay is a pointer to an array containing timing information
on the scheduled energy phases, where each array element corresponds to
one energy phase of the schedule (see Section 7.9.12)
148 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.9.7 tsCLD_PP_PowerProfileScheduleConstraintsPayload

This structure contains the payload of a Power Profile Schedule Constraints
Response or of a Power Profile Schedule Constraints Notification, which reports the
schedule restrictions on a particular power profile.

typedef struct

{

 zuint8 u8PowerProfileId;

 zuint16 u16StartAfter;

 zuint16 u16StopBefore;

} tsCLD_PP_PowerProfileScheduleConstraintsPayload;

where:

 u8PowerProfileId is the identifier of the power profile being reported

 u16StartAfter is the minimum time-delay, in minutes, to be implemented
between an instruction to start the power profile schedule and actually starting
the schedule

 u16StopBefore is the maximum time-delay, in minutes, to be implemented
between an instruction to stop the power profile schedule and actually stopping
the schedule

7.9.8 tsCLD_PP_GetPowerProfilePriceExtendedPayload

This structure contains the payload of a Get Power Profile Price Extended Request,
which requests certain price information relating to a particular power profile.

typedef struct

{

 zbmap8 u8Options;

 zuint8 u8PowerProfileId;

 zuint16 u16PowerProfileStartTime;

}tsCLD_PP_GetPowerProfilePriceExtendedPayload;

where:

 u8Options is a bitmap indicating the type of request:

 If bit 0 is set to ‘1’ then the u16PowerProfileStartTime field is used,
otherwise it is ignored

 If bit 1 is set to ‘0’ then an estimated price is required for contiguous
energy phases (with no gaps between them); if bit 1 is set ‘1’ then an
estimated price is required for the energy phases as scheduled (with any
scheduled gaps between them)

 u8PowerProfileId is the identifier of the power profile
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 149

Chapter 7
Power Profile Cluster

 u16PowerProfileStartTime is an optional value (see u8Options above)
which indicates the required start-time for execution of the power profile, in
minutes, as measured from the current time

7.9.9 tsCLD_PP_GetPowerProfilePriceRspPayload

This structure contains the payload of a Get Power Profile Price Response, which is
returned in reply to a Get Power Profile Price Request and a Get Power Profile Price
Extended Request.

typedef struct

{

 zuint8 u8PowerProfileId;

 zuint16 u16Currency;

 zuint32 u32Price;

 zuint8 u8PriceTrailingDigits;

}tsCLD_PP_GetPowerProfilePriceRspPayload;

where:

 u8PowerProfileId is the identifier of the power profile

 u16Currency is a value representing the currency in which the price is quoted

 u32Price is the price as an integer value (without a decimal point)

 u8PriceTrailingDigits specifies the position of the decimal point in the
price u32Price, by indicating the number of digits after the decimal point

7.9.10 tsCLD_PP_GetOverallSchedulePriceRspPayload

This structure contains the payload of a Energy Phases Schedule Response, which
contains the overall cost of all the power profiles that will be executed over the next 24
hours.

typedef struct

{

 zuint16 u16Currency;

 zuint32 u32Price;

 zuint8 u8PriceTrailingDigits;

}tsCLD_PP_GetOverallSchedulePriceRspPayload;

where:

 u16Currency is a value representing the currency in which the price is quoted

 u32Price represents the price as an integer value (without a decimal point)

 u8PriceTrailingDigits specifies the position of the decimal point in the
price u32Price, by indicating the number of digits after the decimal point
150 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.9.11 tsCLD_PP_EnergyPhaseInfo

This structure contains various pieces of information about a specific energy phase of
a power profile.

typedef struct

{

 zuint8 u8EnergyPhaseId;

 zuint8 u8MacroPhaseId;

 zuint16 u16ExpectedDuration;

 zuint16 u16PeakPower;

 zuint16 u16Energy;

 zuint16 u16MaxActivationDelay;

}tsCLD_PP_EnergyPhaseInfo;

where:

 u8EnergyPhaseId is the identifier of the energy phase

 u8MacroPhaseId is a value that may be used to obtain a name/label for the
energy phase for display purposes - for example, it may be the index of an
entry in a table of ASCII strings

 u16ExpectedDuration is the expected duration of the energy phase, in
minutes

 u16PeakPower is the estimated peak power of the energy phase, in Watts

 u16Energy is the estimated total energy consumption, in Joules, during the
energy phase (u16PeakPower x u16ExpectedDuration x 60)

 u16MaxActivationDelay is the maximum delay, in minutes, between the
end of the previous energy phase and the start of this energy phase - special
values are as follows: 0x0000 if no delay possible, 0xFFFF if first energy phase

Note: If u16MaxActivationDelay is non-zero, a
delayed start-time for the energy phase can be set
through the structure tsCLD_PP_EnergyPhaseDelay
(see Section 7.9.12).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 151

Chapter 7
Power Profile Cluster

7.9.12 tsCLD_PP_EnergyPhaseDelay

This structure contains the start-time for a particular energy phase of a power profile.

typedef struct

{

 zuint8 u8EnergyPhaseId;

 zuint16 u16ScheduleTime;

}tsCLD_PP_EnergyPhaseDelay;

where:

 u8EnergyPhaseId is the identifier of the energy phase

 u16ScheduleTime is the start-time of the energy phase expressed as a delay,
in minutes, from the end of the previous energy phase (for the first energy
phase of a power profile schedule, this delay is measured from the start of the
schedule)

7.9.13 tsCLD_PP_PowerProfiIeRecord

This structure contains information about the current state of a power profile.

typedef struct

{

 zuint8 u8PowerProfileId;

 zuint8 u8EnergyPhaseId;

 zbool bPowerProfileRemoteControl;

 zenum8 u8PowerProfileState;

} tsCLD_PP_PowerProfileRecord;

where:

 u8PowerProfileId is the identifier of the power profile

 u8EnergyPhaseId is the identifier of the currently running energy phase or, if
currently between energy phases, the next energy phase to be run

 bPowerProfileRemoteControl is a boolean indicating whether the power
profile can be remotely controlled (from a client device): TRUE if it can be
remotely controlled, FALSE otherwise

 u8PowerProfileState is an enumeration indicating the current state of the
power profile (see Section 7.8.2)

Note: A delayed start-time for the energy phase can
only be set through this structure if the field
u16MaxActivationDelay of the structure
tsCLD_PP_EnergyPhaseInfo for this energy phase
is non-zero (see Section 7.9.11).
152 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
7.9.14 tsCLD_PPCustomDataStructure

The Power Profile cluster requires extra storage space to be allocated to be used by
internal functions. The structure definition for this storage is shown below:

typedef struct
{
#ifdef (CLD_PP) && (PP_SERVER)
 bool bOverrideRunning;
 uint8 u8ActSchPhaseIndex;
 tsCLD_PPEntry asPowerProfileEntry[CLD_PP_NUM_OF_POWER_PROFILES];
#endif
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_PPCallBackMessage sCallBackMessage;
} tsCLD_PPCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

7.10 Compile-Time Options

This section describes the compile-time options that may be configured in the
zcl_options.h file of an application that uses the Power Profile cluster.

To enable the Power Profile cluster in the code to be built, it is necessary to add the
following line to the file:

#define CLD_PP

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define PP_SERVER

#define PP_CLIENT

The following options can also be configured at compile-time in the zcl_options.h file.

Enable ‘Get Power Profile Price’ Command

The optional ‘Get Power Profile Price’ command can be enabled by adding:

#define CLD_PP_CMD_GET_POWER_PROFILE_PRICE

Enable ‘Get Power Profile Price Extended’ Command

The optional ‘Get Power Profile Price Extended’ command can be enabled by adding:

#define CLD_PP_CMD_GET_POWER_PROFILE_PRICE_EXTENDED

Enable ‘Get Overall Schedule Price’ Command

The optional ‘Get Overall Schedule Price’ command can be enabled by adding:

#define CLD_PP_CMD_GET_OVERALL_SCHEDULE_PRICE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 153

Chapter 7
Power Profile Cluster

Number of Power Profiles

The number of power profiles on the local device can be defined as n by adding:

#define CLD_PP_NUM_OF_PROFILES n

In the current HA release, this value is fixed at 1 (only one power profile is allowed on
a device).

Maximum Number of Energy Phases

The maximum number of energy phases in a power profile can be defined as n by
adding:

#define CLD_PP_NUM_OF_ENERGY_PHASES n

By default, this value is 3.
154 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
8. Appliance Control Cluster

This chapter outlines the Appliance Control cluster which is defined in the ZigBee
Home Automation profile, and provides an interface for remotely controlling
appliances in the home.

The Appliance Control cluster has a Cluster ID of 0x001B.

8.1 Overview

The Appliance Control cluster provides an interface for the remote control and
programming of home appliances (e.g. a washing machine) by sending basic
operational commands such as start, pause, stop.

The cluster is enabled by defining CLD_APPLIANCE_CONTROL in the
zcl_options.h file - see Section 3.5.1. Further compile-time options for the Appliance
Control cluster are detailed in Section 8.9.

All attributes of the Appliance Control cluster are in the ‘Appliance Functions’ attribute
set.

8.2 Cluster Structure and Attributes

The Appliance Control cluster is contained in the following
tsCLD_ApplianceControl structure:

typedef struct

{

 zuint16 u16StartTime;

 zuint16 u16FinishTime;

#ifdef CLD_APPLIANCE_CONTROL_REMAINING_TIME

 zuint16 u16RemainingTime;

#endif

} tsCLD_ApplianceControl;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 155

Chapter 8
Appliance Control Cluster

where:

 u16StartTime is a bitmap representing the start-time of a ‘running’ cycle of
the appliance, as follows:

 u16FinishTime is a bitmap representing the stop-time of a ‘running’ cycle of
the appliance, as follows:

 u16RemainingTime is an optional attribute indicating the time, in minutes,
remaining in the current ‘running’ cycle of the appliance (time until the end of
the cycle) - this attribute is constantly updated during the running cycle and is
zero when the appliance is not running

Bits Description

0-5 Minutes part of the start-time, in the range 0 to 59
(may be absolute or relative time - see below)

6-7 Type of time encoding:

• 0x0: Relative time - start-time is a delay from the time that the attribute was set

• 0x1: Absolute time - start-time is an actual time of the 24-hour clock

• 0x2-0x3: Reserved

The defaults are absolute time for ovens and relative time for other appliances.

8-15 Hours part of the start-time:

• in the range 0 to 255, if relative time selected

• in the range 0 to 23, if absolute time selected

Bits Description

0-5 Minutes part of the stop-time, in the range 0 to 59
(may be absolute or relative time - see below)

6-7 Type of time encoding:

• 0x0: Relative time - stop-time is a delay from the time that the attribute was set

• 0x1: Absolute time - stop-time is an actual time of the 24-hour clock

• 0x2-0x3: Reserved

The defaults are absolute time for ovens and relative time for other appliances.

8-15 Hours part of the stop-time:

• in the range 0 to 255, if relative time selected

• in the range 0 to 23, if absolute time selected
156 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
8.3 Sending Commands

The Appliance Control cluster server resides on the appliance to be controlled (e.g. a
washing machine) and the cluster client resides on the controlling device (normally a
remote control unit).

The commands from the client to the server can be of two types:

 ‘Execution’ commands, requesting appliance operations

 ‘Status’ commands, requesting appliance status information

In addition, status notification messages can be sent unsolicited from the server to the
client.

Sending the above messages is described in the sub-sections below.

8.3.1 Execution Commands from Client to Server

An ‘execution’ command can be sent from the client to request that an operation is
performed on the appliance (server) - the request is sent in an ‘Execution of
Command’ message. The application on the client can send this message by calling
the function eCLD_ACExecutionOfCommandSend().

The possible operations depend on the target appliance but the following operations
are available to be specified in the payload of the message (described in Section
8.8.2):

 Start appliance cycle

 Stop appliance cycle

 Pause appliance cycle

 Start superfreezing cycle

 Stop superfreezing cycle

 Start supercooling cycle

 Stop supercooling cycle

 Disable gas

 Enable gas

In the start and stop commands, the start-time and end-time can be specified. The
commands are fully detailed in the British Standards document BS EN 50523.

The application on the server (appliance) will be notified of the received command by
an E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND event
(Appliance Control events are described in Section 8.4). The required command is
specified in the payload of the message, which is contained in the above event. The
application must then perform the requested command (if possible).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 157

Chapter 8
Appliance Control Cluster

8.3.2 Status Commands from Client to Server

The application on the cluster client can request the current status of the appliance by
sending a ‘Signal State’ message to the cluster server on the appliance. This message
can be sent by calling the function eCLD_ACSignalStateSend(). This function returns
immediately and the requested status information is later returned in an
E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE event,
which is generated when a response arrives from the server (Appliance Control events
are described in Section 8.4).

The appliance status information from the message payload is contained in the above
event - for details of this payload and the status information, refer to Section 8.8.3.

8.3.3 Status Notifications from Server to Client

The cluster server on the appliance can send unsolicited status notifications to the
client in ‘Signal State Notification’ messages. A message of this kind can be sent by
the application on the server by calling either of the following functions:

 eCLD_ACSignalStateNotificationSend()

 eCLD_ACSignalStateResponseORSignalStateNotificationSend()

The appliance status information from the ‘Signal State Notification’ message is
reported to the application on the cluster client through the event
E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION, which is
generated when the notification arrives from the server (Appliance Control events are
described in Section 8.4). The appliance status information from the message payload
is contained in the above event - for details of this payload and the status information,
refer to Section 8.8.3.

Note: The cluster server handles the ‘Signal State’
message automatically and returns the requested status
information in a ‘Signal State Response’ message to the
client.

Note: The latter function is also used internally by the
cluster server to send a ‘Signal State Response’
message - see Section 8.3.2.
158 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
8.4 Appliance Control Events

The Appliance Control cluster has its own events that are handled through the
callback mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). The cluster contains its own event handler. If a device uses this
cluster then application-specific Appliance Control event handling must be included in
the user-defined callback function for the associated endpoint, where this callback
function is registered through the relevant endpoint registration function. This callback
function will then be invoked when an Appliance Control event occurs and needs the
attention of the application.

For an Appliance Control event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceControlCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 bool *pbApplianceStatusTwoPresent;

 union

 {

 tsCLD_AC_ExecutionOfCommandPayload *psExecutionOfCommandPayload;

 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
 *psSignalStateResponseAndNotificationPayload;

 } uMessage;

} tsCLD_ApplianceControlCallBackMessage;

When an Appliance Control event occurs, one of four command types could have
been received. The relevant command type is specified through the u8CommandId
field of the tsSM_CallBackMessage structure. The possible command types are
detailed the tables below for events generated on a server and a client.

u8CommandId Enumeration Description

E_CLD_APPLIANCE_CONTROL_
CMD_EXECUTION_OF_COMMAND

An ‘Execution of Command’ message has been
received by the server (appliance), requesting an opera-
tion on the appliance

E_CLD_APPLIANCE_CONTROL_
CMD_SIGNAL_STATE

A ‘Signal State’ message has been received by the
server (appliance), requesting the status of the appli-
ance

Table 38: Appliance Control Command Types (Events on Server)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 159

Chapter 8
Appliance Control Cluster

8.5 Functions

The following Appliance Control cluster functions are provided in the HA API:

Function Page

eCLD_ApplianceControlCreateApplianceControl 161

eCLD_ACExecutionOfCommandSend 163

eCLD_ACSignalStateSend 165

eCLD_ACSignalStateResponseORSignalStateNotificationSend 166

eCLD_ACSignalStateNotificationSend 168

eCLD_ACChangeAttributeTime 170

u8CommandId Enumeration Description

E_CLD_APPLIANCE_CONTROL_CMD
_SIGNAL_STATE_RESPONSE

A response to a ‘Signal State’ message has been
received by the client, containing the requested appli-
ance status

E_CLD_APPLIANCE_CONTROL_CMD
_SIGNAL_STATE_NOTIFICATION

A ‘Signal State’ notification message has been received
by the client, containing unsolicited status information

Table 39: Appliance Control Command Types (Events on Client)
160 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ApplianceControlCreateApplianceControl

Description

This function creates an instance of the Appliance Control cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Appliance Control cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Appliance Control cluster function called
in the application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Appliance Control
cluster, which can be obtained by using the macro
CLD_APPLIANCE_CONTROL_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppApplianceControlClusterAttributeControlBits[
CLD_APPLIANCE_CONTROL_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status
eCLD_ApplianceControlCreateApplianceControl(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_ApplianceControlCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 161

Chapter 8
Appliance Control Cluster

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Appliance Control cluster. This parameter can refer to a
pre-filled structure called sCLD_ApplianceControl
which is provided in the ApplianceControl.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_ApplianceControl which
defines the attributes of Appliance Control cluster. The
function will initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 8.8.4)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
162 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ACExecutionOfCommandSend

Description

This function can be used on an Appliance Control cluster client to send an
‘Execution of Command’ message to a cluster server (appliance), where this
message may specify one of the following control commands:

 Start appliance cycle

 Stop appliance cycle

 Pause appliance cycle

 Start superfreezing cycle

 Stop superfreezing cycle

 Start supercooling cycle

 Stop supercooling cycle

 Disable gas

 Enable gas

The required command is specified in the payload of the message (a pointer to this
payload must be provided). The commands are fully detailed in the British Standards
document BS EN 50523.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameter

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

teZCL_Status eCLD_ACExecutionOfCommandSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_AC_ExecutionOfCommandPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 163

Chapter 8
Appliance Control Cluster

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

psPayload Pointer to a structure containing the payload
for the message (see Section 8.8.2).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
164 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ACSignalStateSend

Description

This function can be used on an Appliance Control cluster client to send a ‘Signal
State’ message to a cluster server (appliance), which requests the status of the
appliance. The function returns immediately and the requested status information is
later returned in the following event, which is generated when a response is received
from the server:

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ACSignalStateSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 165

Chapter 8
Appliance Control Cluster

eCLD_ACSignalStateResponseORSignalStateNotificationSend

Description

This function can be used on an Appliance Control cluster server to send a ‘Signal
State Response’ message (in reply to a ‘Signal State Request’ message) or an
unsolicited ‘Signal State Notification’ message to a cluster client.

The command to be sent must be specified as one of:

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

eCommandId Enumeration indicating the command to be
sent (see above and Section 8.7.3)

teZCL_Status
eCLD_ACSignalStateResponseORSignalStateNotificationSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_ApplianceControl_ServerCommandId eCommandId,
bool bApplianceStatusTwoPresent,
tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

 *psPayload);
166 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
bApplianceStatusTwoPresent Boolean indicating whether additional
appliance status data is present in payload:

TRUE - Present

FALSE - Not present

psPayload Pointer to structure containing payload for
message (see above and Section 8.8.3)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 167

Chapter 8
Appliance Control Cluster

eCLD_ACSignalStateNotificationSend

Description

This function can be used on an Appliance Control cluster server to send an
unsolicited ‘Signal State Notification’ message to a cluster client. The function is an
alternative to eCLD_ACSignalStateResponseORSignalStateNotificationSend().

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

bApplianceStatusTwoPresent Boolean indicating whether additional
appliance status data is present in payload:

TRUE - Present

FALSE - Not present

psPayload Pointer to structure containing payload for
message (see above and Section 8.8.3)

teZCL_Status eCLD_ACSignalStateNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
bool bApplianceStatusTwoPresent,
tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

 *psPayload);
168 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 169

Chapter 8
Appliance Control Cluster

eCLD_ACChangeAttributeTime

Description

This function can be used on an Appliance Control cluster server (appliance) to
update the time attributes of the cluster (start time, finish time, remaining time). This
is particularly useful if the host node has its own timer.

The target attribute must be specified using one of:

 E_CLD_APPLIANCE_CONTROL_ATTR_ID_START_TIME

 E_CLD_APPLIANCE_CONTROL_ATTR_ID_FINISH_TIME

 E_CLD_APPLIANCE_CONTROL_ATTR_ID_REMAINING_TIME

Parameters

u8SourceEndPointId Number of the local endpoint through which to send the
message. This parameter is used both to send the
message and to identify the instance of the shared
structure holding the required attribute values

eAttributeTimeId Identifier of attribute to be updated (see above and
Section 8.8.1)

u16TimeValue UTC time to set

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ACChangeAttributeTime(
uint8 u8SourceEndPointId,
teCLD_ApplianceControl_Cluster_AttrID eAttributeTimeId,
uint16 u16TimeValue);
170 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
8.6 Return Codes

The Appliance Control cluster functions use the ZCL return codes defined in the ZCL
User Guide (JN-UG-3077).

8.7 Enumerations

8.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Appliance Control cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_START_TIME = 0x0000,
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_FINISH_TIME,
 E_CLD_APPLIANCE_CONTROL_ATTR_ID_REMAINING_TIME
} teCLD_ApplianceControl_Cluster_AttrID;

8.7.2 ‘Client Command ID’ Enumerations

The following enumerations are used in commands issued on a cluster client.

typedef enum PACK

{

 E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND = 0x00,

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE,

} teCLD_ApplianceControl_ClientCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND ‘Execution of Command’ message

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE ‘Signal State’ message

Table 40: ‘Client Command ID’ Enumerations
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 171

Chapter 8
Appliance Control Cluster

8.7.3 ‘Server Command ID’ Enumerations

The following enumerations are used in commands issued on a cluster server.

typedef enum PACK

{

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE = 0x00,

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION

} teCLD_ApplianceControl_ServerCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_
RESPONSE

A response to a ‘Signal State’ request

E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_
NOTIFICATION

A ‘Signal State’ notification

Table 41: ‘Server Command ID’ Enumerations
172 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
8.8 Structures

8.8.1 tsCLD_ApplianceControlCallBackMessage

For an Appliance Control event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceControlCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 bool *pbApplianceStatusTwoPresent;
 union
 {
 tsCLD_AC_ExecutionOfCommandPayload *psExecutionOfCommandPayload;
 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
 *psSignalStateResponseAndNotificationPayload;
 } uMessage;
} tsCLD_ApplianceControlCallBackMessage;

where:

 u8CommandId indicates the type of Appliance Control command that has been
received, one of:

 E_CLD_APPLIANCE_CONTROL_CMD_EXECUTION_OF_COMMAND

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_RESPONSE

 E_CLD_APPLIANCE_CONTROL_CMD_SIGNAL_STATE_NOTIFICATION

 pbApplianceStatusTwoPresent is a pointer to a boolean indicating
whether a second set of non-standard or proprietary status data is available:

 TRUE - additional status data available

 FALSE - additional status data unavailable

 uMessage is a union containing the command payload as one of (depending
on the value of u8CommandId):

 psExecutionOfCommandPayload is a pointer to the payload of an
‘Execution of Command’ message (see Section 8.8.2)

 psSignalStateResponseAndNotificationPayload is a pointer to
the payload of a ‘Signal State’ response or notification message (see
Section 8.8.3)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 173

Chapter 8
Appliance Control Cluster

8.8.2 tsCLD_AC_ExecutionOfCommandPayload

This structure contains the payload for an “Execution of Command” message.

typedef struct

{

 zenum8 eExecutionCommandId;

} tsCLD_AC_ExecutionOfCommandPayload;

where eExecutionCommandId is a value representing the command to be executed
- the commands are detailed in the British Standards document BS EN 50523.

8.8.3 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload

This structure contains the payload for a “Signal State” response or notification
message.

typedef struct

{

 zenum8 eApplianceStatus;

 zuint8 u8RemoteEnableFlagAndDeviceStatus;

 zuint24 u24ApplianceStatusTwo;

} tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload;

where:

 eApplianceStatus is a value indicating the reported appliance status (the
relevant status values depend on the appliance):

Status Value Description

0x00 Reserved

0x01 Appliance in off state

0x02 Appliance in stand-by

0x03 Appliance already programmed

0x04 Appliance already programmed and ready to start

0x05 Appliance is running

0x06 Appliance is in pause state

0x07 Appliance end programmed tasks

0x08 Appliance is in a failure state

0x09 Appliance programmed tasks have been interrupted

0x0A Appliance in idle state

0x0B Appliance rinse hold
174 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 u8RemoteEnableFlagAndDeviceStatus is a bitmap value indicating the
status of the relationship between the appliance and the remote control unit as
well as the type of additional status information reported in
u24ApplianceStatusTwo:

 u24ApplianceStatusTwo is a value indicating non-standard or proprietary
status information about the appliance. The type of status information
represented by this value is indicated in the ‘Device Status 2’ field of
u8RemoteEnableFlagAndDeviceStatus. In the case of an IRIS symptom
code, the three bytes of this value represent a 3-digit code.

0x0C Appliance in service state

0x0D Appliance in superfreezing state

0x0E Appliance in supercooling state

0x0F Appliance in superheating state

0x10-0x3F Reserved

0x40-0x7F Non-standardised

0x80-0xFF Proprietary

Bits Field Values/Description

0-3 Remote Enable Flags Status of remote control link:

• 0x0: Disabled

• 0x1: Enabled remote and energy control

• 0x2-0x06: Reserved

• 0x7: Temporarily locked/disabled

• 0x8-0xE: Reserved

• 0xF: Enabled remote control

4-7 Device Status 2 Type of information in u24ApplianceStatusTwo:

• 0x0: Proprietary

• 0x1: Proprietary

• 0x2: IRIS symptom code

• 0x3-0xF: Reserved

Status Value Description
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 175

Chapter 8
Appliance Control Cluster

8.8.4 tsCLD_ApplianceControlCustomDataStructure

The Appliance Control cluster requires extra storage space to be allocated to be used
by internal functions. The structure definition for this storage is shown below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceControlCallBackMessage sCallBackMessage;
} tsCLD_ApplianceControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

8.9 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Appliance Control cluster.

To enable the Appliance Control cluster in the code to be built, it is necessary to add
the following line to the file:

#define CLD_APPLIANCE_CONTROL

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define APPLIANCE_CONTROL_SERVER

#define APPLIANCE_CONTROL_CLIENT

The Appliance Control cluster has one optional attribute (see Section 8.2) which can
be enabled using a macro that may be optionally specified at compile time by adding
the following line to the zcl_options.h file:

#define CLD_APPLIANCE_CONTROL_REMAINING_TIME
176 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
9. Appliance Identification Cluster

This chapter outlines the Appliance Identification cluster which is defined in the ZigBee
Home Automation profile, and provides an interface for obtaining and setting basic
appliance information.

The Appliance Identification cluster has a Cluster ID of 0x0B00.

9.1 Overview

The Appliance Identification cluster provides an interface for obtaining and setting
information about an appliance, such as product type and manufacturer.

The cluster is enabled by defining CLD_APPLIANCE_IDENTIFICATION in the
zcl_options.h file - see Section 3.5.1. Further compile-time options for the Appliance
Identification cluster are detailed in Section 9.6.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Basic Appliance Identification

 Extended Appliance Identification

9.2 Cluster Structure and Attributes

The Appliance Identification cluster is contained in the following
tsCLD_Applianceidentification structure:

typedef struct

{

 zbmap56 u64BasicIdentification;

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_NAME

 tsZCL_CharacterString sCompanyName;

 uint8 au8CompanyName[16];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_ID

 zuint16 u16CompanyId;

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_NAME

 tsZCL_CharacterString sBrandName;

 uint8 au8BrandName[16];

#endif
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 177

Chapter 9
Appliance Identification Cluster

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_ID

 zuint16 u16BrandId;

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_MODEL

 tsZCL_OctetString sModel;

 uint8 au8Model[16];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PART_NUMBER

 tsZCL_OctetString sPartNumber;

 uint8 au8PartNumber[16];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_REVISION

 tsZCL_OctetString sProductRevision;

 uint8 au8ProductRevision[6];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_SOFTWARE_REVISION

 tsZCL_OctetString sSoftwareRevision;

 uint8 au8SoftwareRevision[6];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_NAME

 tsZCL_OctetString sProductTypeName;

 uint8 au8ProductTypeName[2];

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_PRODUCT_TYPE_ID

 zuint16 u16ProductTypeId;

#endif

#ifdef CLD_APPLIANCE_IDENTIFICATION_ATTR_CECED_SPEC_VERSION

 zuint8 u8CECEDSpecificationVersion;

#endif

} tsCLD_Applianceidentification;
178 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
where:

‘Basic Appliance Identification’ Attribute Set

 u64BasicIdentification is a mandatory attribute which is a 56-bit bitmap
containing the following information about the appliance:

‘Extended Appliance Identification’ Attribute Set

 The following optional pair of attributes are used to store human readable
versions of the company (manufacturer) name:

 sCompanyName is a tsZCL_OctetString structure which contains a
character string representing the company name of up to 16 characters

 au8CompanyName[16] is a byte-array which contains the character data
bytes representing the company name

 u16CompanyId is an optional attribute which contains the company ID

 The following optional pair of attributes are used to store human readable
versions of the brand name:

 sBrandName is a tsZCL_OctetString structure which contains a
character string representing the brand name of up to 16 characters

 au8BrandName[16] is a byte-array which contains the character data
bytes representing the brand name

 u16BrandId is an optional attribute which contains the brand ID

 The following optional pair of attributes are used to store human readable
versions of the manufacturer-defined model name:

 sModel is a tsZCL_OctetString structure which contains a character
string representing the model name of up to 16 characters

Bits Information

0-15 Company (manufacturer) ID

16-31 Brand ID

32-47 Product Type ID, one of:

• 0x0000: White Goods

• 0x5601: Dishwasher

• 0x5602: Tumble Dryer

• 0x5603: Washer Dryer

• 0x5604: Washing Machine

• 0x5E03: Hob

• 0x5E09: Induction Hob

• 0x5E01: Oven

• 0x5E06: Electrical Oven

• 0x6601: Refrigerator/Freezer

For enumerations, see Section 9.5.2.

48-55 Specification Version
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 179

Chapter 9
Appliance Identification Cluster

 au8Model[16] is a byte-array which contains the character data bytes
representing the model name

 The following optional pair of attributes are used to store human readable
versions of the manufacturer-defined part number/code:

 sPartNumber is a tsZCL_OctetString structure which contains a
character string representing the part number/code of up to 16 characters

 au8PartNumber[16] is a byte-array which contains the character data
bytes representing the part number/code

 The following optional pair of attributes are used to store human readable
versions of the manufacturer-defined product revision number:

 sProductRevision is a tsZCL_OctetString structure which contains
a character string representing the product revision number of up to 6
characters

 au8ProductRevision[6] is a byte-array which contains the character
data bytes representing the product revision number

 The following optional pair of attributes are used to store human readable
versions of the manufacturer-defined software revision number:

 sSoftwareRevision is a tsZCL_OctetString structure which
contains a character string representing the software revision number of
up to 6 characters

 au8SoftwareRevision[6] is a byte-array which contains the character
data bytes representing the software revision number

 The following optional pair of attributes are used to store human readable
versions of the 2-character product type name (e.g. “WM” for washing
machine):

 sProductTypeName is a tsZCL_OctetString structure which contains
a character string representing the product type name of up to 2
characters

 au8ProductTypeName[2] is a byte-array which contains the character
data bytes representing the product type name

 u16ProductTypeId is an optional attribute containing the product type ID
(from those listed above in the description of u64BasicIdentification)

 u8CECEDSpecificationVersion is an optional attribute which indicates the
version of the CECED specification to which the appliance conforms, from the
following:

Value Specification

0x10 Compliant with v1.0, not certified

0x1A Compliant with v1.0, certified

0xX0 Compliant with vX.0, not certified

0xXA Compliant with vX.0, certified
180 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
9.3 Functions

The following Appliance Identification cluster function is provided in the HA API:

Function Page

eCLD_ApplianceIdentificationCreateApplianceIdentification 182

Note: The attributes of this cluster can be accessed
using the attribute read/write functions provided in the
ZigBee Cluster Library and described in the ZCL User
Guide (JN-UG-3077).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 181

Chapter 9
Appliance Identification Cluster

eCLD_ApplianceIdentificationCreateApplianceIdentification

Description

This function creates an instance of the Appliance Identification cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Appliance Identification cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Appliance Identification cluster function
called in the application, and must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Appliance
Identification cluster, which can be obtained by using the macro
CLD_APPLIANCE_IDENTIFICATION_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppApplianceIdentificationClusterAttributeControlBits[
CLD_APPLIANCE_IDENTIFICATION_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status
eCLD_ApplianceIdentificationCreateApplianceIdentification(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
182 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Appliance Identification cluster. This parameter can
refer to a pre-filled structure called
sCLD_ApplianceIdentification which is
provided in the ApplianceIdentification.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of the tsCLD_ApplianceIdentification
type which defines the attributes of Appliance
Identification cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 183

Chapter 9
Appliance Identification Cluster

9.4 Return Codes

The Appliance Identification cluster function uses the ZCL return codes defined in the
ZCL User Guide (JN-UG-3077).

9.5 Enumerations

9.5.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Appliance Identification cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BASIC_IDENTIFICATION = 0x0000,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_COMPANY_NAME = 0x0010,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_COMPANY_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BRAND_NAME,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_BRAND_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_MODEL,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PART_NUMBER,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_REVISION,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_SOFTWARE_REVISION,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_TYPE_NAME,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_PRODUCT_TYPE_ID,
 E_CLD_APPLIANCE_IDENTIFICATION_ATTR_ID_CECED_SPEC_VERSION
} teCLD_ApplianceIdentification_Cluster_AttrID;

9.5.2 ‘Product Type ID’ Enumerations

The following enumerations are used to represent the set of product type IDs.

typedef enum PACK

{

 E_CLD_AI_PT_ID_WHITE_GOODS = 0x0000,

 E_CLD_AI_PT_ID_DISHWASHER = 0x5601,

 E_CLD_AI_PT_ID_TUMBLE_DRYER,

 E_CLD_AI_PT_ID_WASHER_DRYER,

 E_CLD_AI_PT_ID_WASHING_MACHINE,

 E_CLD_AI_PT_ID_HOBS = 0x5E03,

 E_CLD_AI_PT_ID_INDUCTION_HOBS = 0x5E09,

 E_CLD_AI_PT_ID_OVEN = 0x5E01,

 E_CLD_AI_PT_ID_ELECTRICAL_OVEN = 0x5E06,

 E_CLD_AI_PT_ID_REFRIGERATOR_FREEZER = 0x6601

} teCLD_ApplianceIdentification_ProductTypeId;

184 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
9.6 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Appliance Identification cluster.

To enable the Appliance Identification cluster in the code to be built, it is necessary to
add the following line to the file:

#define CLD_APPLIANCE_IDENTIFICATION

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define APPLIANCE_IDENTIFICATION_SERVER

#define APPLIANCE_IDENTIFICATION_CLIENT

Optional Attributes

The optional attributes for the Appliance Identification cluster (see Section 9.2) are
enabled by defining:

 CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_NAME

 CLD_APPLIANCE_IDENTIFICATION_ATTR_COMPANY_ID

 CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_NAME

 CLD_APPLIANCE_IDENTIFICATION_ATTR_BRAND_ID

 CLD_APPLIANCE_IDENTIFICATION_ATTR_MODEL

 CLD_APPLIANCE_IDENTIFICATION_ATTR_PART_NUMBER
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 185

Chapter 9
Appliance Identification Cluster

186 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
10. Appliance Events and Alerts Cluster

This chapter outlines the Appliance Events and Alerts cluster which is defined in the
ZigBee Home Automation profile, and provides an interface for the notification of
significant events and alert situations.

The Appliance Events and Alerts cluster has a Cluster ID of 0x0B02.

10.1 Overview

The Appliance Events and Alerts cluster provides an interface for sending notifications
of appliance events (e.g. target temperature reached) and alerts (e.g. alarms).

The cluster is enabled by defining CLD_APPLIANCE_EVENTS_AND_ALERTS in the
zcl_options.h file - see Section 3.5.1. Further compile-time options for the Appliance
Events and Alerts cluster are detailed in Section 10.9.

Events are notified in terms of header and event identifier fields (an event may occur
when the appliance reaches a certain state, such as the end of its operational cycle).

Alerts are notified in terms of the following fields:

 Alert identification value

 Alert category, one of: Warning, Danger, Failure

 Presence/recovery flag (indicating alert has been either detected or recovered)

10.2 Cluster Structure and Attributes

The Appliance Events and Alerts cluster has no attributes.

10.3 Sending Messages

The Appliance Events and Alerts cluster server resides on the appliance (e.g. a
washing machine) and the cluster client resides on a controlling device (normally a
remote control unit).

Messages can be sent between the client and the server in the following ways:

 Alerts that are active on the appliance can be requested by the client by
sending a ‘Get Alerts’ message to the server (which will reply with a ‘Get Alerts
Response’ message)

 Alerts that are active on the appliance can be sent unsolicited from the server
to the client in an ‘Alerts Notification’ message

 The server can notify the client of an appliance event by sending an unsolicited
‘Event Notification’ message to the client

Sending the above messages is described in the sub-sections below.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 187

Chapter 10
Appliance Events and Alerts Cluster

10.3.1 ‘Get Alerts’ Messages from Client to Server

The application on the cluster client can request the alerts that are currently active on
the appliance by sending a ‘Get Alerts’ message to the server - this message is sent
by calling the function eCLD_AEAAGetAlertsSend(). This function returns
immediately and the requested alerts are later returned in an
E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS event, which
is generated when a response arrives from the server (Appliance Events and Alerts
events are described in Section 10.4).

The appliance alerts from the message payload are contained in the above event - for
details of this payload and the alert information, refer to Section 10.8.2. Up to 15 alerts
can be reported in a single response.

10.3.2 ‘Alerts Notification’ Messages from Server to Client

The cluster server on the appliance can send unsolicited alert notifications to the client
in ‘Alerts Notification’ messages. A message of this kind can be sent by the application
on the server by calling either of the following functions:

 eCLD_AEAAAlertsNotificationSend()

 eCLD_AEAAGetAlertsResponseORAlertsNotificationSend()

The appliance status information from the ‘Alerts Notification’ message is reported to
the application on the cluster client through the event
E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION,
which is generated when the notification arrives from the server (Appliance Events
and Alerts events are described in Section 10.4). The appliance alerts from the
message payload are contained in the above event - for details of this payload and the
alert information, refer to Section 10.8.2. Up to 15 alerts can be reported in a single
notification.

Note: The cluster server handles the ‘Get Alerts’
message automatically and returns the requested alerts
in a ‘Get Alerts Response’ message to the client.

Note: The latter function is also used internally by the
cluster server to send a ‘Get Alerts Response’ message
- see Section 10.3.1.
188 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
10.3.3 ‘Event Notification’ Messages from Server to Client

The cluster server on the appliance can send unsolicited event notifications to the
client in ‘Event Notification’ messages, where each message reports a single
appliance event (e.g. oven has reached its target temperature). A message of this kind
can be sent by the application on the server by calling the function
eCLD_AEAAEventNotificationSend().

The appliance event information from the ‘Event Notification’ message is reported to
the application on the cluster client through the event
E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION,
which is generated when the notification arrives from the server (Appliance Events
and Alerts events are described in Section 10.4). The appliance event from the
message payload is contained in the above client event - for details of this payload and
the embedded appliance event information, refer to Section 10.8.3.

10.4 Appliance Events and Alerts Events

The Appliance Events and Alerts cluster has its own events that are handled through
the callback mechanism outlined in Section 4.7 (and fully detailed in the ZCL User
Guide (JN-UG-3077)). The cluster contains its own event handler. If a device uses this
cluster then application-specific Appliance Events and Alerts event handling must be
included in the user-defined callback function for the associated endpoint, where this
callback function is registered through the relevant endpoint registration function. This
callback function will then be invoked when an Appliance Events and Alerts event
occurs and needs the attention of the application.

For an Appliance Events and Alerts event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceEventsAndAlertsCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId

 union

 {

 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psGetAlertsResponseORAlertsNotificationPayload;

 tsCLD_AEAA_EventNotificationPayload
 *psEventNotificationPayload;

 } uMessage;

} tsCLD_ApplianceEventsAndAlertsCallBackMessage;

When an Appliance Events and Alerts event occurs, one of four command types could
have been received. The relevant command type is specified through the
u8CommandId field of the tsSM_CallBackMessage structure. The possible
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 189

Chapter 10
Appliance Events and Alerts Cluster

command types are detailed the tables below for events generated on a server and a
client.

10.5 Functions

The following Appliance Events and Alerts cluster functions are provided in the HA
API:

Function Page

eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts 191

eCLD_AEAAGetAlertsSend 193

eCLD_AEAAGetAlertsResponseORAlertsNotificationSend 194

eCLD_AEAAAlertsNotificationSend 196

eCLD_AEAAEventNotificationSend 197

u8CommandId Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_
ALERTS_CMD_GET_ALERTS

A ‘Get Alerts’ request has been received by the server
(appliance)

Table 42: Appliance Events and Alerts Command Types (Events on Server)

u8CommandId Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_
ALERTS_CMD_GET_ALERTS

A response to a ‘Get Alerts’ request has been received
by the client, containing the requested alerts (up to 15)

E_CLD_APPLIANCE_EVENTS_AND_
ALERTS_CMD_ALERTS_NOTIFICATION

An ‘Alerts Notification’ message has been received by
the client, containing unsolicited alerts (up to 15)

E_CLD_APPLIANCE_EVENTS_AND_
ALERTS_CMD_EVENT_NOTIFICATION

An ‘Event Notification’ message has been received by
the client

Table 43: Appliance Events and Alerts Command Types (Events on Client)
190 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts

Description

This function creates an instance of the Appliance Events and Alerts cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Appliance Events and Alerts
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions. For more
details of creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Appliance Events and Alerts cluster
function called in the application, and must be called after the stack has been started
and after the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Appliance Events and Alerts cluster. This parameter
can refer to a pre-filled structure called

teZCL_Status
eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
tsCLD_ApplianceEventsAndAlertsCustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 191

Chapter 10
Appliance Events and Alerts Cluster

sCLD_ApplianceEventsAndAlerts which is
provided in the ApplianceEventsAndAlerts.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of tsCLD_ApplianceEventsAndAlerts
type which defines the attributes of Appliance Events
and Alerts cluster. The function will initialise the
attributes with default values.

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 10.8.4)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
192 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_AEAAGetAlertsSend

Description

This function can be used on an Appliance Events and Alerts cluster client to send a
‘Get Alerts’ message to a cluster server (appliance).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameter

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_AEAAGetAlertsSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 193

Chapter 10
Appliance Events and Alerts Cluster

eCLD_AEAAGetAlertsResponseORAlertsNotificationSend

Description

This function can be used on an Appliance Events and Alerts cluster server to send
a ‘Get Alerts Response’ message (in reply to a ‘Get Alerts’ message) or an
unsolicited ‘Alerts Notification’ message to a cluster client.

The command to be sent must be specified as one of:

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

eCommandId Enumeration indicating the command to be
sent (see above and Section 10.7.1)

psPayload Pointer to structure containing payload for
message (see Section 10.8.2)

teZCL_Status
eCLD_AEAAGetAlertsResponseORAlertsNotificationSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_ApplianceEventsAndAlerts_CommandId eCommandId,
tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload

 *psPayload);
194 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 195

Chapter 10
Appliance Events and Alerts Cluster

eCLD_AEAAAlertsNotificationSend

Description

This function can be used on an Appliance Events and Alerts cluster server to send
an unsolicited ‘Alerts Notification’ message to a cluster client. The function is an
alternative to eCLD_AEAAGetAlertsResponseORAlertsNotificationSend().

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

psPayload Pointer to structure containing payload for
message (see Section 10.8.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_AEAAAlertsNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload

 *psPayload);
196 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_AEAAEventNotificationSend

Description

This function can be used on an Appliance Events and Alerts cluster server
(appliance) to send an ‘Event Notification’ message to a cluster client, to indicate that
an incident has occurred.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

psPayload Pointer to structure containing payload for
message (see Section 10.8.3)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_AEAAEventNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_AEAA_EventNotificationPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 197

Chapter 10
Appliance Events and Alerts Cluster

10.6 Return Codes

The Appliance Events and Alerts cluster functions use the ZCL return codes defined
in the ZCL User Guide (JN-UG-3077).

10.7 Enumerations

10.7.1 ‘Command ID’ Enumerations

The following enumerations are used in commands received on a cluster server or
client.

typedef enum PACK

{

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS = 0x00,

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION,

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_EVENT_NOTIFICATION

} teCLD_ApplianceEventsAndAlerts_CommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS ‘Get Alerts’ request (on server) or
response (on client)

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_
NOTIFICATION

Alerts notification (on client)

E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_EVENT_
NOTIFICATION

Events notification (on server)

Table 44: ‘Command ID’ Enumerations
198 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
10.8 Structures

10.8.1 tsCLD_ApplianceEventsAndAlertsCallBackMessage

For an Appliance Events and Alerts event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceEventsAndAlertsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId
 union
 {
 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
 *psGetAlertsResponseORAlertsNotificationPayload;
 tsCLD_AEAA_EventNotificationPayload
 *psEventNotificationPayload;
 } uMessage;
} tsCLD_ApplianceEventsAndAlertsCallBackMessage;

where:

 u8CommandId indicates the type of Appliance Events and Alerts command
that has been received, one of:

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_GET_ALERTS

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_ALERTS_NOTIFICATION

 E_CLD_APPLIANCE_EVENTS_AND_ALERTS_CMD_EVENT_NOTIFICATION

 uMessage is a union containing the command payload as one of (depending
on the value of u8CommandId):

 psGetAlertsResponseORAlertsNotificationPayload is a pointer
to the payload of an “Get Alerts” response message or an alerts
notification message (see Section 10.8.2)

 psEventNotificationPayload is a pointer to the payload of an events
notification message (see Section 10.8.3)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 199

Chapter 10
Appliance Events and Alerts Cluster

10.8.2 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload

This structure contains the payload for a ‘Get Alerts Response’ message or an ‘Alerts
Notification’ message.

typedef struct

{

 zuint8 u8AlertsCount;

 zuint24 au24AlertStructure[
 CLD_APPLIANCE_EVENTS_AND_ALERTS_MAXIMUM_NUM_OF_ALERTS];

} tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload;

where:

 u8AlertsCount is an 8-bit bitmap containing the following alerts information:

 au24AlertStructure[] is an array of 24-bit bitmaps, with one bitmap for
each reported alert, containing the following information:

Bits Description

0-3 Number of reported alerts

4-7 Type of alert:

• 0x0: Unstructured

• 0x1-0xF: Reserved

Bits Description

0-7 Alert ID:

• 0x0: Reserved

• 0x01-0x3F: Standardised

• 0x40-0x7F: Non-standardised

• 0x80-0xFF: Proprietary

8-11 Category:

• 0x0: Reserved

• 0x1: Warning

• 0x2: Danger

• 0x3: Failure

• 0x4–0xF: Reserved

12-13 Presence or recovery:

• 0x0: Presence (alert detected)

• 0x1: Recovery (alert recovered)

• 0x2–0x3: Reserved

14-15 Reserved (set to 0x0)

16-23 Non-standardised or proprietary
200 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
10.8.3 tsCLD_AEAA_EventNotificationPayload

This structure contains the payload for an ‘Event Notification’ message.

typedef struct

{

 zuint8 u8EventHeader;

 zuint8 u8EventIdentification;

} tsCLD_AEAA_EventNotificationPayload;

where:

 u8EventHeader is reserved and set to 0

 u8EventIdentification is the identifier of the event being notified:

 0x01: End of operational cycle reached

 0x02: Reserved

 0x03: Reserved

 0x04: Target temperature reached

 0x05: End of cooking process reached

 0x06: Switching off

 0xF7: Wrong data

(Values 0x00 to 0x3F are standardised, 0x40 to 0x7F are non-standardised, and
0x80 to 0xFF except 0xF7 are proprietary)

10.8.4 tsCLD_ApplianceEventsAndAlertsCustomDataStructure

The Appliance Events and Alerts cluster requires extra storage space to be allocated
to be used by internal functions. The structure definition for this storage is shown
below:

typedef struct
{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceEventsAndAlertsCallBackMessage sCallBackMessage;
} tsCLD_ApplianceEventsAndAlertsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 201

Chapter 10
Appliance Events and Alerts Cluster

10.9 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Appliance Events and Alerts cluster.

To enable the Appliance Events and Alerts cluster in the code to be built, it is
necessary to add the following line to the file:

#define CLD_APPLIANCE_EVENTS_AND_ALERTS

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define APPLIANCE_EVENTS_AND_ALERTS_SERVER

#define APPLIANCE_EVENTS_AND_ALERTS_CLIENT

Maximum Number of Alerts Reported

The maximum number of alerts that can be reported in a response or notification can
be defined (as n) using the following definition in the zcl_options.h file:

#define CLD_APPLIANCE_EVENTS_AND_ALERTS_MAXIMUM_NUM_OF_ALERTS n

The default value is 16, which is the upper limit on this value, and n must therefore not
be greater than 16.
202 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
11. Appliance Statistics Cluster

This chapter outlines the Appliance Statistics cluster which is defined in the ZigBee
Home Automation profile, and provides an interface for supplying statistical
information about an appliance.

The Appliance Statistics cluster has a Cluster ID of 0x0B03.

11.1 Overview

The Appliance Statistics cluster provides an interface for sending appliance statistics
in the form of data logs to a collector node, which may be a gateway.

The cluster is enabled by defining CLD_APPLIANCE_STATISTICS in the
zcl_options.h file - see Section 3.5.1. Further compile-time options for the Appliance
Statistics cluster are detailed in Section 11.10.

The cluster client may obtain logs from the server (appliance) in any of the following
ways:

 Unsolicited log notifications sent by the server

 Solicited responses obtained by:

 Client sending ‘Log Queue Request’ to enquire whether logs are available

 Client sending ‘Log Request’ for each log available

 Semi-solicited responses obtained by:

 Server sending ‘Statistics Available’ notification to indicate that logs are
available

 Client sending ‘Log Request’ for each log available
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 203

Chapter 11
Appliance Statistics Cluster

11.2 Cluster Structure and Attributes

The Appliance Statistics cluster is contained in the following
tsCLD_ApplianceStatistics structure:

typedef struct

{

 zuint32 u32LogMaxSize;

 zuint8 u8LogQueueMaxSize;

}tsCLD_ApplianceStatistics;

where:

 u32LogMaxSize is a mandatory attribute which specifies the maximum size,
in bytes, of the payload of a log notification and log response. This value should
not be greater than 70 bytes (otherwise the Partition cluster is needed)

 u8LogQueueMaxSize is a mandatory attribute which specifies the maximum
number of logs in the queue on the cluster server that are available to be
requested by the client

11.3 Sending Messages

The Appliance Statistics cluster server resides on the appliance (e.g. a washing
machine) and the cluster client resides on a controlling device (normally a remote
control unit).

Messages can be sent between the client and the server in the following ways:

 The client can enquire whether any data logs are available on the appliance
(server) by sending a ‘Log Queue Request’ to the server (which will reply with a
‘Log Queue Response’ message)

 The server can notify the client that data logs are available by sending an
unsolicited ‘Statistics Available’ message to the client

 The client can request a current data log from the appliance (server) by
sending a ‘Log Request’ message to the server (which will reply with a ‘Log
Response’ message)

 The server can send an unsolicited data log to the client in a ‘Log Notification’
message

Sending the above messages is described in the sub-sections below.
204 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
11.3.1 ‘Log Queue Request’ Messages from Client to Server

The application on the cluster client can enquire about the availability of data logs on
the appliance by sending a ‘Log Queue Request’ message to the server. This
message is sent by calling the function eCLD_ASCLogQueueRequestSend(). This
function returns immediately and the log availability is later returned in an
E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE event, which
is generated when a response arrives from the server (Appliance Statistics events are
described in Section 11.5).

The log availability information from the message payload is contained in the above
event, and comprises the number of logs currently in the log queue and their log IDs -
for details of this payload and the availability information, refer to Section 11.9.4.

11.3.2 ‘Statistics Available’ Messages from Server to Client

The cluster server can notify the client when data logs are available by sending an
unsolicited ‘Statistics Available’ message to the client. This message contains the
number of logs in the log queue and the log IDs. A message of this kind can be sent
by the application on the server by calling either of the following functions:

 eCLD_ASCStatisticsAvailableSend()

 eCLD_ASCLogQueueResponseORStatisticsAvailableSend()

The log availability information from the ‘Statistics Available’ message is reported to
the application on the cluster client through the event
E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE, which is
generated when the message arrives from the server (Appliance Statistics events are
described in Section 11.5). The availability information from the message payload is
contained in the above event - for details of this payload and the availability
information, refer to Section 11.9.4.

Note: The cluster server handles the ‘Log Queue
Request’ message automatically and returns the
requested information in a ‘Log Queue Response’
message to the client.

Note 1: The latter function is also used internally by the
cluster server to send a ‘Log Queue Response’
message - see Section 11.3.1.

Note 2: Before calling either function, the relevant log(s)
should be added to the local log queue as described in
Section 11.4.1. This is because the logs need to be in
the queue to allow the server to perform further actions
on them - for example, to process a ‘Log Request’.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 205

Chapter 11
Appliance Statistics Cluster

11.3.3 ‘Log Request’ Messages from Client to Server

The application on the cluster client can request the log with a particular log ID from
the appliance by sending a ‘Log Request’ message to the server. This message is sent
by calling the function eCLD_ASCLogRequestSend(). This function returns
immediately and the requested log information is later returned in an
E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE event, which
is generated when a response arrives from the server (Appliance Statistics events are
described in Section 11.5).

The log information from the message payload is contained in the above event - for
details of this payload and the supplied log information, refer to Section 11.9.3.

11.3.4 ‘Log Notification’ Messages from Server to Client

The cluster server can supply the client with an individual data log by sending an
unsolicited ‘Log Notification’ message to the client. This message is sent by the
application on the server by calling either of the following functions:

 eCLD_ASCLogNotificationSend()

 eCLD_ASCLogNotificationORLogResponseSend()

The log information from the ‘Log Notification’ message is reported to the application
on the cluster client through the event
E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION, which is
generated when the message arrives from the server (Appliance Statistics events are
described in Section 11.5). The log information from the message payload is

Note 1: This function should normally be called after a
‘Log Queue Response’ or ‘Statistics Available’ message
has been received by the client, indicating that logs are
available on the server.

Note 2: The cluster server handles the ‘Log Request’
message automatically and returns the requested log
information in a ‘Log Response’ message to the client.

Note 1: The latter function is also used internally by the
cluster server to send a ‘Log Response’ message - see
Section 11.3.1.

Note 2: Before calling either function, the relevant log
should be added to the local log queue as described in
Section 11.4.1. This is because the log needs to be in
the queue to allow the server to perform further actions
on it - for example, to process a ‘Log Request’. Refer to
the Example below.
206 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
contained in the above event - for details of this payload and the supplied log
information, refer to Section 11.9.3.

Example

To allow a new log to be available for later processing, it should be added to the local
log queue on the server before a ‘Log Notification’ message is sent, as follows:

1. Add the log to the queue by calling the function eCLD_ASCAddLog().

2. At a later point when the notification is to be sent, obtain the log from the
queue using the function eCLD_ASCGetLogEntry() - see Section 11.4.2.

3. Send the notification, e.g. by calling eCLD_ASCLogNotificationSend().

11.4 Log Operations on Server

Appliance Statistics cluster functions are provided in the HA API to allow the
application on the cluster server (appliance) to perform the following local log
operations:

 Add a log to the log queue

 Remove a log from the log queue

 Obtain a list of the logs in the log queue

 Obtain an individual log from the log queue

These operations are described in the sub-sections below.

11.4.1 Adding and Removing Logs

A data log can be added to the local log queue (on the cluster server) using the
function eCLD_ASCAddLog(). The log must be given an identifier and the UTC time
at which the log was added must be specified. The length of the log, in bytes, must be
less than the value of CLD_APPLIANCE_STATISTICS_ATTR_LOG_MAX_SIZE,
which is defined in the zcl_options.h files (and must be less than or equal to 70).

An existing log can be removed from the local log queue using the function
eCLD_ASCRemoveLog(). The log is specified using its identifier.

11.4.2 Obtaining Logs

A list of the logs that are currently in the local log queue (on the cluster server) can be
obtained by calling the function eCLD_ASCGetLogsAvailable(). This function
provides the number of logs in the queue and a list of the log identifiers.

An individual log from the local log queue can be obtained using the function
eCLD_ASCGetLogEntry(). The required log is specified by means of its identifier.

Normally, eCLD_ASCGetLogsAvailable() is called first to obtain a list of the available
logs and then eCLD_ASCGetLogEntry() is called for each log.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 207

Chapter 11
Appliance Statistics Cluster

11.5 Appliance Statistics Events

The Appliance Statistics cluster has its own events that are handled through the
callback mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). The cluster contains its own event handler. If a device uses this
cluster then application-specific Appliance Statistics event handling must be included
in the user-defined callback function for the associated endpoint, where this callback
function is registered through the relevant endpoint registration function. This callback
function will then be invoked when an Appliance Statistics event occurs and needs the
attention of the application.

For an Appliance Statistics event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceStatisticsCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psLogNotificationORLogResponsePayload;

 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload
 *psLogQueueResponseORStatisticsAvailabePayload;

 tsCLD_ASC_LogRequestPayload *psLogRequestPayload;

 } uMessage;

} tsCLD_ApplianceStatisticsCallBackMessage;

When an Appliance Statistics event occurs, one of four command types could have
been received. The relevant command type is specified through the u8CommandId
field of the tsSM_CallBackMessage structure. The possible command types are
detailed the tables below for events generated on a server and a client.

u8CommandId Enumeration Description

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_REQUEST

A ‘Log Request’ message has been received by the
server (appliance)

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_QUEUE_REQUEST

A ‘Log Queue Request’ message has been received by
the server (appliance)

Table 45: Appliance Statistics Command Types (Events on Server)

u8CommandId Enumeration Description

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_NOTIFICATION

A ‘Log Notification’ message has been received by the
client

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_RESPONSE

A ‘Log Response’ message has been received by the
client

Table 46: Appliance Statistics Command Types (Events on Client)
208 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
11.6 Functions

The following Appliance Statistics cluster functions are provided in the HA API:

Function Page

eCLD_ApplianceStatisticsCreateApplianceStatistics 210

eCLD_ASCAddLog 212

eCLD_ASCRemoveLog 213

eCLD_ASCGetLogsAvailable 214

eCLD_ASCGetLogEntry 215

eCLD_ASCLogQueueRequestSend 216

eCLD_ASCLogRequestSend 217

eCLD_ASCLogQueueResponseORStatisticsAvailableSend 218

eCLD_ASCStatisticsAvailableSend 220

eCLD_ASCLogNotificationORLogResponseSend 221

eCLD_ASCLogNotificationSend 223

E_CLD_APPLIANCE_STATISTICS_
CMD_LOG_QUEUE_RESPONSE

A ‘Log Queue Response’ message has been received
by the client

E_CLD_APPLIANCE_STATISTICS_
CMD_STATISTICS_AVAILABLE

A ‘Statistics Available’ message has been received by
the client

u8CommandId Enumeration Description

Table 46: Appliance Statistics Command Types (Events on Client)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 209

Chapter 11
Appliance Statistics Cluster

eCLD_ApplianceStatisticsCreateApplianceStatistics

Description

This function creates an instance of the Appliance Statistics cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Appliance Statistics cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix A.

When used, this function must be the first Appliance Statistics cluster function called
in the application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Appliance
Statistics cluster, which can be obtained by using the macro
CLD_APPLIANCE_STATISTICS_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppApplianceStatisticsClusterAttributeControlBits[
CLD_APPLIANCE_STATISTICS_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status
eCLD_ApplianceStatisticsCreateApplianceStatistics(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_ApplianceStatisticsCustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function from
those described in Chapter 12.
210 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Appliance Statistics cluster. This parameter can refer to
a pre-filled structure called
sCLD_ApplianceStatistics which is provided in
the ApplianceStatistics.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_ApplianceStatistics
which defines the attributes of Appliance Statistics
cluster. The function will initialise the attributes with
default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 11.9.6)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 211

Chapter 11
Appliance Statistics Cluster

eCLD_ASCAddLog

Description

This function can be used on an Appliance Statistics cluster server to add a data log
to the log queue.

The length of the data log, in bytes, must be less than the defined value of
CLD_APPLIANCE_STATISTICS_ATTR_LOG_MAX_SIZE (which must be less than
or equal to 70).

Parameter

u8SourceEndPointId Number of the local endpoint on which the Appliance
Statistics cluster server resides

u32LogId Identifier of log

u8LogLength Length of log, in bytes

u32Time UTC time at which log was produced

pu8LogData Pointer to log data

Returns

E_ZCL_CMDS_SUCCESS

E_ZCL_CMDS_FAIL

E_ZCL_CMDS_INVALID_VALUE (log too long)

E_ZCL_CMDS_INVALID_FIELD (NULL pointer to log data)

E_ZCL_CMDS_INSUFFICIENT_SPACE

teZCL_CommandStatus eCLD_ASCAddLog(
uint8 u8SourceEndPointId,
uint32 u32LogId,
uint8 u8LogLength,
uint32 u32Time,
uint8 *pu8LogData);
212 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ASCRemoveLog

Description

This function can be used on an Appliance Statistics cluster server to remove the
specified data log from the log queue.

Parameter

u8SourceEndPointId Number of the local endpoint on which the Appliance
Statistics cluster server resides

u32LogId Identifier of log

Returns

E_ZCL_CMDS_SUCCESS

E_ZCL_CMDS_FAIL

teZCL_CommandStatus eCLD_ASCRemoveLog(
uint8 u8SourceEndPointId,
uint32 u32LogId);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 213

Chapter 11
Appliance Statistics Cluster

eCLD_ASCGetLogsAvailable

Description

This function can be used on an Appliance Statistics cluster server to obtain a list of
the data logs in the log queue. The number of available logs and a list of their log IDs
will be obtained.

Parameter

u8SourceEndPointId Number of the local endpoint on which the Appliance
Statistics cluster server resides

pu32LogId Pointer to an area of memory to receive the list of 32-bit
log IDs

pu8LogIdCount Pointer to an area of memory to receive the number of
logs in the queue

Returns

E_ZCL_CMDS_SUCCESS

E_ZCL_CMDS_FAIL

teZCL_CommandStatus eCLD_ASCGetLogsAvailable(
uint8 u8SourceEndPointId,
uint32 *pu32LogId,
uint8 *pu8LogIdCount);
214 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ASCGetLogEntry

Description

This function can be used on an Appliance Statistics cluster server to obtain the data
log with the specified log ID.

Parameter

u8SourceEndPointId Number of the local endpoint on which the Appliance
Statistics cluster server resides

u32LogId Log ID of the required data log

ppsLogTable Pointer to a memory location to receive a pointer to the
required data log

Returns

E_ZCL_CMDS_SUCCESS

E_ZCL_CMDS_FAIL

E_ZCL_CMDS_NOT_FOUND (specified log not present)

teZCL_CommandStatus eCLD_ASCGetLogEntry(
uint8 u8SourceEndPointId,
uint32 u32LogId,
tsCLD_LogTable **ppsLogTable);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 215

Chapter 11
Appliance Statistics Cluster

eCLD_ASCLogQueueRequestSend

Description

This function can be used on an Appliance Statistics cluster client to send a ‘Log
Queue Request’ message to a cluster server (appliance), in order enquire about the
availability of logs on the server.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ASCLogQueueRequestSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
216 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ASCLogRequestSend

Description

This function can be used on an Appliance Statistics cluster client to send a ‘Log
Request’ message to a cluster server (appliance), in order request the data log with
a specified log ID.

The function should normally be called after enquiring about log availability using the
function eCLD_ASCLogQueueRequestSend() or after receiving an unsolicited
‘Statistics Available’ notification from the server.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

psPayload Pointer to a structure containing the payload
for the ‘Log Request’, including the relevant
log ID (see Section 11.9.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ASCLogRequestSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ASC_LogRequestPayload *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 217

Chapter 11
Appliance Statistics Cluster

eCLD_ASCLogQueueResponseORStatisticsAvailableSend

Description

This function can be used on an Appliance Statistics cluster server to send a ‘Log
Queue Response’ message (in reply to a ‘Log Queue Request’ message) or an
unsolicited ‘Statistics Available’ message to a cluster client.

The command to be sent must be specified as one of:

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE

 E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

eCommandId Enumeration indicating the command to be
sent (see above and Section 11.8.3)

teZCL_Status
eCLD_ASCLogQueueResponseORStatisticsAvailableSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_ApplianceStatistics_ServerCommandId

 eCommandId);
218 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 219

Chapter 11
Appliance Statistics Cluster

eCLD_ASCStatisticsAvailableSend

Description

This function can be used on an Appliance Statistics cluster server to send an
unsolicited ‘Statistics Available’ message to a cluster client. The function is an
alternative to eCLD_ASCLogQueueResponseORStatisticsAvailableSend().

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ASCStatisticsAvailableSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
220 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ASCLogNotificationORLogResponseSend

Description

This function can be used on an Appliance Statistics cluster server to send a ‘Log
Response’ message (in reply to a ‘Log Request’ message) or an unsolicited ‘Log
Notification’ message to a cluster client.

The command to be sent must be specified as one of:

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

eCommandId Enumeration indicating the command to be
sent (see above and Section 11.8.3)

psPayload Pointer to structure containing payload for
message (see Section 11.9.3)

teZCL_Status
eCLD_ASCLogNotificationORLogResponseSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_ApplianceStatistics_ServerCommandId

 eCommandId,
tsCLD_ASC_LogNotificationORLogResponsePayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 221

Chapter 11
Appliance Statistics Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
222 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eCLD_ASCLogNotificationSend

Description

This function can be used on an Appliance Statistics cluster server to send an
unsolicited ‘Log Notification’ message to a cluster client. The function is an
alternative to eCLD_ASCLogNotificationORLogResponseSend().

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the message. The TSN in the response will be set to match the
TSN in the request, allowing an incoming response to be paired with a request. This
is useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the message. This parameter is used
both to send the message and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the message will be sent. This
parameter is ignored when sending to
address types eZCL_AMBOUND and
eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the message will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
message

psPayload Pointer to structure containing payload for
message (see Section 11.9.3)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

teZCL_Status eCLD_ASCLogNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ASC_LogNotificationORLogResponsePayload

 *psPayload);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 223

Chapter 11
Appliance Statistics Cluster

11.7 Return Codes

The Appliance Statistics cluster functions use the ZCL return codes defined in the ZCL
User Guide (JN-UG-3077).

11.8 Enumerations

11.8.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Appliance Statistics cluster.

typedef enum PACK
{
 E_CLD_APPLIANCE_STATISTICS_ATTR_ID_LOG_MAX_SIZE = 0x0000,
 E_CLD_APPLIANCE_STATISTICS_ATTR_ID_LOG_QUEUE_MAX_SIZE
} teCLD_ApplianceStatistics_Cluster_AttrID;

11.8.2 ‘Client Command ID’ Enumerations

The following enumerations are used in commands issued on a cluster client.

typedef enum PACK

{

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST = 0x00,

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST

} teCLD_ApplianceStatistics_ClientCommandId;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST ‘Log Request’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST ‘Log Queue Request’ message

Table 47: ‘Client Command ID’ Enumerations
224 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
11.8.3 ‘Server Command ID’ Enumerations

The following enumerations are used in commands issued on a cluster server.

typedef enum PACK

{

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION = 0x00,

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE,

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE,

 E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE

} teCLD_ApplianceStatistics_ServerCommandId;

The above enumerations are described in the table below.

11.9 Structures

11.9.1 tsCLD_ApplianceStatisticsCallBackMessage

For an Appliance Statistics event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ApplianceStatisticsCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_ASC_LogNotificationORLogResponsePayload
 *psLogNotificationORLogResponsePayload;
 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload
 *psLogQueueResponseORStatisticsAvailabePayload;
 tsCLD_ASC_LogRequestPayload *psLogRequestPayload;
 } uMessage;
} tsCLD_ApplianceStatisticsCallBackMessage;

Enumeration Description

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION A ‘Log Notification’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE A ‘Log Response’ message

E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE A ‘Log Queue Response’ message

E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE A ‘Statistics Available’ message

Table 48: ‘Server Command ID’ Enumerations
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 225

Chapter 11
Appliance Statistics Cluster

where:

 u8CommandId indicates the type of Appliance Statistics command that has
been received, one of:

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_REQUEST

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_REQUEST

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_NOTIFICATION

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_RESPONSE

 E_CLD_APPLIANCE_STATISTICS_CMD_LOG_QUEUE_RESPONSE

 E_CLD_APPLIANCE_STATISTICS_CMD_STATISTICS_AVAILABLE

 uMessage is a union containing the command payload as one of (depending
on the value of u8CommandId):

 psLogNotificationORLogResponsePayload is a pointer to the
payload of a ‘Log Notification’ or ‘Log Response’ message (see Section
11.9.3)

 psLogQueueResponseORStatisticsAvailabePayload is a pointer
to the payload of a ‘Log Queue Response’ or ‘Statistics Available’
message (see Section 11.9.4)

 psLogRequestPayload is a pointer to the payload of a ‘Log Request’
message (see Section 11.9.2)

11.9.2 tsCLD_ASC_LogRequestPayload

This structure contains the payload for the ‘Log Request’ message.

typedef struct

{

 zuint32 u32LogId;

} tsCLD_ASC_LogRequestPayload;

where u32LogId is the identifier of the data log being requested.

11.9.3 tsCLD_ASC_LogNotificationORLogResponsePayload

This structure contains the payload for the ‘Log Notification’ and ‘Log Response’
messages.

typedef struct

{

 zutctime utctTime;

 zuint32 u32LogId;

 zuint32 u32LogLength;

 uint8 *pu8LogData;

} tsCLD_ASC_LogNotificationORLogResponsePayload;
226 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
where:

 utctTime is the UTC time at which the reported log was produced

 u32LogId is the identifier of the reported log

 u32LogLength is the length, in bytes, of the reported log

 pu8LogData is a pointer to an area of memory to receive the data of the
reported log

11.9.4 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload

This structure contains the payload for the ‘Log Queue Response’ and ‘Statistics
Available’ messages.

typedef struct

{

 zuint8 u8LogQueueSize;

 zuint32 *pu32LogId;

} tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload;

where:

 u8LogQueueSize indicates the number of logs currently in the log queue

 pu32LogId is a pointer to an area of memory to receive the sequence of 32-bit
log IDs of the logs in the queue

11.9.5 tsCLD_LogTable

This structure is used to store the details of a data log.

typedef struct

{

 zutctime utctTime;

 uint32 u32LogID;

 uint8 u8LogLength;

 uint8 *pu8LogData;

} tsCLD_LogTable;

where:

 utctTime is the UTC time at which the log was produced

 u32LogId is the identifier of the log

 u32LogLength is the length, in bytes, of the log

 pu8LogData is a pointer to an area of memory to receive the data of the log
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 227

Chapter 11
Appliance Statistics Cluster

11.9.6 tsCLD_ApplianceStatisticsCustomDataStructure

The Appliance Statistics cluster requires extra storage space to be allocated to be
used by internal functions. The structure definition for this storage is shown below:

typedef struct

{
 tsZCL_ReceiveEventAddress sReceiveEventAddress;
 tsZCL_CallBackEvent sCustomCallBackEvent;
 tsCLD_ApplianceStatisticsCallBackMessage sCallBackMessage;
#if (defined CLD_APPLIANCE_STATISTICS) && (defined APPLIANCE_STATISTICS_SERVER)
 tsCLD_LogTable asLogTable[CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE];
#endif
} tsCLD_ApplianceStatisticsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

11.10 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Appliance Statistics cluster.

To enable the Appliance Statistics cluster in the code to be built, it is necessary to add
the following line to the file:

#define CLD_APPLIANCE_STATISTICS

In addition, to enable the cluster as a client or server, it is also necessary to add one
of the following lines to the same file:

#define APPLIANCE_STATISTICS_SERVER

#define APPLIANCE_STATISTICS_CLIENT

The Appliance Statistics cluster contains macros that may be optionally specified at
compile-time by adding some or all the following lines to the zcl_options.h file.

Maximum Log Size

Add this line to configure the maximum size n, in bytes, of a data log:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_MAX_SIZE n

The default value is 70 bytes, which is the upper limit on this value, and n must
therefore not be greater than 70.

The same value must be defined on the cluster server and client.
228 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Maximum Log Queue Length

Add this line to configure the maximum number of logs n in a log queue:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE n

The default value is 15, which is the upper limit on this value, and n must therefore not
be greater than 15.

The same value must be defined on the cluster server and client.

Enable Insertion of UTC Time

Add this line to enable the application to insert UTC time data into logs:

#define CLD_APPLIANCE_STATISTICS_ATTR_LOG_QUEUE_MAX_SIZE n
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 229

Chapter 11
Appliance Statistics Cluster

230 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Part III:
General Reference Information
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 231

232 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
12. HA Core Functions

This chapter details the core functions of the ZigBee Home Automation API. These
comprise the following initialisation function, timing update function and device-
specific endpoint registration functions:

Function Page

eHA_Initialise 234

eHA_Update100mS 235

eHA_RegisterOnOffSwitchEndPoint 236

eHA_RegisterOnOffOutputEndPoint 238

eHA_RegisterRemoteControlEndPoint 240

eHA_RegisterDoorLockEndPoint 242

eHA_RegisterDoorLockControllerEndPoint 244

eHA_RegisterSimpleSensorEndPoint 246

eHA_RegisterOnOffLightEndPoint 248

eHA_RegisterDimmableLightEndPoint 250

eHA_RegisterColourDimmableLightEndPoint 252

eHA_RegisterOnOffLightSwitchEndPoint 254

eHA_RegisterDimmerSwitchEndPoint 256

eHA_RegisterColourDimmerSwitchEndPoint 258

eHA_RegisterLightSensorEndPoint 260

eHA_RegisterOccupancySensorEndPoint 262

Note 1: For guidance on using these functions in your
application code, refer to Chapter 4.

Note 2: The return codes for these functions are
described in the ZCL User Guide (JN-UG-3077).

Note 3: HA initialisation must also be performed through
definitions in the header file zcl_options.h - see Section
3.5.1. In addition, JenOS resources for HA must also be
pre-configured using the JenOS Configuration Editor -
refer to the JenOS User Guide (JN-UG-3075).
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 233

Chapter 12
HA Core Functions

eHA_Initialise

Description

This function initialises the ZCL and HA libraries. It should be called before
registering any endpoints (using one of the device-specific endpoint registration
functions from this chapter) and before starting the ZigBee PRO stack.

As part of this function call, you must specify a user-defined callback function that will
be invoked when a ZigBee PRO stack event occurs that is not associated with an
endpoint (the callback function for events associated with an endpoint is specified
when the endpoint is registered using one of the registration functions). This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a local pool of Application Protocol Data Units
(APDUs) that will be used by the ZCL to hold messages to be sent and received.

Parameters

cbCallBack Pointer to a callback function to handle stack events that are
not associated with a registered endpoint

hAPdu Pointer to a pool of APDUs for holding messages to be sent
and received

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_HEAP_FAIL

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eHA_Initialise(
 tfpZCL_ZCLCallBackFunction cbCallBack,
 PDUM_thAPdu hAPdu);
234 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
eHA_Update100mS

Description

This function is used to service all the timing needs of the clusters used by the HA
application and should be called every 100 ms - this can be achieved by using a 100-
ms software timer to periodically prompt execution of this function.

The function calls the external user-defined function vIdEffectTick(), which can be
used to implement an identify effect on the node. This function must be defined in the
application, irrespective of whether identify effects are needed (and thus, may be
empty). The function prototype is:

void vIdEffectTick(void)

Parameters

None

Returns

E_ZCL_SUCCESS

teZCL_Status eHA_Update100mS(void);
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 235

Chapter 12
HA Core Functions

eHA_RegisterOnOffSwitchEndPoint

Description

This function is used to register an endpoint which will support an On/Off Switch
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_OnOffSwitchDevice structure (see
Section 13.1.1) which will be used to store all variables relating to the On/Off Switch
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Switch device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.1). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterOnOffSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_OnOffSwitchDevice *psDeviceInfo);
236 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 237

Chapter 12
HA Core Functions

eHA_RegisterOnOffOutputEndPoint

Description

This function is used to register an endpoint which will support an On/Off Output
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_OnOffOutputDevice structure (see
Section 13.1.2) which will be used to store all variables relating to the On/Off Output
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Output device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterOnOffOutputEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_OnOffOutputDevice *psDeviceInfo);
238 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 239

Chapter 12
HA Core Functions

eHA_RegisterRemoteControlEndPoint

Description

This function is used to register an endpoint which will support a Remote Control
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_RemoteControlDevice structure (see
Section 13.1.3) which will be used to store all variables relating to the Remote Control
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Remote Control device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.3). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterRemoteControlEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_RemoteControlDevice *psDeviceInfo);
240 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 241

Chapter 12
HA Core Functions

eHA_RegisterDoorLockEndPoint

Description

This function is used to register an endpoint which will support a Door Lock device.
The function must be called after the eHA_Initialise() function and before starting
the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_DoorLockDevice structure (see
Section 13.1.4) which will be used to store all variables relating to the Door Lock
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Door Lock device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.4). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterDoorLockEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_DoorLockDevice *psDeviceInfo);
242 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 243

Chapter 12
HA Core Functions

eHA_RegisterDoorLockControllerEndPoint

Description

This function is used to register an endpoint which will support a Door Lock Controller
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_DoorLockControllerDevice
structure (see Section 13.1.5) which will be used to store all variables relating to the
Door Lock Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Door Lock Controller device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.5). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterDoorLockControllerEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_DoorLockControllerDevice *psDeviceInfo);
244 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 245

Chapter 12
HA Core Functions

eHA_RegisterSimpleSensorEndPoint

Description

This function is used to register an endpoint which will support a Simple Sensor
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_SimpleSensorDevice structure (see
Section 13.1.6) which will be used to store all variables relating to the Simple Sensor
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Simple Sensor device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.1.6). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterSimpleSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_SimpleSensorDevice *psDeviceInfo);
246 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 247

Chapter 12
HA Core Functions

eHA_RegisterOnOffLightEndPoint

Description

This function is used to register an endpoint which will support an On/Off Light
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_OnOffLightDevice structure (see
Section 13.2.1) which will be used to store all variables relating to the On/Off Light
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Light device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.1). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterOnOffLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_OnOffLightDevice *psDeviceInfo);
248 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 249

Chapter 12
HA Core Functions

eHA_RegisterDimmableLightEndPoint

Description

This function is used to register an endpoint which will support a Dimmable Light
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_DimmableLightDevice structure (see
Section 13.2.2) which will be used to store all variables relating to the Dimmable Light
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Light device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterDimmableLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_DimmableLightDevice *psDeviceInfo);
250 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 251

Chapter 12
HA Core Functions

eHA_RegisterColourDimmableLightEndPoint

Description

This function is used to register an endpoint which will support a Colour Dimmable
Light device. The function must be called after the eHA_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_ColourDimmableLightDevice
structure (see Section 13.2.3) which will be used to store all variables relating to the
Colour Dimmable Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Dimmable Light device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.3). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterColourDimmableLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_ColourDimmableLightDevice *psDeviceInfo);
252 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 253

Chapter 12
HA Core Functions

eHA_RegisterOnOffLightSwitchEndPoint

Description

This function is used to register an endpoint which will support an On/Off Light Switch
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_OnOffLightSwitchDevice structure
(see Section 13.2.4) which will be used to store all variables relating to the On/Off
Light Switch device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Light Switch device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.4). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterOnOffLightSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_OnOffLightSwitchDevice *psDeviceInfo);
254 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 255

Chapter 12
HA Core Functions

eHA_RegisterDimmerSwitchEndPoint

Description

This function is used to register an endpoint which will support a Dimmer Switch
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_DimmerSwitchDevice structure (see
Section 13.2.5) which will be used to store all variables relating to the Dimmer Switch
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmer Switch device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.5). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterDimmerSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_DimmerSwitchDevice *psDeviceInfo);
256 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 257

Chapter 12
HA Core Functions

eHA_RegisterColourDimmerSwitchEndPoint

Description

This function is used to register an endpoint which will support a Colour Dimmer
Switch device. The function must be called after the eHA_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_ColourDimmerSwitchDevice
structure (see Section 13.2.6) which will be used to store all variables relating to the
Colour Dimmer Switch device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Dimmer Switch device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.6). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterColourDimmerSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_DimmerSwitchDevice *psDeviceInfo);
258 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 259

Chapter 12
HA Core Functions

eHA_RegisterLightSensorEndPoint

Description

This function is used to register an endpoint which will support a Light Sensor device.
The function must be called after the eHA_Initialise() function and before starting
the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_LightSensorDevice structure (see
Section 13.2.7) which will be used to store all variables relating to the Light Sensor
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Light Sensor device is housed in the same hardware,
sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.7). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterLightSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_LightSensorDevice *psDeviceInfo);
260 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 261

Chapter 12
HA Core Functions

eHA_RegisterOccupancySensorEndPoint

Description

This function is used to register an endpoint which will support an Occupancy Sensor
device. The function must be called after the eHA_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). HA endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
HA_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for HA.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsHA_OccupancySensorDevice structure
(see Section 13.2.8) which will be used to store all variables relating to the Light
Sensor device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Occupancy Sensor device is housed in the same
hardware, sharing the same JN5168 module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that the HA library will use to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 13.2.8). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eHA_RegisterOccupancySensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsHA_OccupancySensorDevice *psDeviceInfo);
262 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 263

Chapter 12
HA Core Functions

264 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
13. HA Device Structures

This chapter presents the shared device structures for the HA devices supported by
the HA API. The supported HA devices are introduced in Chapter 2.

Within each shared device structure, there is a section for each cluster supported by
the device, where each of these sections has one or more of the following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_SCENES for the Scenes cluster). Another
enumeration is also used which determines whether the cluster will act as a server or
client (e.g. SCENES_SERVER for a Scenes cluster server). Refer to Section 3.5.1.

13.1 Generic Devices

The structures for the following Generic Devices are presented in this section:

 On/Off Switch (tsHA_OnOffSwitchDevice) - see Section 13.1.1

 On/Off Output (tsHA_OnOffOutputDevice) - see Section 13.1.2

 Remote Control (tsHA_RemoteControlDevice) - see Section 13.1.4

 Door Lock (tsHA_DoorLockDevice) - see Section 13.1.4

 Door Lock Controller (tsHA_DoorLockControllerDevice) - see Section
13.1.5

 Simple Sensor (tsHA_SimpleSensorDevice) - see Section 13.1.6

13.1.1 tsHA_OnOffSwitchDevice

The following tsHA_OnOffSwitchDevice structure is the shared structure for an
On/Off Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_OnOffSwitchDeviceClusterInstances sClusterInstance;

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

JN-UG-3076 v1.1 © NXP Laboratories UK 2013 265

Chapter 13
HA Device Structures

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OnOff sOOSCServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

#endif
266 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

} tsHA_OnOffSwitchDevice;

13.1.2 tsHA_OnOffOutputDevice

The following tsHA_OnOffOutputDevice structure is the shared structure for an
On/Off Output device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_OnOffOutputDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 267

Chapter 13
HA Device Structures

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;
268 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#endif

} tsHA_OnOffOutputDevice;

13.1.3 tsHA_RemoteControlDevice

The following tsHA_RemoteControlDevice structure is the shared structure for a
Remote Control device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_RemoteControlDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 269

Chapter 13
HA Device Structures

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif
270 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 /* Optional client clusters */

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

#endif

#if (defined CLD_OOSC) && (defined OOSC_CLIENT)

 /* On/Off Switch Configuration Cluster - Client */

 tsCLD_OnOff sOOSCClientCluster;

#endif

#if (defined CLD_TEMPERATURE_MEASUREMENT) && (defined
TEMPERATURE_MEASUREMENT_CLIENT)

 /* Temperature Measurement Cluster - Client */

 tsCLD_TemperatureMeasurement
sTemperatureMeasurementClientCluster;

#endif

#if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_CLIENT)

 /* Illuminance Level Sensing Cluster - Client */

 tsCLD_IlluminanceLevelSensing
sIlluminanceLevelSensingClientCluster;

#endif

#if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_CLIENT)

 /* Illuminance Measurement Cluster - Client */

 tsCLD_IlluminanceMeasurement
sIlluminanceMeasurementClientCluster;

#endif

} tsHA_RemoteControlDevice;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 271

Chapter 13
HA Device Structures

13.1.4 tsHA_DoorLockDevice

The following tsHA_DoorLockDevice structure is the shared structure for a Door
Lock device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_DoorLockDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_DOOR_LOCK) && (defined DOOR_LOCK_SERVER)

 /* door lock Cluster - Server */

 tsCLD_DoorLock sDoorLockServerCluster;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif
272 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 #endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

} tsHA_DoorLockDevice;

13.1.5 tsHA_DoorLockControllerDevice

The following tsHA_DoorLockControllerDevice structure is the shared structure
for a Door Lock Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_DoorLockControllerDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 273

Chapter 13
HA Device Structures

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_DOOR_LOCK) && (defined DOOR_LOCK_CLIENT)

 /* Door Lock Cluster - Client */

 tsCLD_DoorLock sDoorLockClientCluster;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif
274 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

} tsHA_DoorLockControllerDevice;

13.1.6 tsHA_SimpleSensorDevice

The following tsHA_SimpleSensorDevice structure is the shared structure for a
Simple Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_SimpleSensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_BINARY_INPUT_BASIC) && (defined
BINARY_INPUT_BASIC_SERVER)

 /* Binary Input Basic Cluster - Server */

 tsCLD_BinaryInputBasic sBinaryInputBasicServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 275

Chapter 13
HA Device Structures

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 #endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

} tsHA_SimpleSensorDevice;
276 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
13.2 Lighting Devices

The structures for the following Lighting Devices are presented in this section:

 On/Off Light (tsHA_OnOffLightDevice) - see Section 13.2.1

 Dimmable Light (tsHA_DimmableLightDevice) - see Section 13.2.2

 Colour Dimmable Light (tsHA_ColourDimmableLightDevice) - see
Section 13.2.3

 On/Off Light Switch (tsHA_DimmableLightDevice) - see Section 13.2.4

 Dimmer Switch (tsHA_DimmerSwitchDevice) - see Section 13.2.5

 Colour Dimmer Switch (tsHA_ColourDimmerSwitchDevice) - see Section
13.2.6

 Light Sensor (tsHA_LightSensorDevice) - see Section 13.2.7

 Occupancy Sensor (tsHA_OccupancySensorDevice) - see Section 13.2.8

13.2.1 tsHA_OnOffLightDevice

The following tsHA_OnOffLightDevice structure is the shared structure for an On/
Off Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_OnOffLightDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 //tsCLD_AS_Basic sBasicServerClusterAttributeStatus;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 //tsCLD_AS_Identify sIdentifyServerClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 277

Chapter 13
HA Device Structures

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 //tsCLD_AS_OnOff sOnOffServerClusterAttributeStatus;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 //tsCLD_AS_Scenes sScenesServerClusterAttributeStatus;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 //tsCLD_AS_Groups sGroupsServerClusterAttributeStatus;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 //tsCLD_AS_PowerConfiguration
sPowerConfigServerClusterAttributeStatus;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

 //tsCLD_AS_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerClusterAttributeStatus;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 //tsCLD_AS_Alarms sAlarmsServerClusterAttributeStatus;
278 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Optional client clusters */

#if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 //tsCLD_AS_OccupancySensing
sOccupancySensingClientClusterAttributeStatus;

#endif

} tsHA_OnOffLightDevice;

13.2.2 tsHA_DimmableLightDevice

The following tsHA_DimmableLightDevice structure is the shared structure for a
Dimmable Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_DimmableLightDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 //tsCLD_AS_Basic sBasicServerClusterAttributeStatus;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 //tsCLD_AS_Identify sIdentifyServerClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 279

Chapter 13
HA Device Structures

 //tsCLD_AS_OnOff sOnOffServerClusterAttributeStatus;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 //tsCLD_AS_Scenes sScenesServerClusterAttributeStatus;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 //tsCLD_AS_Groups sGroupsServerClusterAttributeStatus;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 //tsCLD_AS_LevelControl
sLevelControlServerClusterAttributeStatus;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 tsCLD_AS_PowerConfiguration
sPowerConfigServerClusterAttributeStatus;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;
280 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 tsCLD_AS_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerClusterAttributeStatus;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AS_Alarms sAlarmsServerClusterAttributeStatus;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Optional client clusters */

#if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 tsCLD_AS_OccupancySensing
sOccupancySensingClientClusterAttributeStatus;

#endif

} tsHA_DimmableLightDevice;

13.2.3 tsHA_ColourDimmableLightDevice

The following tsHA_ColourDimmableLightDevice structure is the shared
structure for a Colour Dimmable Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_ColourDimmableLightDeviceClusterInstances
sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 281

Chapter 13
HA Device Structures

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
sOnOffServerCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
sScenesServerCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsServerCustomDataStructure;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlServerCustomDataStructure;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;
282 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Optional client clusters */

#if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

#endif

} tsHA_ColourDimmableLightDevice;

13.2.4 tsHA_OnOffLightSwitchDevice

The following tsHA_OnOffLightSwitchDevice structure is the shared structure
for an On/Off Light Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_OnOffLightSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 //tsCLD_AS_Basic sBasicServerClusterAttributeStatus;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 283

Chapter 13
HA Device Structures

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 //tsCLD_AS_Identify sIdentifyServerClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OnOff sOOSCServerCluster;

 //tsCLD_AS_OnOff sOOSCServerClusterAttributeStatus;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 //tsCLD_AS_PowerConfiguration
sPowerConfigServerClusterAttributeStatus;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

 //tsCLD_AS_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerClusterAttributeStatus;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 //tsCLD_AS_Alarms sAlarmsServerClusterAttributeStatus;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 //tsCLD_AS_OnOff sOnOffClientClusterAttributeStatus;
284 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 //tsCLD_AS_Scenes sScenesClientClusterAttributeStatus;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 //tsCLD_AS_Groups sGroupsClientClusterAttributeStatus;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 //tsCLD_AS_Identify sIdentifyClientClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

} tsHA_OnOffLightSwitchDevice;

13.2.5 tsHA_DimmerSwitchDevice

The following tsHA_DimmerSwitchDevice structure is the shared structure for a
Dimmer Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_DimmerSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 285

Chapter 13
HA Device Structures

 //tsCLD_AS_Basic sBasicServerClusterAttributeStatus;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 //tsCLD_AS_Identify sIdentifyServerClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OnOff sOOSCServerCluster;

 //tsCLD_AS_OnOff sOOSCServerClusterAttributeStatus;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 //tsCLD_AS_PowerConfiguration
sPowerConfigServerClusterAttributeStatus;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

 //tsCLD_AS_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerClusterAttributeStatus;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 //tsCLD_AS_Alarms sAlarmsServerClusterAttributeStatus;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */
286 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 //tsCLD_AS_OnOff sOnOffClientClusterAttributeStatus;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 //tsCLD_AS_LevelControl
sLevelControlClientClusterAttributeStatus;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 //tsCLD_AS_Scenes sScenesClientClusterAttributeStatus;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 //tsCLD_AS_Groups sGroupsClientClusterAttributeStatus;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 //tsCLD_AS_Identify sIdentifyClientClusterAttributeStatus;

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

} tsHA_DimmerSwitchDevice;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 287

Chapter 13
HA Device Structures

13.2.6 tsHA_ColourDimmerSwitchDevice

The following tsHA_ColourDimmerSwitchDevice structure is the shared structure
for a Colour Dimmer Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_ColourDimmerSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OnOff sOOSCServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)
288 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

#endif

#if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

#endif

#if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
sColourControlClientCustomDataStructure;

#endif

#if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure
sScenesClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 289

Chapter 13
HA Device Structures

 tsCLD_IdentifyCustomDataStructure
sIdentifyClientCustomDataStructure;

#endif

} tsHA_ColourDimmerSwitchDevice;

13.2.7 tsHA_LightSensorDevice

The following tsHA_LightSensorDevice structure is the shared structure for a
Light Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_LightSensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_SERVER)

 /* Illuminance Measurement Cluster - Server */

 tsCLD_IlluminanceMeasurement
sIlluminanceMeasurementServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif
290 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Optional client clusters */

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

} tsHA_LightSensorDevice;

13.2.8 tsHA_OccupancySensorDevice

The following tsHA_OccupancySensorDevice structure is the shared structure for
an Occupancy Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsHA_OccupancySensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 291

Chapter 13
HA Device Structures

 tsCLD_IdentifyCustomDataStructure
sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_SERVER)

 /* Occupancy Sensing Cluster - Server */

 tsCLD_OccupancySensing sOccupancySensingServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

#endif

#if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
sDeviceTemperatureConfigurationServerCluster;

#endif

#if (defined CLD_ALARMS) && (defined ALARMS_SERVER)

 /* Alarms Cluster - Server */

 tsCLD_Alarms sAlarmsServerCluster;

 tsCLD_AlarmsCustomDataStructure
sAlarmsServerCustomDataStructure;

#endif

 /* Optional client clusters */

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure
sGroupsClientCustomDataStructure;

#endif

} tsHA_OccupancySensorDevice;
292 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Part IV:
Appendices
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 293

294 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
A. Custom Endpoints

An HA device and its associated clusters can be registered on an endpoint using the
relevant device registration function, from those listed and described in Chapter 12.
However, it is also possible to set up a custom endpoint which supports selected
clusters (rather than a whole HA device and all of its associated clusters). Custom
endpoints are particularly useful when using multiple endpoints on a single node - for
example, the first endpoint may support a complete HA device (such as a Light
Sensor) while one or more custom endpoints are used to support selected clusters.

A.1 HA Devices and Endpoints

When using custom endpoints, it is important to note the difference between the
following HA ‘devices’:

 Physical device: This is the physical entity which is the HA network node

 Logical HA device: This is a software entity which implements a specific set of
HA functionality on the node, e.g. On/Off Switch device

An HA network node may contain multiple endpoints, where one endpoint is used to
represent the ‘physical device’ and other endpoints are used to support ‘logical HA
devices’. The following rules apply to cluster instances on endpoints:

 All cluster instances relating to a single ‘logical HA device’ must reside on a
single endpoint.

 The Basic cluster relates to the ‘physical device’ rather than a ‘logical HA
device’ instance. There can be only one Basic cluster server for the entire
node, which can be implemented in either of the following ways:

 A single cluster instance on a dedicated ‘physical device’ endpoint

 A separate cluster instance on each ‘logical HA device’ endpoint, but each
cluster instance must use the same tsZCL_ClusterInstance structure
(and the same attribute values)
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 295

Appendices
A.2 Cluster Creation Functions

For each of the following clusters, a creation function is provided which creates an
instance of the cluster on an endpoint:

 Basic: eCLD_BasicCreateBasic()

 Identify: eCLD_IdentifyCreateIdentify()

 Groups: eCLD_GroupsCreateGroups()

 Scenes: eCLD_ScenesCreateScenes()

 On/Off: eCLD_OnOffCreateOnOff()

 On/Off Switch Configuration: eCLD_OOSCCreateOnOffSwitchConfig()

 Level Control: eCLD_LevelControlCreateLevelControl()

 Door Lock: eCLD_DoorLockCreateDoorLock()

 Colour Control: eCLD_ColourControlCreateColourControl()

 Appliance Control: eCLD_ApplianceControlCreateApplianceControl()

 Appliance Identification:
eCLD_ApplianceIdentificationCreateApplianceIdentification()

 Appliance Events and Alerts:
eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts()

 Appliance Statistics: eCLD_ApplianceStatisticsCreateApplianceStatistics()

More than one of the above functions can be called for the same endpoint in order to
create multiple cluster instances on the endpoint.

The creation functions for clusters from the ZCL are described in the ZCL User Guide
(JN-UG-3077). The creation functions for the remaining HA-specific clusters are
described in the chapters for the corresponding clusters in this manual.

A.3 Custom Endpoint Set-up

In order to set up a custom endpoint (supporting selected clusters), you must do the
following in your application code:

1. Create a structure for the custom endpoint containing details of the cluster
instances and attributes supported - see Appendix A.3.1.

2. Initialise the fields of the tsZCL_EndPointDefinition structure for the
endpoint.

Note: No more than one server instance and one client
instance of a given cluster can be created on a single
endpoint (e.g. one Identify cluster server and one
Identify cluster client, but no further Identify cluster
instances).
296 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
3. Call the relevant cluster creation function(s) for the cluster(s) to be supported
on the endpoint - see Appendix A.2.

4. Call the ZCL function eZCL_Register() for the endpoint.

A.3.1 Custom Endpoint Structure

In your application code, to set up a custom endpoint you must create a structure
containing details of the cluster instances and attributes to be supported on the
endpoint. This structure must include the following:

 A definition of the custom endpoint through a tsZCL_EndPointDefinition
structure - for example:

tsZCL_EndPointDefinition sEndPoint

 A structure containing a set of tsZCL_ClusterInstance structures for the
supported cluster instances - for example:

typedef struct
{
 tsZCL_ClusterInstance sBasicServer;
 tsZCL_ClusterInstance sBasicClient;
 tsZCL_ClusterInstance sIdentifyServer;
 tsZCL_ClusterInstance sOnOffCluster;
 tsZCL_ClusterInstance sDoorLockCluster;
} tsHA_AppCustomDeviceClusterInstances

For each cluster instance that is not shared with another endpoint, the following
should be specified via the relevant tsZCL_ClusterInstance structure:

 Attribute definitions, if any - for example, the tsCLD_Basic structure for
the Basic cluster

 Custom data structures, if any - for example, the
tsIdentify_CustomStruct structure for the Identify cluster

 Memory for tables or any other resources, if required by the cluster
creation function

Note: If a custom endpoint is to co-exist with a device
endpoint, the endpoints can share the structures for the
clusters that they have in common. Therefore, it is not
necessary to define these cluster structures for the
custom endpoint, since they already exist for the device
endpoint.
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 297

Appendices
298 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

 ZigBee Home Automation
User Guide
Revision History

Version Date Comments

1.0 10-June-2013 First release

1.1 22-Oct-2013 Poll Control and Power Profile clusters added
JN-UG-3076 v1.1 © NXP Laboratories UK 2013 299

ZigBee Home Automation
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com

For online support resources, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity
300 © NXP Laboratories UK 2013 JN-UG-3076 v1.1

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	Part I: Concept and Development Information
	1. Introduction to Home Automation
	1.1 Wireless Home Automation
	1.2 Home Automation Benefits
	1.3 Home Automation Application Areas
	1.3.1 Lighting
	1.3.2 Heating, Ventilation and Air-Conditioning (HVAC)
	1.3.3 Shades and Window Coverings
	1.3.4 Security Systems

	1.4 Energy Saving
	1.5 ZigBee Wireless Networks
	1.6 Software Architecture
	1.7 Interoperability and Certification
	1.8 Commissioning
	1.9 Internet Connectivity

	2. Home Automation (HA) Profile
	2.1 HA Devices
	2.2 Common Clusters
	2.3 Generic Devices
	2.3.1 On/Off Switch
	2.3.2 On/Off Output
	2.3.3 Remote Control
	2.3.4 Door Lock
	2.3.5 Door Lock Controller
	2.3.6 Simple Sensor

	2.4 Lighting Devices
	2.4.1 On/Off Light
	2.4.2 Dimmable Light
	2.4.3 Colour Dimmable Light
	2.4.4 On/Off Light Switch
	2.4.5 Dimmer Switch
	2.4.6 Colour Dimmer Switch
	2.4.7 Light Sensor
	2.4.8 Occupancy Sensor

	3. HA Application Development
	3.1 Development Resources and Installation
	3.2 HA Programming Resources
	3.2.1 Core Resources
	3.2.2 Cluster-specific Resources

	3.3 Function Prefixes
	3.4 Development Phases
	3.5 Building an Application
	3.5.1 Compile-Time Options
	3.5.2 ZigBee Network Parameters
	3.5.3 Building and Loading the Application Binary

	4. HA Application Coding
	4.1 HA Programming Concepts
	4.1.1 Shared Device Structures
	4.1.2 Addressing
	4.1.3 OS Resources

	4.2 Initialisation
	4.3 Callback Functions
	4.4 Discovering Endpoints and Clusters
	4.5 Reading Attributes
	4.6 Writing Attributes
	4.7 Handling Stack and Timer Events
	4.8 Servicing Timing Requirements
	4.9 Time Management
	4.9.1 Time Maintenance
	4.9.2 Updating ZCL Time Following Sleep

	Part II: HA Clusters
	5. ZCL Clusters
	5.1 Basic Cluster
	5.2 Power Configuration Cluster
	5.3 Identify Cluster
	5.4 Groups Cluster
	5.5 Scenes Cluster
	5.6 On/Off Cluster
	5.7 On/Off Switch Configuration Cluster
	5.8 Level Control Cluster
	5.9 Time Cluster
	5.10 Binary Input (Basic) Cluster
	5.11 Door Lock Cluster
	5.12 Colour Control Cluster
	5.13 Illuminance Measurement Cluster
	5.14 Occupancy Sensing Cluster

	6. Poll Control Cluster
	6.1 Overview
	6.2 Cluster Structure and Attributes
	6.3 Attribute Settings
	6.4 Poll Control Operations
	6.4.1 Initialisation
	6.4.2 Configuration
	6.4.3 Operation

	6.5 Poll Control Events
	6.6 Functions
	6.6.1 Server/Client Function
	eCLD_PollControlCreatePollControl

	6.6.2 Server Functions
	eCLD_PollControlUpdate
	eCLD_PollControlSetAttribute

	6.6.3 Client Functions
	eCLD_PollControlSetLongPollIntervalSend
	eCLD_PollControlSetShortPollIntervalSend
	eCLD_PollControlFastPollStopSend

	6.7 Return Codes
	6.8 Enumerations
	6.8.1 ‘Attribute ID’ Enumerations
	6.8.2 ‘Command’ Enumerations

	6.9 Structures
	6.9.1 tsCLD_PPCallBackMessage
	6.9.2 tsCLD_PollControl_CheckinResponsePayload
	6.9.3 tsCLD_PollControl_SetLongPollIntervalPayload
	6.9.4 tsCLD_PollControl_SetShortPollIntervalPayload
	6.9.5 tsCLD_PollControlCustomDataStructure

	6.10 Compile-Time Options

	7. Power Profile Cluster
	7.1 Overview
	7.2 Cluster Structure and Attributes
	7.3 Power Profiles
	7.4 Power Profile Operations
	7.4.1 Initialisation
	7.4.2 Adding and Removing a Power Profile (Server Only)
	7.4.3 Communicating Power Profiles
	7.4.4 Communicating Schedule Information
	7.4.5 Executing a Power Profile Schedule
	7.4.6 Communicating Price Information

	7.5 Power Profile Events
	7.6 Functions
	7.6.1 Server/Client Function
	eCLD_PPCreatePowerProfile

	7.6.2 Server Functions
	eCLD_PPSchedule
	eCLD_PPSetPowerProfileState
	eCLD_PPAddPowerProfileEntry
	eCLD_PPRemovePowerProfileEntry
	eCLD_PPGetPowerProfileEntry
	eCLD_PPPowerProfileNotificationSend
	eCLD_PPEnergyPhaseScheduleStateNotificationSend
	eCLD_PPPowerProfileScheduleConstraintsNotificationSend
	eCLD_PPEnergyPhasesScheduleReqSend
	eCLD_PPPowerProfileStateNotificationSend
	eCLD_PPGetPowerProfilePriceSend
	eCLD_PPGetPowerProfilePriceExtendedSend
	eCLD_PPGetOverallSchedulePriceSend

	7.6.3 Client Functions
	eCLD_PPPowerProfileRequestSend
	eCLD_PPEnergyPhasesScheduleNotificationSend
	eCLD_PPPowerProfileStateReqSend
	eCLD_PPEnergyPhasesScheduleStateReqSend
	eCLD_PPPowerProfileScheduleConstraintsReqSend

	7.7 Return Codes
	7.8 Enumerations
	7.8.1 ‘Attribute ID’ Enumerations
	7.8.2 ‘Power Profile State’ Enumerations
	7.8.3 ‘Server-Generated Command’ Enumerations
	7.8.4 ‘Server-Received Command’ Enumerations

	7.9 Structures
	7.9.1 tsCLD_PPCallBackMessage
	7.9.2 tsCLD_PPEntry
	7.9.3 tsCLD_PP_PowerProfileReqPayload
	7.9.4 tsCLD_PP_PowerProfilePayload
	7.9.5 tsCLD_PP_PowerProfileStatePayload
	7.9.6 tsCLD_PP_EnergyPhasesSchedulePayload
	7.9.7 tsCLD_PP_PowerProfileScheduleConstraintsPayload
	7.9.8 tsCLD_PP_GetPowerProfilePriceExtendedPayload
	7.9.9 tsCLD_PP_GetPowerProfilePriceRspPayload
	7.9.10 tsCLD_PP_GetOverallSchedulePriceRspPayload
	7.9.11 tsCLD_PP_EnergyPhaseInfo
	7.9.12 tsCLD_PP_EnergyPhaseDelay
	7.9.13 tsCLD_PP_PowerProfiIeRecord
	7.9.14 tsCLD_PPCustomDataStructure

	7.10 Compile-Time Options

	8. Appliance Control Cluster
	8.1 Overview
	8.2 Cluster Structure and Attributes
	8.3 Sending Commands
	8.3.1 Execution Commands from Client to Server
	8.3.2 Status Commands from Client to Server
	8.3.3 Status Notifications from Server to Client

	8.4 Appliance Control Events
	8.5 Functions
	eCLD_ApplianceControlCreateApplianceControl
	eCLD_ACExecutionOfCommandSend
	eCLD_ACSignalStateSend
	eCLD_ACSignalStateResponseORSignalStateNotificationSend
	eCLD_ACSignalStateNotificationSend
	eCLD_ACChangeAttributeTime

	8.6 Return Codes
	8.7 Enumerations
	8.7.1 ‘Attribute ID’ Enumerations
	8.7.2 ‘Client Command ID’ Enumerations
	8.7.3 ‘Server Command ID’ Enumerations

	8.8 Structures
	8.8.1 tsCLD_ApplianceControlCallBackMessage
	8.8.2 tsCLD_AC_ExecutionOfCommandPayload
	8.8.3 tsCLD_AC_SignalStateResponseORSignalStateNotificationPayload
	8.8.4 tsCLD_ApplianceControlCustomDataStructure

	8.9 Compile-Time Options

	9. Appliance Identification Cluster
	9.1 Overview
	9.2 Cluster Structure and Attributes
	9.3 Functions
	eCLD_ApplianceIdentificationCreateApplianceIdentification

	9.4 Return Codes
	9.5 Enumerations
	9.5.1 ‘Attribute ID’ Enumerations
	9.5.2 ‘Product Type ID’ Enumerations

	9.6 Compile-Time Options

	10. Appliance Events and Alerts Cluster
	10.1 Overview
	10.2 Cluster Structure and Attributes
	10.3 Sending Messages
	10.3.1 ‘Get Alerts’ Messages from Client to Server
	10.3.2 ‘Alerts Notification’ Messages from Server to Client
	10.3.3 ‘Event Notification’ Messages from Server to Client

	10.4 Appliance Events and Alerts Events
	10.5 Functions
	eCLD_ApplianceEventsAndAlertsCreateApplianceEventsAndAlerts
	eCLD_AEAAGetAlertsSend
	eCLD_AEAAGetAlertsResponseORAlertsNotificationSend
	eCLD_AEAAAlertsNotificationSend
	eCLD_AEAAEventNotificationSend

	10.6 Return Codes
	10.7 Enumerations
	10.7.1 ‘Command ID’ Enumerations

	10.8 Structures
	10.8.1 tsCLD_ApplianceEventsAndAlertsCallBackMessage
	10.8.2 tsCLD_AEAA_GetAlertsResponseORAlertsNotificationPayload
	10.8.3 tsCLD_AEAA_EventNotificationPayload
	10.8.4 tsCLD_ApplianceEventsAndAlertsCustomDataStructure

	10.9 Compile-Time Options

	11. Appliance Statistics Cluster
	11.1 Overview
	11.2 Cluster Structure and Attributes
	11.3 Sending Messages
	11.3.1 ‘Log Queue Request’ Messages from Client to Server
	11.3.2 ‘Statistics Available’ Messages from Server to Client
	11.3.3 ‘Log Request’ Messages from Client to Server
	11.3.4 ‘Log Notification’ Messages from Server to Client

	11.4 Log Operations on Server
	11.4.1 Adding and Removing Logs
	11.4.2 Obtaining Logs

	11.5 Appliance Statistics Events
	11.6 Functions
	eCLD_ApplianceStatisticsCreateApplianceStatistics
	eCLD_ASCAddLog
	eCLD_ASCRemoveLog
	eCLD_ASCGetLogsAvailable
	eCLD_ASCGetLogEntry
	eCLD_ASCLogQueueRequestSend
	eCLD_ASCLogRequestSend
	eCLD_ASCLogQueueResponseORStatisticsAvailableSend
	eCLD_ASCStatisticsAvailableSend
	eCLD_ASCLogNotificationORLogResponseSend
	eCLD_ASCLogNotificationSend

	11.7 Return Codes
	11.8 Enumerations
	11.8.1 ‘Attribute ID’ Enumerations
	11.8.2 ‘Client Command ID’ Enumerations
	11.8.3 ‘Server Command ID’ Enumerations

	11.9 Structures
	11.9.1 tsCLD_ApplianceStatisticsCallBackMessage
	11.9.2 tsCLD_ASC_LogRequestPayload
	11.9.3 tsCLD_ASC_LogNotificationORLogResponsePayload
	11.9.4 tsCLD_ASC_LogQueueResponseORStatisticsAvailablePayload
	11.9.5 tsCLD_LogTable
	11.9.6 tsCLD_ApplianceStatisticsCustomDataStructure

	11.10 Compile-Time Options

	Part III: General Reference Information
	12. HA Core Functions
	eHA_Initialise
	eHA_Update100mS
	eHA_RegisterOnOffSwitchEndPoint
	eHA_RegisterOnOffOutputEndPoint
	eHA_RegisterRemoteControlEndPoint
	eHA_RegisterDoorLockEndPoint
	eHA_RegisterDoorLockControllerEndPoint
	eHA_RegisterSimpleSensorEndPoint
	eHA_RegisterOnOffLightEndPoint
	eHA_RegisterDimmableLightEndPoint
	eHA_RegisterColourDimmableLightEndPoint
	eHA_RegisterOnOffLightSwitchEndPoint
	eHA_RegisterDimmerSwitchEndPoint
	eHA_RegisterColourDimmerSwitchEndPoint
	eHA_RegisterLightSensorEndPoint
	eHA_RegisterOccupancySensorEndPoint

	13. HA Device Structures
	13.1 Generic Devices
	13.1.1 tsHA_OnOffSwitchDevice
	13.1.2 tsHA_OnOffOutputDevice
	13.1.3 tsHA_RemoteControlDevice
	13.1.4 tsHA_DoorLockDevice
	13.1.5 tsHA_DoorLockControllerDevice
	13.1.6 tsHA_SimpleSensorDevice

	13.2 Lighting Devices
	13.2.1 tsHA_OnOffLightDevice
	13.2.2 tsHA_DimmableLightDevice
	13.2.3 tsHA_ColourDimmableLightDevice
	13.2.4 tsHA_OnOffLightSwitchDevice
	13.2.5 tsHA_DimmerSwitchDevice
	13.2.6 tsHA_ColourDimmerSwitchDevice
	13.2.7 tsHA_LightSensorDevice
	13.2.8 tsHA_OccupancySensorDevice

	Part IV: Appendices
	A. Custom Endpoints

